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ABSTRACT

A number of studies indicate that compartmental modeling of indocyanine green (ICG) pharmacokinetics, as
measured by near infrared (NIR) techniques, may provide diagnostic information for tumor differentiation. How-
ever, compartmental parameter estimation is a highly non-linear problem with limited data available in a clinical
setting. Furthermore, pharmacokinetic parameter estimates show statistical variation from one data set to an-
other. Thus, a systematic and robust approach is needed to model, estimate and quantify ICG pharmacokinetic
parameters. In this paper, we propose to model ICG pharmacokinetics in extended Kalman filtering (EKF)
framework. EKF effectively models multiple-compartment and multiple-measurement systems in the presence
of measurement noise and uncertainties in model dynamics. It provides simultaneous estimation of pharma-
cokinetic parameters and ICG concentrations in each compartment. Moreover, recursive nature of the Kalman
filter estimator potentially allows real time monitoring of time varying pharmacokinetic rates and concentration
changes in different compartments. We tested our approach using the ICG concentration data acquired from four
Fischer rats carrying adenocarcinoma tumor cells. Our study indicates that EKF model may provide additional
parameters that may be useful for tumor differentiation.
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1. INTRODUCTION

NIR diffuse optical imaging and spectroscopy methods provide quantitative functional information that can not
be obtained by the conventional radiological methods.1–4 NIR techniques can provide in vivo measurements of
oxygenation and vascularization state, uptake and release of optical contrast agents and chromophore concentra-
tions with high sensitivity. There is considerable evidence that NIR diffuse optical techniques in conjunction with
optical contrast agents have the potential to characterize angiogenesis and to differentiate between malignant
and benign tumors.5, 6

Among many optical contrast agents, ICG is the only agent approved for human use. In NIR measurements,
the presence of ICG within an imaging volume results in an increased signal that can be observed over the course
of the experiment. Study of the time kinetics of ICG concentration curves may provide physiologically relevant
information for tumor differentiation. Specifically, cancerous tissue types are expected to show high and fast
uptake due to proliferation of ”leaky” angiogenetic microvessels, while normal and fatty tissue show little uptake.

A number of research groups reported compartmental modeling of ICG time-kinetic measurements using NIR
methods for tumor diagnosis in animal and human subjects.7–9 Parameters related to capillary permeability
were suggested as malignancy indicators. Compartmental model is a mathematical description of the concentra-
tions of contrast agents in which each compartment represents kinetically distinct tissue type. It consists of a set
of coupled ordinary partial differential equations (ODE) and a measurement model. Coefficients of the ODE’s
are the physiological parameters of interest that represent rates of exchange between different compartments.
These parameters are non-linearly related to the total concentration of ICG measured by NIR methods. Fur-
thermore, concentration of ICG in each compartment can not be directly measured by NIR techniques, making
the pharmacokinetic parameter estimation a highly non-linear problem.
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Current methods of ICG pharmacokinetic modeling involves curve fitting methods and various techniques
for solving differential equations. Gurfinkel et. al. presented a two-compartmental model for ICG kinetics and
estimated model parameters.7 The measurements were obtained using a frequency domain photon migration
system coupled with a charge-coupled device. The pharmacokinetic parameters are estimated for each pixel
based on a curve fitting method. This study indicates that model parameters show no difference in the ICG
uptake rates between normal and diseased tissue. Cuccia et al. presented a study of the dynamics of ICG in
an adenocarcinoma rat tumor model.8 A two-compartmental model describing the ICG dynamics is used to
quantify physiologic parameters related to capillary permeability. The ICG concentration curves were fitted to
the compartmental model using a non-linear least squares Levenberg-Marquart algorithm. It was shown that
different tumor types have different capillary permeability rates. Intes et. al. presented the uptake of ICG by
breast tumors using a continuous wave diffuse optical tomography apparatus.9 A two-compartment model is
used to analyze the pharmacokinetics of ICG. A curve fitting algorithm namely, nonlinear Nelder-Mead simplex
search, is used to estimate the pharmacokinetic parameters. This study shows that the malignant cases exhibit
slower rate constants (uptake and outflow) as compared to healthy tissue.

Clearly, these studies indicate that ICG pharmacokinetic parameters have the potential to provide diagnostic
information. However, due to highly non-linear nature of the estimation problem, variation in parameters values
from one data set to another, and sparse data available in a clinical setting, a systematic and robust approach is
needed to estimate ICG pharmacokinetic parameters. In this paper, we propose to model ICG pharmacokinetics
in an extended Kalman filtering (KF) framework. KF is a widely used optimal recursive modeling and estimation
method. It effectively models multiple compartments, and measurement systems governed by coupled ordinary
differential equations in the presence of measurement noise and uncertainties in the compartmental model dy-
namics. Extended Kalman filter (EKF) provides a recursive estimation of not only the permeability rates but
also the ICG concentrations in each compartment, which is not directly accessible in vivo by means of NIR
techniques. EKF can also successfully accommodate any information available about the initial conditions of the
permeability rates into the estimation procedure. Furthermore, estimation is recursive that is, the estimates are
updated as new measurements arrive. As a result, EKF based modeling allows potentially real-time monitoring
of ICG pharmacokinetic parameters and time-varying ICG concentrations in different compartments.

We tested our approach using the ICG concentration data acquired from four Fischer rats carrying ade-
nocarcinoma tumor cells. Compartmental model parameters and concentrations in different compartments are
estimated. Model parameters were used to differentiate between two different stages of tumor. We observed that
the permeability rates are higher in advanced tumor stages. Additionally, we observed that the concentration
curve of ICG is higher in the EES compartment in advanced tumor stages. This suggests that the ratio of
the peak value of the ICG concentrations in different compartments may be a useful parameter to differentiate
tumors.

The paper is organized as follows: In Section 2, we present the compartmental modeling of ICG pharma-
cokinetics. In Section 3, we present modeling and estimation of ICG pharmacokinetics parameters and ICG
concentrations in extended Kalman filtering framework. In Section 4, we present experimental results obtained
from Fischer rat data. Finally, Section 5 concludes our discussion.

2. COMPARTMENTAL MODELING OF ICG PHARMACOKINETICS

2.1. Indocyanine Green

ICG is an optical dye commonly used in retinopathy and hepatic diagnostics. Given its low toxicity and FDA
approval, it has recently been utilized as a blood pooling agent for the detection and diagnosis of cancerous
tumors by means of NIR optical methods. The absorption peak of ICG is 805 nm and the fluorescence peak is
at 830 nm. ICG has strong affinity for blood proteins. In plasma, ICG is near-completely bound, primarily to
albumin. As a result, its in vivo kinetics are similar to those of a 70 kD molecule although it has a molecular
weight of about 700 D. Given its effective size, it is expected that little will exit the vasculature. However, in
certain tumor lines, the poorly developed capillary bed allows extravasation of albumin and therefore ICG.10–14

ICG is eliminated from the body primarily through the bile (the fluid flowing to the intestines to aid in
digestion and removal of waste). ICG outside of the circulatory system is not available for removal until it returns
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Figure 1. (a) ICG flow in tight capillary of normal vessel, (b) ICG flow in permeable capillary of tumor tissue .

to the system. The kinetics of this transition offers a potential means to non-invasively assess the leakiness of large
molecules from the microvasculature; this permeability is a characteristic of the poorly developed vasculature
observed in angiogenesis. The increase in local microvasculature density also increases the magnitude of the
photon density from inter-capillary ICG. Therefore pharmacokinetic analysis of ICG may provide information
for cancer diagnosis and staging.8, 9

2.2. Compartmental Modeling of ICG Pharmacokinetics
Compartmental modeling allows relatively simple and effective representation of complex biological responses
due to drugs or contrast agents. A region of interest is assumed to consist of a number of compartments,
generally representing a volume or a group of similar tissues into which the contrast agent is distributed. The
concentration change in a specific compartment is modeled as a result of the exchange of contrast agent between
connected compartments. These changes are modeled by a collection of coupled ODEs, each equation describing
the time change dictated by the biological laws that govern the concentration exchanges between interacting
compartments.15–18

There are some differences in the delivery of ICG between normal vasculature and cancer vasculature. In
normal tissue, ICG acts as a blood flow indicator in tight capillaries of normal vessel. However in tumor, ICG
may act as a diffusible (extravascular) flow in leaky capillary of cancer vessels. Additionally, The ICG leaks
slowly from plasma into extracellular extravascular space (EES) when capillary permeability increases. The
permeability is expected to increase as the malignancy advances. Figure 1 (a) and (b) illustrates the ICG flow
for healthy and malignant tissue, respectively.

In this paper, the tumor region is assumed to be composed of two compartments; namely, the plasma and
EES.8, 19, 20 Thus, a two-compartment model is chosen to represent the time-kinetics of ICG concentrations.
Figure 2 shows the two-compartment model for ICG kinetics. Cp and Ce represent the ICG concentrations in
the plasma and EES, respectively. The parameters kin and kout govern the leakage into and the drainage out
of the EES. The parameter kelm describes the ICG elimination from the body through kidneys and livers. The
parameters vp and ve are the plasma and EES volume fractions, respectively.

The leakage into and the drainage out of the EES is given by:

dCe(t)
dt

= −koutCe(t) + kinCp(t). (1)

The leakage into and the drainage out of plasma is given by:

dCp(t)
dt

= −(kin + kelm)Cp(t) + koutCe(t). (2)

The parameters kin, kout, and kelm have a unit of sec−1. They are defined as the permeability surface area
products given by PSρ, where P is the capillary permeability constant, S is the capillary surface area, and ρ is
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Figure 2. Representation of two compartment ICG pharmacokinetic model.

the tissue density. We consider transcapillary leakage to occur only at the tumor site. We also assume that a
small perturbation of the global plasma concentration does not affect the bulk removal.

Actual bulk ICG concentration in the tissue measured by NIR spectroscopy, m(t), is a linear combination of
plasma and EES ICG concentrations:

m(t) = vpCp(t) + veCe(t), (3)

where vp, ve, Ce, and Cp are as defined above.

3. EXTENDED KALMAN FILTERING FOR THE ICG PHARMACOKINETICS

3.1. State-space representation of ICG time-kinetics

Coupled differential equations resulting from the two-compartment model of the ICG pharmacokinetics can be
expressed in state-space representation:

[
Ċe(t)
Ċp(t)

]
=

[ −kout kin

kout −(kin + kelm)

] [
Ce(t)
Cp(t)

]
+ ω(t), (4)

m(t) =
[

ve vp

] [
Ce(t)
Cp(t)

]
+ η(t)

where ω(t) and η(t) are uncorrelated zero mean Gaussian processes with covariance matrix Q, and variance σ2,
respectively.

The closed form of the continuous time state-space representation is given by:

dC(t) = κ(α)C(t)dt + ω(t)dt, (5)

m(t) = V (α)C(t) + η(t).

In equation (5), C(t) denotes the concentration vector with elements Ce(t), and Cp(t); κ(α) is the 2 × 2 KF
system matrix, V (α) is the 1 × 2 KF measurement matrix as defined in equation (4) and α is the parameter
vector

α = [kout kin kelm ve vp]. (6)

The ICG measurements in equation (5) are collected at discrete time instances, t = kT , k = 0, 1, ..., where
T is the sampling period. Therefore, the continuous model described in equations (5) has to be discretized. To
simplify our notation, we shall use C(k) = C(kT ) and m(k) = m(kT ). The discrete KF system and observation
models are given as follows:
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C(k + 1) = κd(α)C(k) + ω(k) (7)

m(k) = Vd(α)C(k) + η(k),

where κd(α) = eκ(α) is the discrete time KF system matrix and Vd(α) = V (α) is the discrete KF measurement
matrix. ω(k) and η(k) are zero mean Gaussian white noise processes with covariances matrix Qd and variance
σ2

d, respectively. A general discussion on the discretization of state-space models can be found in various Kalman
filtering books, see for example.21

An explicit form for the discrete KF model is given as follows:
[

Ce(k + 1)
Cp(k + 1)

]
=

[
τ11 τ12

τ21 τ22

] [
Ce(k)
Cp(k)

]
+ ω(k) (8)

m(k) =
[

ve vp

] [
Ce(k)
Cp(k)

]
+ η(k),

where τij is the ith row and jth column entry of the system matrix κd(α). The matrix entry τij is an exponential
function of the parameters kin, kout and kelm. To simplify estimation process, we shall first estimate τij ’s and
then compute the pharmacokinetic parameters kin, kout and kelm.

3.2. Extended Kalman filtering for ICG pharmacokinetics

Kalman filter provides a recursive method to estimate the states in state-space models, in which states are driven
by noise and measurements are made in the presence of noise.22–24 It is one of the most widely used methods
for estimation in engineering problems due to its simplicity, optimality and robustness. In the case of non-linear
state-space models, the extended Kalman filter linearizes the model around the current state estimate, and then
applies the KF to the resulting linear model. The EKF framework is also utilized for the joint estimation of the
unknown system and/or measurement parameters and states. In a linear state-space model when both states
and system parameters are unknown, the linear state-space model can be regarded as a non-linear model in
which linear system parameters and states are combined to form the new states of the non-linear model. This
system is then linearized and solved for the unknown states using KF framework.25–27 In our problem, we want
to simultaneously estimate the states, and system and measurement parameters given in equation (8), i.e., the
ICG concentrations in plasma and EES; pharmacokinetic parameters and volume fractions.

We consider a Taylor series approximation to the non-linear system function at the previous state estimates
and that of the measurement function at the corresponding predicted position. This approach provides a simple
and efficient method to handle the non-linearity in the new system and measurement models.

Let θ(k) be the discrete parameter vector defined as:

θ(k) =
[

τ11 τ12 τ21 τ22 ve vp

]T

k
. (9)

In EKF framework, θ(k) is treated as a random process with the following model:

θ(k + 1) = θ(k) + ς(k), (10)

where ς(k) is a zero mean white noise process with covariance matrix Sd.

We append the parameter vector θ(k+1) to the ICG concentration vector C(k+1) to form the new non-linear
state-space model given as

[
C(k + 1)
θ(k + 1)

]
=

[
K(θ)C(k)

θ(k)

]
+

[
ω(k)
ς(k)

]
(11)

m(k) =
[

Vd(θ) 0
] [

C(k)
θ(k)

]
+ η(k),
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where K(θ) = κd(α).

The choice of Qd, Sd and σ2
d is crucial to the performance EKF estimator. It was shown that if these values are

selected to be less than or equal to the actual values, it leads to overconfidence in the accuracy of the estimates
of the error covariance matrix. Therefore, these matrices should be regarded as tuning parameters and not as
the estimates of the true covariance matrices.28

3.3. Joint estimation of ICG concentrations, pharmacokinetic parameters, and volume
fractions

We will summarize the major steps of the EKF estimator. The following equations describe how the state
estimates and error covariance matrix are updated at the kth time instant given all the measurements up to
(k − 1)th time instant. For k = 1, 2, 3, ...,


 Ĉe

Ĉp

θ̂




k|k−1

=


 ˆτ11Ĉe + ˆτ12Ĉp

ˆτ21Ĉe + ˆτ22Ĉp

θ̂




k−1|k−1

(12)

Pk|k−1 = Jk−1Pk−1|k−1J
T
k−1 +

[
Qd 0
0 Sd

]
. (13)

The subscript k|k − 1 denotes the estimate at time k given all the measurements up to time t. Pk|k−1 is the error
covariance matrix of the estimates. Jk−1 is the 8× 8 Jacobian matrix of the non-linear EKF system function at
time k − 1 given by

Jk−1 =




(
ˆτ11 ˆτ12

ˆτ21 ˆτ22

) (
Ĉe Ĉp 0 0 0 0
0 0 Ĉe Ĉp 0 0

)

0(6×2) I(6×6)




k−1|k−1

(14)

where 0(6×2) is the zero matrix, and I(6×6) is the identity matrix.

The Kalman gain is given as
Gk = Pk|k−1ΛT [ΛPk|k−1ΛT + σ2

k]−1, (15)

where Λ is the vector [
v̂e v̂p 0 0 0 0 Ĉe Ĉp

]
k|k−1

. (16)

The error covariance matrix update is given by

Pk|k = [I − GkΛ]Pk|k−1, (17)

where I is the 8 × 8 identity matrix.

The kth step estimate of the concentrations and the parameters are obtained recursively using


 Ĉe

Ĉp

θ̂




k|k

=


 Ĉe

Ĉp

θ̂




k|k−1

+ Gk(m(k) − v̂eĈe − v̂pĈp)k|k−1. (18)

Figure 3 shows the complete operation of the EKF algorithm.

The initialization of the plasma and EES concentrations, pharmacokinetic parameters, and the volume frac-
tions plays an important role in the performance of the EKF algorithm. Theoretically, the state estimates can be
initialized at the expected value of the ICG concentations, i.e. E[C(0)]. One approach to the initialization of the
parameters is to utilize the state-space presentation given in equation (7). Since E(m(0)) = Vd(θ(0))E[C(0)],
m(0)−Vd(θ(0))E[C(0)] is a zero mean random variable. If we express the variance of the measurement m(0) in
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Figure 3. The extended Kalman filter algorithm for joint concentration and pharmacokinetic parameter estimation .

terms of the variance of C(0)using the measurement model in equation (7), and solve for θ, we get the estimate
θ̂(0) as the most appropriate value for initialization. The details of the selection of the initial values for the
parameters can be found in.23

The initialization of the error covariance matrix is also important for the performance of the EKF. The
error covariance matrix is the matrix which provides the information about the error bounds for the estimates.
Theoretically, the initial error covariance matrix is a diagonal matrix where the diagonal entries are the initial
estimates of the variance of concentrations and pharmacokinetic parameters, i.e.

P0|0 =
[

Cov(C(0)) 0
0 Sd

]
. (19)

4. EXPERIMENTAL RESULTS

We applied the proposed EKF framework to the pharmacokinetic analysis of ICG data obtained from four Fischer
rats with adenocarcinoma. R3230ac, adenocarcinoma cells were injected below the skin into four Fischer rats,
3 weeks prior to measurements.8 Contrast agent experiments were conducted on four of these rats just before
sacrifice. Tumor sizes for these rats ranged in diameter from 5 to 30 mm. The ICG concentration data is collected
with an MRI-NIR imager. The configuration of the apparatus and the detailed data collection procedure have
been reported in.29, 30

Figure 4 presents ICG concentrations (µM) from four different rats. Tumors in Rat 1 and 2 are classified
as necrotic because of low tissue oxy-hemoglobin, low total hemoglobin, and low Gd-DTPA enhancement levels.
Tumors in Rat 3 and 4 are classified as edematous due to high water content. It can be observed from Figure 4
that the necrotic cases display low peak ICG concentration values and slowly rising slopes unlike the edematous
cases with high peak values and sharp rising slopes.8, 31

In order to characterize the difference between these two tumors, we estimated the pharmacokinetic parame-
ters kin, kout and kelm, and the volume fractions vp and ve for each rat. The estimated parameters are tabulated
in Table 1. The values of kout range from 0.0105 to 0.0777 sec−1 and the values of kin range from 0.0249 to 0.0840
sec−1. Note that the permeability rates for necrotic cases are lower than the ones observed for the edematous
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Figure 4. ICG concentrations measured in tissue for four different rats.

Table 1. Estimated pharmacokinetic parameters using EKF algorithm

kin (sec−1) kout (sec−1) kelm (sec−1) ve vp

Rat 1 (Necrotic) 0.0249 0.0105 0.00464 0.167 0.0142

Rat 2 (Necrotic) 0.0354 0.0298 0.00483 0.254 0.0242

Rat 3 (Edematous) 0.0690 0.0493 0.00395 0.304 0.0484

Rat 4 (Edematous) 0.0840 0.0777 0.00402 0.530 0.0703

cases. These results indicate that the permeability rates are higher in advanced tumors. Additionally, the esti-
mated values for the pharmacokinetic rates are much higher than the normal tissue values due to the increased
leakiness of the blood vessels around the tumor region.8, 34 The estimated plasma volume fractions agrees with
the values reported earlier,8 and the values presented in literature.32, 33 These results confirm that vp can be
significantly large in tumors and that vp increases depending on the stage of the tumor.20 The estimated values
of EES volume fractions, ve, range from 0.167 to 0.530 agreeing with a level of 0.2 to 0.5 reported before.19 Note
that these results are valid only for the ICG pharmacokinetics in tumor cells R3230ac, adenocarcinoma and may
not be generalized for other types of contrast agents or tumor types.

Figure 5 shows the estimated ICG concentrations in the plasma and the EES compartments for Rats 1 to
4. Note that initial estimates of concentrations are noisy due to the limited data used in the recursive EKF
estimation. This can be improved by backward smoothing. The peak values of the plasma concentration, Cp,
range from 1.84 µM to 4.28 µM . The absolute value of the concentrations may not be very useful. However,
concentration of ICG in one compartment relative to the concentration in another compartment may provide
useful information. We consider the ratio of the peak concentrations in the plasma and EES as a potential
parameter to discriminate different tumors. The peak Cp/Ce ratio for Rats 1 to 4 is 0.454, 0.593, 0.787, 1.151,
respectively. This ratio is higher in edematous cases agreeing with the fact that, ICG-albumin leaks more to the
EES in advanced tumor. Additionally, the ICG concentration in plasma decays faster than the ICG concentration
the in EES due to ICG elimination through liver and kidneys.

5. CONCLUSION

In this paper, we present a Kalman filtering framework for the modeling and estimation of ICG pharmacokinetics.
A two-compartmental model is fitted to the rat data using EKF estimation methodology. The pharmacokinetic
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Figure 5. ICG concentrations in plasma, Cp(t) and EES, Ce(t), for four different rats. 5(a) for Rat 1, 5(b) for Rat 2,
5(c) for Rat 3, 5(d) for Rat 4. .

parameters and volume fractions are estimated for different compartments. The results indicate that the per-
meability rates are higher for advanced tumors. Additionally, we estimated the ICG concentrations in different
compartments. The concentrations in different concentrations may provide additional parameters for tissue char-
acterization. As a future work, we plan to apply EKF framework to different optical contrast agents collected
from animal subjects and to the ICG data collected from human subjects.
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