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ABSTRACT

Diffuse Optical Tomography (DOT) image reconstruction is a challenging 3D problem with a relatively large
number of unknowns. DOT poses a typical ill-posed problem usually plagued by under-determination, which
complicates the inverse problem. Conventional image reconstruction algorithms can not provide high spatial
resolution and may become computationally expensive and unreliable especially in the presence of noise.

In this work, we extend our previous formulation for the 3D inverse DOT problem, where we focus to
improve the spatial resolution and quantitative accuracy of 3D DOT images by using anatomical a priori
information, which is specific to the medium of interest. Maximum A Posteriori (MAP) estimate of the
image is formed based on the formulation of the image’s probability density function, which is extracted
from the available a priori anatomical information. An “alternating minimization” algorithm, which se-
quentially updates the unknown parameters, is used to solve the resulting optimization problem. Proposed
method is evaluated in a 3D simulation experiment. Results demonstrate that the proposed method leads
to significantly improved spatial resolution, quantitative accuracy and faster convergence than standard and
regularized least squares solutions even in the presence of noise. As a result, the approach demonstrated
in this paper both addresses the ill-posedness and balances the computation complexity vs. image quality
trade-off in the 3D DOT inverse problem.

Keywords: Three-dimension, Diffuse Optical Tomography, inverse problem, a priori anatomical informa-
tion, spatial resolution

1. INTRODUCTION

In this work we formulate the inverse problem within a Bayesian framework with a spatially varying a priori
probability density function extracted from a priori anatomical information. Proposed approach leads to a
clinically applicable image reconstruction algorithm that can be easily incorporated to a combined imaging
system, such as the novel MRI-NIR concurrent imaging system developed at the University of Pennsylvania
Optical Imaging and Spectroscopy Laboratory.26

1.1. Related Work

Incorporation of structural information as the a priori information in inverse medical imaging problems
has been suggested in Refs. 18-19. In Ref. 13, MR images were used to generate a finite element mesh
to reconstruct a simulated rat cranium, where the available information, about the structure and optical
properties, is used for the initial guess in the inversion algorithm similar to the approach in Ref. 32. In
Ref. 33, the optical properties of certain regions are constrained to the available values, based on the a
priori structural information. In Ref. 14, the structural information is used to reconstruct images at a low
resolution level in order to obtain a good initial guess for the high-resolution solution of the same problem.

Use of MR scans has been employed for optical breast imaging15, 17 where the “reference medium” is
obtained from accurate optical properties of the tissue, with the anatomy derived from MR images. In Ref.
29, based on MR prior information, it has been suggested to unite pixels that belong to the same tissue
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type into one non-uniform pixel to reduce the number of unknowns. While this approach is computationally
viable, it is unable to resolve local variations within the same tissue type. A Bayesian formulation of the DOT
inverse problem has been suggested in Refs. 8-12 to incorporate a priori information. Introducing penalty
functions11 and uniform2–5 or spatially varying regularization12 terms in the inverse problem formulation is
another way of incorporating a priori information. However, in these studies, rather than specific information
about the unknown image, generic probability density functions or regularization terms have been used.
Therefore, the improvements have been relatively limited.

1.2. Proposed Method

We have formulated the 3D inverse DOT problem within a Bayesian framework based on a linear forward
model. The available high resolution anatomical image is segmented into sub-images that represent major
tissue types. Prior probability density function of the image is formulated such that each sub-image is
assigned a mean value that need not be equal to its actual optical value; and a “confidence level” is defined
in the form of an image variance formulation to allow local variations within sub-images. As a consequence,
the overall formulation of the prior information becomes spatially varying, which is specific to the image of
interest. Maximum A Posteriori (MAP) estimate of the image is formed based on the formulation of the
image’s probability density function. An “alternating minimization” algorithm, which sequentially updates
the unknown parameters, is used to solve the resulting optimization problem. The proposed method is
tested extensively using a 3D numerical simulation. Our results show that high resolution anatomical image
obtained from a secondary modality can significantly improve the spatial resolution, the quantitative accuracy
and the speed of DOT image reconstructions, even in the presence of noise.

Even though the presented results are based on the linearization of the forward model around a homoge-
neous background; the Bayesian formulation of the inverse problem based on a priori anatomical information
and the alternating minimization scheme depicted in this paper allow inclusion of an iterative update scheme
for the forward problem solution as the image reconstruction problem is resolved.

1.3. Organization of the Paper

The paper is organized as follows: Section 2.1 defines the forward model and section 2.2 provides the
background on the formulation of the inverse problem. Section 2.3 and 2.4 formulate the data likelihood
function and prior information, respectively. Section 2.5 formulates the inverse problem within a Bayesian
framework. Section 2.6 describes the “alternating minimization” algorithm. Simulation experiment results
are demonstrated in section 3. Conclusion is presented in section 4.

2. PROBLEM FORMULATION

2.1. Forward Model

In order to characterize a forward model, we need to model the photon propagation in the scattering medium.
In this work, we focus on the reconstruction of absorption coefficients, hence we keep scattering coefficient
and consequently the diffusion coefficient constant throughout our calculations. As a result, the use of the
following diffusion equation given in frequency domain is sufficient to define the forward model:

− iω

c
φ(r) −D �2 φ(r) + µa(r)φ(r) = Aδ(rs) (1)

where φ(r) represents the spatially varying optical field due to the point source Aδ(rs) located at r = rs. ω
denotes the frequency, c is the speed of light and i =

√−1. D is the spatially invariant diffusion coefficient
and µa(r) stands for the spatially varying absorption coefficient.

Phase Φ(r) of the optical field φ(r) can be expressed in terms of µa(r) using the perturbation theory,20–22

by expressing the spatially varying absorption coefficient as µa(r) = µa0 + δµa(r), where µa0 is the spatially
invariant background absorption coefficient and δµa(r) is the spatially varying component.
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Discretization of the 3D domain into N uniform voxels yield the following relationship16:

y = W × x (2)

where we have applied Rytov approach20 using a first order approximation. y denotes the measurement
vector holding the perturbative Rytov phase Φsc(r, rs) for each source-detector pair, W represents the
linearized forward model (weight matrix) which relates the differential absorption coefficient distribution
x =

[
δµa(r1) δµa(r2) · · · δµa(rN )

]T to the measurement vector y. Note that, linearization of the
forward model around a homogeneous background is suitable for a medium, such as human breast, with
absorption coefficient values less than 0.3.1

2.2. Inverse Problem
The inverse problem in imaging, namely the restoration and reconstruction of images can be defined as the
general problem of estimating a 3-D field x(r) from some form of indirect observations related to this field.
The problem can be stated as follows:

y = T{x} + ζ (3)

where y represents the measurements, x denotes the spatially varying 3-D field, ζ is the additive noise in the
measurement system and T is an operator that relates the unknown field x to the available measurements y.

According to our forward model, T is replaced by the weight matrix W and x denotes the unknown
spatial distribution of the differential absorption coefficient δµa.

The least squares (LS) solution can be formulated for this inverse problem as:

x̂LS = arg min
x

‖y −Wx‖2
2 (4)

where ‖.‖2 denotes the L2−norm. Due to the ill-posed and/or underdetermined nature of the DOT problem,
the LS solution is typically not robust. When the available measurement data is noisy, the noise components
will be highly amplified in the LS solution, which is not a desired outcome. This difficulty can be resolved by
incorporating a priori information of the image, which leads to a reduced mean-square error at the expense
of a bias introduced to the solution.30 The basic idea is to constrain the solution such that the amplified
noise effects are avoided.

The Bayesian approach provides a natural framework to incorporate prior information. Maximum a
posteriori (MAP) estimate of the image is given by:

x̂MAP = arg max
x

{log p(x|y)} (5)

where p(x|y) is the conditional probability density function of x given the measurements y. Equivalently,

x̂MAP = arg max
x

{log p(y|x) + log p(x)} (6)

where p(y|x) is the data likelihood function and p(x) is the probability density function of the corresponding
image. In the following two subsections, we shall discuss modelling the data likelihood, and prior information
which is designed to reflect the structural and statistical properties of the image.

2.3. Formulation of the Data Likelihood Function
The measurement vector y is formed as

y =
[
yf1
11 yf1

12 · · · yf1
1D yf1

21 · · · yf1
SD yf2

11 · · · yfF

SD

]T
(7)

where S is the number of sources, D is the number of detectors, and F is the number of frequencies associated
with each source. The total number of measurements is then equal to P = S×D×F . Since we are interested
in only the real part of the measurements, yfk

ij are all real.
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Photon detection can be modelled using shot noise statistics, which originates from Poisson statistics.6

With a sufficiently large number of detected photons, the Poisson statistics can be approximated by a Gaus-
sian distribution, uncorrelated between measurements and with a variance proportional to the measurement
values. Consequently each measurement yfk

ij is assumed to be an independent real Gaussian random variable
and the data likelihood is given by

p(y|x) =
1

K|Λζ(λ)|1/2
exp(−1

2
‖y −Wx‖2

Λ−1
ζ

(λ)
) (8)

where Λζ(λ) is the covariance matrix of size P × P , K is the normalization constant and ‖z‖2
Λ = zT Λz.

Under the assumption of statistical independence, Λζ(λ) becomes a diagonal matrix:

Λζ(λ) = λΛy =




λσ2
ζ1

0 0 · · · 0
0 λσ2

ζ2
0 · · · 0

0 0
. . . 0 0

...
. . . . . . . . . 0

0 0 0 0 λσ2
ζP


 (9)

where σ2
ζp

is equal to the absolute value of the corresponding measurement yfk

ij , hence diag(Λy) = |y| and
the unknown term λ is related to the noise variance.

2.4. Formulation of the Prior Information

The available a priori anatomical information offers the opportunity to formulate a specific prior probability
density function for the unknown image. Prior information comprising the smoothness and the optical
boundaries provides additional advantages as compared to generic assumptions which can not take particular
structural properties of the image of interest into account. In the case of DOT, such anatomical information
can be obtained from concurrently or sequentially acquired Magnetic Resonance (MR) or X-ray images.

We assume that the optical and anatomical edges are the same. Available edge information is utilized
to decompose the unknown image x into M homogeneous sub-images. Volume elements of each sub-image
are assumed to possess the same second-order statistical properties. Relying on the anatomical prior, each
sub-image xi is assigned a single mean value, µi which is approximately known in prior, and a single variance
σ2

i , which is an unknown parameter. Under these assumptions, the probability density function of the ith

sub-image becomes

p(xi|σi) =
1

(2πσ2
i )Ni/2

exp(− 1
2σ2

i

‖xi − µi‖2), i = 1, 2, ...,M (10)

where M is the number of sub-regions and Ni is the number of voxels in the ith sub-image. As a result the
probability density function of the whole image is modelled as follows:

p(x|σ) =
1

(2π)N/2|Λx(σ)|1/2
exp(−1

2
‖x− µ‖2

Λ−1
x (σ)

) (11)

where σ is the vector holding the variances that belong to each sub-image

σ =

[
σ2

1 · · ·σ2
1︸ ︷︷ ︸

N1

σ2
2 · · ·σ2

2︸ ︷︷ ︸
N2

· · · σ2
M · · ·σ2

M︸ ︷︷ ︸
NM

]T

(12)

and Λx(σ) is the covariance matrix of the image x. Further assumption of the uncorrelated sub-images result
in an image whose pixels are all uncorrelated. Therefore the covariance matrix, Λx(σ) becomes a diagonal
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matrix

Λx(σ) =




σ2
1IN1×N1 0 0 · · · 0

0 σ2
2IN2×N2 0 · · · 0

0 0
. . . . . . 0

...
. . . . . . . . . 0

0 0 0 0 σ2
MINM×NM


 (13)

where INi×Ni
is an Ni × Ni identity matrix and µ is the vector holding the mean values assigned to each

one of the pixels

µ =
[

µ1 · · ·µ1︸ ︷︷ ︸
N1

µ2 · · ·µ2︸ ︷︷ ︸
N2

· · · µM · · ·µM︸ ︷︷ ︸
NM

]T

(14)

The function of the covariance matrix is two-fold. As for the more obvious one, it incorporates the prior
information together with mean value vector and serves together with the noise variance as the regularization
parameter. The covariance matrix also defines lower and upper bounds for the deviation from the mean values
that are assigned to the image. In other words, it determines the “confidence level” for the assigned mean
values: lower the variance lower is the deviation that is expected from the mean.

In order to incorporate the confidence level into the statistical reconstruction procedure, we formulate
the probability density function of the sub-image variances. We assume that each of these parameters is
also Gaussian distributed with a positive mean and a positive variance that ensures a positive value for the
parameter. This assumption in fact gives the power to control the sub-image variance by constraining it to
realistic values. The probability density function of the sub-image variance becomes

p(σi) =
1

(2πγ2
i )Ni/2

exp(− 1
2γ2

i

‖σi − µσi
‖2), i = 1, 2, ...,M (15)

where γi is the variance and µσi
is the mean value of σi, which are all known prior. Assuming statistically

independent variances joint distribution p(σ) = p(σ1, σ2, · · · , σN ) can be written as

p(σ) =
1

(2π)N/2|Λσ(γ)|1/2
exp(−1

2
‖σ − µσ‖2

Λ−1
σ (γ)

) (16)

where Λσ(γ) = Λx(σ)|σi=γi
and µσ = µ|µi=µσi

where i = 1, 2, ...,M .

2.5. Bayesian Formulation of the Inverse Problem

After forming the data likelihood and image probability density functions, the inverse problem becomes the
reconstruction of the image x together with estimation of the unknown parameter λ and the unknown vector
of parameters σ. Assuming that all of the parameters are on the same level,27 the joint MAP estimate of
these parameters can be stated as

(x̂, λ̂, σ̂)MAP = arg max
x,λ,σ

p(x, λ, σ|y) (17)

where
p(x, λ, σ|y) = p(y|x, λ, σ)p(x, λ, σ) (18)

Since the image variance σ does not affect the measurement distribution, we can write equivalently

p(x, λ, σ|y) = p(y|x, λ)p(x, λ, σ) (19)

The first term in Eq. (19) is the data likelihood function which is derived in Eq. (8). The second term in
Eq. (19) can be expressed as

p(x, λ, σ) = p(x|σ, λ)p(λ, σ) (20)
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Assuming that the noise variance related parameter λ has no influence on the image distribution, the first
term in the above equation becomes the distribution given by Eq. (11). Expanding the second term p(λ, σ)
we get

p(λ, σ) = p(σ|λ)p(λ) (21)

If we assume that the image variance and the noise variance are statistically independent, which is a reason-
able assumption, we can rewrite the above relationship as

p(λ, σ) = p(σ)p(λ) (22)

Consequently Eq.(20) can be rewritten as

p(x, λ, σ) = p(x|σ)p(σ)p(λ) (23)

As a result, p(x, λ, σ|y) can be expressed as

p(x, λ, σ|y) = p(y|x, λ)p(λ)p(x|σ)p(σ) (24)

The joint MAP estimates x̂, λ̂, σ̂ are then equal to

(x̂, λ̂, σ̂)MAP = arg max
x,λ,σ

p(y|x, λ)p(λ)p(x|σ)p(σ) (25)

Assuming a uniform probability density function for the noise variance parameter λ and using the corre-
sponding probability density functions, the joint MAP estimation problem becomes

(x̂, λ̂, σ̂)MAP = arg min
x

min
λ

min
σ

{log(|Λζ(λ)|)+‖y−Wx‖2
Λ−1

ζ
(λ)

+log(|Λx(σ)|)+‖x−µ‖2
Λ−1

x (σ)
+‖σ−µσ‖2

Λ−1
σ (γ)

}
(26)

In order to make some observations, let’s assume that the estimate λ̂ of the parameter λ and the estimate
σ̂ of the vector σ are known, then the MAP estimate x̂MAP becomes

x̂MAP = arg min
x

{‖y −Wx‖2
Λ−1

ζ
(λ̂)

+ ‖x− µ‖2
Λ−1

x (σ̂)
} (27)

Taking the derivative of the above expression and setting it equal to zero yields an equation which is linear
in x. Solution of this equation is the image estimate x̂.

[WT Λ−1
ζ W + Λ−1

x ]x̂MAP = WT Λ−1
ζ y + Λ−1

x µ (28)

Note that, in regularization framework, equation (28) can be interpreted as a zero-order Tikhonov reg-
ularization.23 In the limiting case, as the image variance σ goes to 0, the confidence to the mean values
µ improves and the terms Λ−1

x and Λ−1
x µ become dominant in equation (28). Consequently, the estimate

x̂MAP is constrained more towards the assigned mean values, which results in separation of the sub-images
with respect to their mean values with edges whose sharpness is controlled by the variance parameter σ.

2.6. Inversion using Alternating Minimization

Let Ψ(x, λ, σ) denote the objective function to be minimized as derived in equation (26), with the unknown
parameters λ, σ, and the image x.

Ψ(x, λ, σ) = {log(|Λζ(λ)|) + ‖y −Wx‖2
Λ−1

ζ
(λ)

+ log(|Λx(σ)|) + ‖x− µ‖2
Λ−1

x (σ)
+ ‖σ − µσ‖2

Λ−1
σ (γ)

} (29)

An alternating minimization algorithm,28 which successively updates the unknown parameters while a min-
imum of the objective function is sought, is employed to compute the image estimate x̂. At each iteration of
the optimization, the objective function is minimized sequentially with respect to the unknown parameters
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λ and σ and a new update for the image x is computed using the updated values of these parameters. More
specifically at each iteration, the unknown parameters are computed as

λ̂ = arg min
λ

Ψ(x̂, λ, σ̂)

σ̂ = arg min
σ

Ψ(x̂, σ, λ̂) (30)

and the image estimate is updated with one iteration of Conjugate Gradient (CG) algorithm (Table 1)

x̂ ← CG update{Ψ(x, λ̂, σ̂)} (31)

where the α parameter in the CG algorithm is computed by the exact line search and Polak-Ribière-Polyak
method24, 25 is used to calculate β parameter. Under certain conditions,29 the alternating minimization
converges monotonically to a global minimum.

Table 1. Conjugate Gradient Algorithm

Initialize the image estimate to zero: x̂(0) = -0
Assign the mean value vector µ its entries corresponding to each individual region xi

Define a confidence level on the mean and compute the corresponding µσi

Initialize the image variance σ; σ > 0
Initialize the parameter λ: λ̂(0) = 1
Find gradient vector: -g(0) = −Ω(x̂(0)) = −∂Ψ(x,λ,σ)

∂x |x=x̂(0)

Set search direction: -d(0) = -g(0)

Define termination criterion ε
Set iteration counter: n = 0
repeat

Find α(n) such that: α(n) = arg minα>0 Ψ(x(n) + αd(n), λ̂, σ̂)
x(n+1) = x(n) + α(n) -d(n)

Update λ using equation (32)
Update σ using equation (39)
-g(n+1) = −Ω(x̂(n+1))
β(n+1) = max(�g(n+1)T (�g(n+1)−�g(n))

�g(n)T �g(n) , 0)
-d(n+1) = -g(n+1) + β(n+1) -d(n)

n = n + 1
until ‖α(n)Ω(x̂(n))‖ < ε

The minimization of the cost function with respect to the parameter λ given the updated estimates x̂
and σ̂ results

λ̂ =
‖y −Wx̂‖2

Λ−1
y

P
(32)

In order to find an estimate for the vector σ, we make use of the probability density function formulation
for each individual sub-image and rewrite the objective function with σi dependent terms:

Ψσi
(σi) = {log(σNi

i ) +
1

2σ2
i

‖xi − µi‖2 +
1

2γ2
i

‖σi − µσi
‖2} (33)

After taking the derivative of the above expression, the estimate for the sub-image variance σ2
i satisfies

the following equation:

Niσ
2
i − ‖xi − µi‖2 +

Ni

γ2
i

σ3
i (σi − µσi

) = 0 (34)
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This is a fourth order equation in σi, which is rather difficult to solve. In order to simplify the solution, we
make use of the following approximation:

µσi
σ3

i ≈ µ2
σi

(35)

and equation (34) becomes a quadratic equation of the parameter σ2
i

Ni

γ2
i

σ4
i + Niσ

2
i − (‖xi − µi‖2 + Ni

µ2
σi

γ2
i

) = 0 (36)

The discriminant of this equation can be evaluated as

� = N2
i + 4

Ni

γ2
i

(‖xi − µi‖2 + Ni

µ2
σi

γ2
i

) > 0 (37)

from which the positive value for the variance σ2
i can be calculated as

σ2
i =

−Ni +
√�

2Ni/γ2
i

> 0 (38)

Note that in the limiting case, for γ2
i → ∞, the sub-image variance estimate σ2

i converges to

lim
γ2

i
→∞

σ̂2
i = lim

γ2
i
→∞

−Ni +
√�

2Ni/γ2
i

=
‖x̂i − µi‖2

Ni
, i = 1, 2, ...,M (39)

which is the ML estimate for the variance where one can assume a uniform probability density function
instead of the Gaussian.16

3. SIMULATION EXPERIMENT

We have performed a 3D simulation experiment to demonstrate the performance of the proposed method.
We simulated optical measurements using a finite difference code for predetermined geometries, whose cross-
sections are shown in figure 1..

We evaluate the performance of image reconstructions in terms of convergence rate and error norm given
as

ε(n) = ΣM
i=1‖x̂(n)

i − x∗
i ‖2 (40)

where x∗
i is the actual δµa value in sub-image xi, and x̂

(n)
i is the estimated image in sub-image xi after nth

iteration.

3.1. Simulation Experiment
The diffusion equation is solved using finite-difference method for the 3D medium whose cross-sectional
views are shown in Fig.1. The background absorption coefficient µa0 is equal to 0.05 cm−1 and the diffusion
constant D ∼= 1/3µ′

s = 1/30 cm. The cylinder inclusion has an absorption coefficient µa = 0.15 cm−1 that
corresponds to a δµa value of 0.1 cm−1. The heterogeneity shown on the left has an absorption coefficient of
0.22 cm−1 leading to a differential absorption coefficient of 0.17 cm−1. The scattering coefficient hence the
diffusion coefficient of both heterogeneities are equal to those of the background. The medium is discretized
into 5 × 30 × 40 pixels along z, y and x directions each with the dimension 0.60 × 0.20 × 0.20 cm3. 35
sources that operate at ω = 0 frequency are distributed evenly along xz-plane and 40 detectors are located
on the opposite side of the medium (figure 2), as a result the number of total measurements is equal to
35 × 40 = 1400. The image is divided into three sub-images for the formulation of prior information, hence
µ = [µ1 · · ·µ1 µ2 · · ·µ2 µ3 · · ·µ3]T , where µ1 is the mean value of the background image, µ2 is the mean
value of the heterogeneity on the left, and µ3 is the mean value of the heterogeneity on the right, as shown in
figure 1. Two main cases are examined in the reconstruction procedure and LS, and regularized LS solutions
are also presented for comparison.
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Figure 1. The cross-sectional views of the 3D medium used in the simulation experiment. The cross-section along
xy plane is taken at z = 1.5 cm; the cross-section along xz plane is drawn for y = 3 cm and the cross-sections along
zy plane correspond to center of the objects along x-axis. The source (squares) and detector (circles) positions, at
y = 0 and y = 6 cm respectively are shown on the right.

3.1.1. Case 1

First set of experiments are done in the absence of noise. The 3D reconstruction results in figure 3 are
shown in 2D images that correspond to top 3 slices of the 3D medium. Each reconstruction has been done
for different values of the mean value vector µ and with a confidence level of 30%, which implies that the
mean value of the standard deviation µσi

in each sub-region xi is equal to 30% of the assigned mean value.
Results show that the proposed algorithm is not sensitive to the mean values assigned in the inverse problem
formulation. While the error norm shows that the performance is enhanced as the mean values are closer to
the exact values (Figure 5(a)), all of the reconstructed images present high accuracy with preserved edges.

The proposed method achieves much better results when compared to LS and regularized LS solution,
even in the absence of noise. Figure 3 shows the top 3 slices of the reconstructed 3D images. Regularized
LS solution provides a smoother image estimate than the LS solution however their convergence rates follow
a similar track (Figure 5(b)).

3.1.2. Case 2

For this case, we add zero-mean Gaussian noise to our measurement vector y, with a Signal-to-Noise Ratio
(SNR) value of 10 dB where we have defined SNR as

SNR = 10 log10(
Mean value of the measurements

Standard deviation of the additive noise
) (41)

The LS solution, after some iterations, diverges and can not present reliable results (figure 4). Although
the regularized LS solution, with a carefully selected regularization parameter, provides a robust solution,
the image is poor in spatial resolution and the solution is not accurate quantitatively (figure 4(b)).

Application of the proposed algorithm with the formulation of the prior information based on exact
mean values and 30% confidence level results in superior results with a faster convergence rate compared to
regularized LS solution. The achieved performance is slightly worse than the ideal case where there is no
noise (figure 6(c)).
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Figure 2. Top 3 slices are shown. All reconstructions are done in the absence of noise and top three slices of the
reconstructed 3D medium in the absence of noise are shown (a) The reconstruction with prior information formulation
with µ1 = 0.01, µ2 = 0.08, µ3 = 0.15, (b) The reconstruction with prior information formulation with mean values
equal to exact δµa values (c) The reconstruction with prior information formulation where µ1 = 0.03, µ2 = 0.12,
µ3 = 0.20.

4. CONCLUSION

Previously we had examined the potential utility of incorporating anatomical prior information within a
Bayesian framework and demonstrated our method with simulation and phantom experiments for 2D case.
In this work, we have extended the previous formulation and applied it for the 3D case. Results show that
incorporating specific structural information improves the DOT image reconstruction in spatial resolution,
quantitative accuracy and speed of convergence. The high performance achieved especially in the presence
of noise is another outcome of the proposed algorithm. Even though the presented results are based on the
linearization of the forward model around a homogeneous background, the Bayesian framework formulation
and the alternating minimization scheme depicted in this paper allow extension of the inverse problem
formulation to include an iterative update scheme for the forward problem solution.

The results obtained in this work are encouraging for our future studies on combined NIR-MRI breast
imaging, where the anatomical information will be extracted from the concurrent MR images.
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Figure 3. All reconstructions are done in the absence of noise and the top three slices of the reconstructed 3D
medium are shown (a) LS solution (b) regularized LS solution (c) Proposed method with mean values identical to
exact δµa values.
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Figure 4. (a) LS reconstruction in the presence of noise (b)Regularized LS reconstruction (c) reconstruction with
exact mean values and 30% of confidence level
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