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Abstract- Algebraic reconstruction techniques (ART) is a
family of practical algorithms which sets algebraic equations
for the unknowns in terms of the measured data and solves
these equations iteratively. It is typical that the system of
linear equations obtained in Diffuse Optical Tomography
(DOT) is underdetermined and/or ill-conditioned. ART is one
of the most popular image reconstruction techniques used in
DOT to solve this kind of system of linear equations. There is,
however, no natural way of including a priori information
about the image in ART algorithm. Moreover ART requires a
large number of iterations to reconstruct the image and hence
convergence to the solution is slow. In. this paper, for the
inverse problem in DOT, we apply a Recursive Least Squares
Algorithm (RLS) that converges in only one iteration and
enables the use of a priori information such as image
smoothness.We present comparison between the images
reconstructed by ART and RLS.
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I. INTRODUCTION

Diffuse Optical Tomography (DOT) uses the low-energy of
near infra-red (NIR) light to probe highly scattering media
in order to derive qualitative or quantitative images of their
optical properties. NIR tomography takes advantage of a
‘therapeutic window’ between 600 and 1000 nm in which
tissues exhibit low absorbance, but high scattering
characteristics. In this spectral range, the propagation of
‘light is accurately modeled by the diffusion equation.'

DOT, similar to the other tomographic schemes, is
divided into two parts: the forward problem and the inverse
problem.” The solution of the forward problem, which is the
diffusion equation, predicts the photon field expected at
boundaries of the measured system. The inverse problem
uses the appropriate forward solution to construct an
operator that is applied to the measured data from an
unknown medium to yield the internal optical composition
of this medium.

It is typical that the system of equations obtained in
DOT is underdetermined and/or ill-conditioned. ART,
among the linear inversion techniques, provides a
convenient way to solve the inverse problem in DOT. This
method is best suited for projections that are sparse, noisy
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or non-uniformly distributed® and furthermore, it allows
efficient processing of large inversion problems since it has
minimum storage requirements and can be easily
implemented with constraints such as object shape or non-
negativity.

However, there are some disadvantages of applying
ART for the inverse problem in DOT. One of those
disadvantages is that ART does not allow a natural addition
of a priori knowledge to the algorithm such as image
positivity and smoothness. Furthermore a large number of
iterations is required for the convergence to the solution.

In this paper for the inverse problem in Optical
Tomography, we apply a RLS algorithm that converges to
the minimum-norm solution in only one iteration and
enables the use of a priori information such as image
smoothness. We present comparison between the images
reconstructed by ART and RLS algorithm respectively and
discuss the pertinence of the results in a clinical context.

II. METHODS
A. Forward Model

In this paper we have employed analytical solutions of the
heterogeneous diffusion equation using the first order
Rytov approximation.* The Rytov approach writes the
heterogeneous field as:

U(F,1)=U,(F.E Je*®* (n

where U,(f,t) is the solution of the homogeneous
equation and ® (7,7 ) the diffuse Rytov phase.

In the case of DOT, multiple source-detector pairs are
used. The medium of interest is sampled in voxels and the

forward problem is expressed in terms of a system of linear
equations:
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where ®@_(x,,r, )is the diffuse perturbative phase for the i
source-detector pair; W, is the weight for the /* voxel and
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the source—detector-pair and Op, (rj) is the differential

absorption coefficient of the /™ voxel. The relation above
can be expressed equivalently as follows:

P=W-F (3)

where P is a vector holding the measurements for each
source-detector pair, W is the matrix of the forward model
(weight matrix), and F is the vector of unknowns (object
function).

B. Inversion using ART

ART solves a system of linear equations by projecting the
(i-1)™ solution estimate onto the i™ hyperplane defined by
the i” row of the weight matrix in order to obtain the i®
solution estimate for the next projection. The process can be
mathematically described by:
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where p, is the i measurement, fi is the i solution

" estimate, w,=(W,,W,,...,w,) and W, -W, is the dot
product of w, with itself. A is the relaxation parameter and
itis setto A =0.1 for this study.

C. Inversion using Least Squares Algorithm

The same set of linear equations (1) can be solved using a
RLS algorithm.” This algorithm describes the iterative
approach mathematically as follows:

fi =fH +}\’i(p1 _Wlfi—l)Pi—lw (5)
where
Pi = PH - x'1‘Pi—1W;‘lWiPH (6)
and
1
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where p; is the i® measurement, f, is the i® solution
estimate, w, is the i row of the weight matrix and o, is

the standard deviation of the noise at the ;™ measurement.
Choosing P, and A, according to equation (5) enables

the solution f,, given by (4), to minimize the quadratic cost
function for every i:

L1 2 _
,Ci(f)=Zo_—2(wmf—pm)’ +(f_fo)Pol(f—fo) (8)

where f, and P, are the a priori image mean and

covariance and o7 is the noise variance at the i data point.

III. RESULTS AND DISCUSSION
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Figure 1. Model used for the simulations

Figure 3. Reconstruction results by RLS Algorithm

We give reconstruction results obtained by ART and RLS
algorithms respectively. The measurements in this study
were obtained by solving the frequency-domain diffusion
equation with a finite difference approach. The simulations
are restricted to 2D geometry for computational efficiency.
The configuration used in this study is shown in
Figure 1. Figure 2 shows the reconstructed images using
ART after 250 and 500 iterations respectively. Figure 3
shows the reconstructed images using RLS Algorithm after
1 and 3 iterations respectively.
We observe that the RLS algorithm achieves better
reconstruction with much fewer iterations.
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