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Abstract: We propose a two-compartment model to present the pharmacokinetics of ICG around 
a tumor region. We introduce a method to directly reconstruct ICG pharmacokinetic rate images 
from boundary photon flux measurements using extended Kalman filtering.   
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1. Introduction 
 

Hemoglobin being an endogeneous contrast agent is incapable of providing high contrast. Thus, a new 
technique, fluorescence diffuse optical tomography (FDOT), whose theory is a straightforward expansion of that of 
diffuse optical tomography (DOT) have been proposed as an efficient means for increasing optical contrast. In 
FDOT, rather than endogenous contrast agents, NIR-excitable exogenous fluorescent contrast agents are 
investigated in terms of their optical properties. In FDOT, after discretizing the domain, the concentrations of the 
fluorochromes inside the tissue are reconstructed for each voxel from the boundary photon flux measurements [1]. 
The spatially and temporally resolved concentration images can then be used to form spatially resolved 
pharmacokinetic rates based on compartmental modeling [4]. In this study, we propose a method to reconstruct 
pharmacokinetic rate images of ICG directly from the boundary photon flux measurements based on extended 
Kalman filtering framework. We used a two-compartment model for indocyanine green (ICG) pharmacokinetics in a 
domain around the tumor region and coupled this model with the FDOT forward model to form a state space model 
which is then iteratively solved by extended Kalman filtering algorithm.  

 
2. Methodology 
2.1 Forward Problem in Fluorescence Diffuse Optical Tomography  
 

In this work, we used a coupled system of diffusion equations to model fluorescence light propagation in tissue 
[1]. The quantity, we wish to estimate is the spatially varying pharmacokinetic rate parameters which are directly 
related to the absorption coefficient of the fluorophore at the excitation wavelength. Based on the coupled diffusion 
equation, the forward model for FDOT can be expressed as:   
                                                                                )( af µ=Ψ  .                                                                                   (1) 
where µa is the absorption coefficient vector and Ψ is the boundary flux measurement vector and f is a nonlinear 
function defined by the coupled diffusion equation. Note that the absorption coefficient vector includes the 
absorption due to endogenous background and exogenous fluorochromes. Under the assumption that the exogenous 
optical properties has no effect on endogenous optical properties, (1) can be linearized to obtain 
                                                                    

afn Wµ=Ψ                                                                                 (2)      

where  nΨ  is the normalized Born measurements, µaf is the absorption coefficient of the fluorochromes and W is the 
weight (Jacobian) matrix. The absorption coefficient µaf of the fluorophore is related to the bulk ICG concentration 
m as follows: 
                                                                             lna f mλµ = × ε ×1 0                                                                  (3) 

where  λε is the wavelength dependent molar extinction coefficient of the fluorophore at the emission wavelength. 
 
 
 
 



2.2 The Two-compartment Model for ICG Pharmacokinetics and Inverse Problem 
ICG pharmacokinetics has the potential to provide diagnostic information for tumor differentiation [2,3]. In this 

study, we define pharmacokinetics as the rate of change of ICG concentration in vascular tumors and use a 
compartmental modeling approach to capture the ICG transition between different compartments. We assume that 
the tumor region is composed of two compartments; namely, the plasma and extracellular extravascular space 
(EES), [2,3]. Figure 1 illustrates the two-compartment model for ICG kinetics and ICG model equations. Cp and Ce 
represent the ICG concentrations in the plasma and EES, respectively. The parameters kin and kout govern the leakage 
into and the drainage out of the EES. The parameter kelm describes the ICG elimination from the body through 
kidneys and livers. The parameters vp and ve are the plasma and EES volume fractions, respectively. 
 

 
Fig. 1. The representation of the two-compartment model. 

In this work, we want to reconstruct the pharmacokinetic rate images in a domain composed of voxels. In order 
to do so, we extend the compartmental model equations given above to spatially resolved case: Let m(r,t),  denote 
the bulk ICG concentration at location r and time t, and , ( , )e pC r t  denote the ICG concentration at location r and 
time t in the EES and plasma concentrations, respectively. For N voxels, we form  
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where jr  denotes the location of the jth voxel and ( )e jv r , ( )p jv r  are plasma and EES volume fractions; and η(r,t) is 
zero mean Gaussian process representing the noise in the measurements. The differential equations describing the 
transition between the plasma and EES for spatially resolved case is given by 
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where ω(r,t) can be thought of as a zero mean Gaussian process and Kj is the matrix describing the transition 
between the two compartments for the jth voxel given by 
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The implicit form of the equations (4) and (5) are given by  

 
                                                      11221 ),(),(),( NxNxNNxNx trtrCVtrm η+=                                                                 (7) 

                                                     12122212 ),(),(),( NxNxNNxNx trtrCKtrC ω+=& .                                                            (8) 
Next we combine the linearized FDOT model given in equation (2), (3) AND the spatially resolved 

compartmental model in equation (7) to obtain  
                  112211 ),(),(),(.),(),( NxMxNNxNNxMxNMxNNxafMxNMx trWtrCVWtrmWtrmWtrΨ ηεεµ λ +=== .              (9) 

 
 
The state space presentation form which is used for direct reconstruction of pharmacokinetic rate images are 

given by 
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where the matrix Γ is given by ελWV. 
We reconstruct the pharmacokinetic rate images recursively using the extended Kalman filtering framework. 

The details of the algorithm can be found in [2]. Here it is important to note that, to get improved estimates, we 
introduce a Markov random field model on pharmacokinetic rates. This model imposes a spatial correlation between 
the values of the neighboring voxels. 

 
3. Simulations and Results 

To validate the EKF method, we performed a simulation study. Using physiologically reasonable values for 
pharmacokinetic rates, kin, kout, kelm, and volume fractions, ve, vp, around the tumor region, a set of time series data, 
Ψ(r,t), was generated from a simulated domain with tissue-like characteristics. To generate the synthetic 
measurements, the diffusion equation was solved numerically using FEM algorithm with Robin type boundary 
conditions. The simulation used a modulation frequency 300 MHz. The phantom is 6cm by 6cm in size, and it is 
discretized into 8 by 8 voxels of each of size 0.75cm by 0.75cm.  The 8 sources and 8 detectors are arranged 
throughout the boundary sequentially.  The maximum transition rates of kin and kout is created in the center of the 
image of size 1.5cm by 1.5cm and smoothly decreased through boundaries. Figures 2a and 3a displays the true 
images of pharmacokinetic rates kin and kout. Figures 2b and 3b displays the reconstructed images of these rates. The 
percent error between the true images and the reconstructed images are calculated using the ratio of the norm of the 
error and the norm of the true image. The percent error is calculated to be 12.74 % for kin, and 13.65 % for kout. Here, 
kelm, presenting the elimination of ICG from the body is not imaged since it is nearly same for all voxels. 
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 Fig 2. Pharmacokinetic rate images of kin : (a) true, and (b) reconstructed. 
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                                    Fig 3. Pharmacokinetic rate images of kout : (a) true, and (b) reconstructed. 

4. Conclusion 
In this paper, we reconstructed pharmacokinetic rate images of ICG directly from boundary photon flux 

measurements. We performed a simulation study using a digital phantom. Reconstructed images with small errors 
show that the algorithm can be used for real data analysis. In the near feature, we are planning to apply the proposed 
algorithm using the ICG concentration data acquired from breast tumors. 
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