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Abstract— In Diffuse Optical Tomography (DOT), the dis-
cretization error in the numerical solutions of the forward
and inverse problems results in error in the reconstructed
optical images. In this work, based on the analysis presented
in [5], we present two theorems that constitute the basis for
adaptive mesh generation for the forward and inverse DOT
problems. The proposed discretization schemes lead to adaptively
refined composite meshes that yield the desired level of imaging
accuracy while reducing the size of the discretized forward and
inverse problems. Our numerical experiments validate the error
estimates developed in [5] and show that the new adaptive mesh
generation algorithms improve the accuracy of the reconstructed
optical images.

I. INTRODUCTION

Imaging in Diffuse Optical Tomography (DOT) is composed

of two interdependent stages which seek solutions to the

forward and inverse problems. The forward problem deals

with describing the Near Infrared (NIR) light propagation and

the inverse problem is concerned with the estimation of the

unknown optical parameters from boundary measurements [1].

Numerical approaches in solving the forward and inverse

problems in Diffuse Optical Tomography (DOT) poses a trade-

off between computational efficiency and imaging accuracy.

This tradeoff is a direct consequence of the discretization of

the forward and inverse problems [5], [1] and the size of the

resulting discrete forward and inverse problems. Attempting

to minimize the discretization error in the solutions of both

problems separately results in increased size of the discrete

forward and inverse problems. Thus, it is important to under-

stand the relationship between the discretization error and the

resulting error in the solution of the inverse problem.

In [5], we presented an error analysis that shows the effect

of discretization of the forward and inverse problems on the

accuracy of DOT imaging. In this work, based on the two

error bounds provided by the error analysis in [5], we present

an adaptive discretization scheme for the forward and inverse

problems, respectively. We remark that the mesh refinement

criterion for each problem comprises the discretization error

in the corresponding problem solution, scaled spatially by the

solutions of both problems. Thus, the proposed adaptive mesh

generation algorithms address the interdependence between

the solutions of the forward and inverse problems and take

into account the orientation of the source-detectors and the ab-

sorptive perturbations. This makes the adaptive discretization

algorithms presented in this paper different from the previous

approaches [4], [9], [3], [7], [8] (see [5], [6] for an extensive

literature survey). The simulation experiments validate the

implications of our error analysis and show that the proposed

mesh generation algorithms significantly improve the accuracy

of the reconstructed optical images for a given number of

unknowns in the discrete forward and inverse problems.

The outline of this paper is as follows: In Section 2,

we give a brief overview of the forward and inverse DOT

problems and recall the two theorems presented in [5] which

summarize the impact of discretization on the accuracy of the

reconstructed optical images. Finally we discuss the adaptive

mesh generation algorithms followed by our experimental

results and the conclusion section.

TABLE I

INDEX OF NOTATION.

Notation Explanation

‖f(x)‖0 The L2(Ω) (or H0(Ω)) norm of f(x)
‖f(x)‖p The Hp(Ω) norm of f(x)
‖f(x)‖Lp(Ω) The Lp(Ω) norm of f(x)
‖f(x)‖0,m The L2 (or H0) norm of f(x) over the mth

finite element Ωm

‖f(x)‖p,m The Hp norm of f(x) on the mth finite element Ωm

f(x) The complex conjugate of f(x)

II. OVERVIEW

In this section, we first briefly define the forward and inverse

problems in DOT. Next, we state Theorems 1 and 2 presented

in [5] to recall the effect of the discretization of the forward

and inverse problems on the accuracy of optical absorption

image reconstruction. We refer to Table I for the explanation

of the notation associated with functions and their norms.

A. Forward and inverse problems in DOT

We consider the following boundary value problem to model

the near infrared light propagation in a bounded domain Ω ⊂
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R3, with Lipschitz boundary [2]:

−∇ · D(x)∇gj(x) + (μa(x) +
iω

c
)gj(x) = Qj(x) x ∈ Ω, (1)

gj(x) + 2aD(x)
∂gj

∂n
(x) = 0 x ∈ ∂Ω, (2)

where gj(x) is the photon density, Qj(x) is the point source

located at the source position xj
s, D(x) is the diffusion coeffi-

cient, μa(x) is the absorption coefficient, ω is the modulation

frequency of the source, c is the speed of the light, a is a

parameter governing the internal reflection at the boundary

∂Ω, and ∂ · /∂n denotes the directional derivative along

the unit normal vector n on the boundary. The boundary

value problem (1)-(2) constitutes the forward problem in DOT

together with the associated adjoint problem [1], [5]:

−∇ · D(x)∇g∗i (x) + (μa(x) − iω

c
)g∗i (x) = 0 x ∈ Ω, (3)

g∗i (x) + 2aD(x)
∂g∗i
∂n

(x) = Q∗
i (x) x ∈ ∂Ω, (4)

where Q∗
i (x) is the adjoint source located at the detector

position xi
d. Note that we approximate the point source Qj

in (1) and the adjoint source Q∗
i in (4) by Gaussian functions

with sufficiently low variance, whose centers are located at xj
s

and xi
d, respectively [5].

In this work, we focus on the estimation of the absorp-

tion coefficient and consider an iterative algorithm based

on repetitive linearization of the inverse problem using first

order Born approximation. Using a zeroth order Tikhonov

regularization to address the illposedness, the inverse problem

at each iteration reads:

γ(x) = A∗
aΓi,j = (A∗

aAa + λI)αλ = Kαλ, (5)

=
∫

Ω

κ(x, x́)αλ(x́)dx́ + λαλ(x) (6)

where Γi,j is the differential measurement at the ith detector

due to the jth source as a result of the small perturbation α(x)
on the background absorption coefficient μa(x). In (6), κ(x, x́)
is the kernel of the integral equation, given by

κ(x, x́) =
Nd,Ns∑

i,j

H∗(x; xj
s, xi

d)H(xj
s, xi

d; x́), (7)

where H(xj
s, xi

d; x́) = −g∗(x́, xi
d)g(x́, xj

s) is the kernel of

the integral operator Aa : L∞(Ω) → CNd×Ns and

H∗(x; xj
s, xi

d) = −g∗(x, xi
d)g(x, xj

s) is the kernel of the adjoint

operator A∗
a : CNd×Ns → L1(Ω) [6]. For the rest of the paper,

we will denote L∞(Ω) and L1(Ω) by X and Y , respectively.

Below we summarize the two theorems of [5] and provide

the error estimates which will be used in the design of adaptive

meshes for the discretization of the forward and inverse DOT

problems.

B. Effect of inverse problem discretization

Consider the discretization of the inverse problem (5) by

projecting it onto a finite dimensional subspace Yn, using the

collocation method [5]:

PnKαλ
n = Pnγ, (8)

where Pn : Y → Yn is the projection operator associated with

the collocation method with piecewise linear Lagrange basis

functions Lp(x) [5] such that αλ
n(x), x ∈ Ω, is approximated

on a set {Ωm} of finite elements for m = 1, · · · , NΔ,⋃NΔ
m Ωm = Ω as follows:

αλ
n(x) =

n∑
p=1

apLp(x). (9)

Let ψ be the interpolant of αλ [2] and assume that αλ ∈
H1(Ω). Then, the interpolation error eα = αλ −ψ is bounded

by

‖eα‖0,m ≤ C‖αλ‖1,mhm, (10)

where C is a positive constant and hm is the diameter of the

smallest ball that contains the mth element. Then,

Theorem 1:
The error between the solution αλ of (5) and the solution

αλ
n of (8) is bounded by ‖αλ − αλ

n‖L1(Ω):

≤ C
√

VΩ‖I − Tn‖Y →Xn

NΔ∑
m=1

‖αλ‖1,mhm

+
C

λ
‖Tn‖Y →Xn max

i,j
‖g∗i gj‖L1(Ω)

×
NΔ∑

m=1

Nd,Ns∑
i,j

‖g∗i gj‖0,m‖αλ‖1,mhm,

where C is a positive constant, VΩ is the volume of Ω, Tn :
Y → Xn is a uniformly bounded operator given by Tn = [I +
1
λPnA∗

aAa]−1Pn, and gj , g
∗
i are the solutions of the variational

formulations of the boundary value problems (1)-(2) and (3)-

(4), respectively [5].

Proof: See [5].

C. Effect of forward problem discretization

Assume that D(x), μa(x) ∈ C2(Ω). Noting that Qj , Q
∗
i ∈

H1(Ω), the solutions gj , g
∗
i of the variational formulations of

the boundary value problems (1)-(2) and (3)-(4) satisfy [5]

gj(x), g∗i (x) ∈ C1(Ω). (11)

Let Gj(x) and G∗
i (x) be the finite element approximations to

gj and g∗i , respectively, and let hj
m and hi

m be the diameter

of the smallest ball that contains the mth element in the finite

element solutions Gj and G∗
i , respectively. Then, a bound for

the discretization error in the solutions Gj and G∗
i can be

given by

‖gj − Gj‖0,m ≤ C‖gj‖1,mhj
m, (12)

‖g∗i − G∗
i ‖0,m ≤ C‖g∗i ‖1,mhi

m, (13)

where C is a positive constant.

Consider the inverse problem

K̃α̃λ = γ̃, (14)
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where K̃ and γ̃ are the finite dimensional approximations to

K and γ, obtained by substituting gj and g∗i in H(xj
s, xi

d; x́)
and H∗(x; xj

s, xi
d) by Gj and G∗

i , respectively. Then,

Theorem 2:
A bound for the error between the solution αλ of (5) and

the solution α̃λ of (14) due to approximations K̃ and γ̃ is

given by:

‖αλ − α̃λ‖L1(Ω) ≤ C

λ
max

i,j
‖g∗i gj‖L1(Ω)

×
⎛
⎝ NΔ∑

m=1

Nd,Ns∑
i,j

(
2‖gjα

λ‖0,m + ‖α‖∞‖gj‖0,m

) ‖g∗i ‖1,mhi
m

+
NΔ∑

m=1

Nd,Ns∑
i,j

(
2‖g∗i αλ‖0,m + ‖α‖∞‖g∗i ‖0,m

) ‖gj‖1,mhj
m

⎞
⎠ ,

where C is a positive constant.

Proof: See [5].

We refer to [5] for further details of the discussion regarding

the definition and discretization of the forward and inverse

problems.

III. ADAPTIVE MESH GENERATION

The adaptive mesh generation is based on minimizing the

error bounds in Theorems 1 and 2 and distributing the error

bound evenly on each of the finite elements. For the details

of the mesh generation, we refer to [6].

IV. NUMERICAL EXPERIMENTS

In the following, we present the results of our numerical

experiments. Note that in all experiments, we use triangular

finite elements with piecewise linear Lagrange basis functions.

We apply Gaussian elimination method to solve the discrete

forward problem resulting from the variational formulation [2]

of the boundary value problems (1)-(2) and (3)-(4) [5]. For the

inverse problem, we consider the discrete problem obtained by

projecting (14) by collocation method:

PnK̃α̃λ
n = Pnγ̃, (15)

where the regularization parameter is set to λ = 10−7, which

is chosen based on experience.

A. Simulation Study

In this simulation study, we consider the geometry shown

in Figure 1(a). We simulate the optical data by solving the

diffusion equation at ω = 0 on a fine uniform grid with 61

nodes along x and y directions, where the refractive index

mismatch parameter a = 3. 11 sources and 11 detectors

are evenly spaced on the bottom and top edges of the

square, respectively. The diffusion coefficient D(x) = 0.0410
is assumed to be constant. The circular heterogeneity with

absorption coefficient μa = 0.2 cm−1 is embedded in an

optically homogeneous background with μa = 0.04 cm−1.

In order to obtain a series of absorption imaging problems

using the same setup, we consider 5 values for the background

(a) The optical domain and
source-detector configuration for
the simulation study.

0 1 2 3 4 5 6
−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

Reference
Adaptive−Adaptive
Uniform−Uniform

(b) The solid, square, and dia-
mond lines correspond to the cross-
sectional cuts taken from the im-
ages shown in Figures 3(a), 3(d),
and 3(b), respectively.

Fig. 1. (a) The setup used for the simulation study. The squares and triangles
denote the detectors and sources, respectively. (b) The cross-sectional cuts
taken from Figures 3(a), 3(b), and 3(d), along x direction at y = 3.

absorption value. Then, for each imaging problem, we consider

three mesh scenarios: Uniform mesh for both forward and

inverse problems; adaptive mesh for the forward problem and

uniform mesh for the inverse problem; and adaptive meshes

for both forward and inverse problems. We refer to Table II

for a brief outline of the first simulation study.

TABLE II

THE MESH SCENARIOS AND THE BACKGROUND μa VALUES IN THE

SIMULATION STUDY.

Mesh (Forward) Mesh (Inverse) Background μa (cm−1)
Uniform Uniform 0.032, 0.036, 0.040, 0.044, 0.050
Adaptive Uniform 0.032, 0.036, 0.040, 0.044, 0.050
Adaptive Adaptive 0.032, 0.036, 0.040, 0.044, 0.050

The uniform mesh used for the forward problem discretiza-

tion has 625 nodes and is shown in Figure 2(a). The uniform

mesh for the inverse problem has 313 nodes and is shown in

Figure 2(b). We use the algorithms described in Section ?? and

Remark 1(iii), and Section ?? Remark 2(iii) in [6] to generate

the adaptive meshes for the forward and inverse problems,

respectively. The number of nodes in each of the adaptive

meshes used for the forward problem does not exceed 750. An

example for the adaptive mesh generated for a source located

at (1.0, 0) is shown in Figure 2(c). The adaptive mesh for the

inverse problem generated for the case where the background

μa = 0.050 cm−1 has 418 nodes and is shown in Figure 2(d).

We consider the image reconstructed by using fine uniform

meshes (61 × 61 nodes for the forward problem and 61 × 61
nodes for the inverse problem) as the reference image, which is

assumed to possess no error due to discretization. We compute

the error ‖αλ − α̃λ
n‖L1(Ω) for each image reconstruction and

tabulate the results in Table III. We see that the error in

the images reconstructed by using uniform meshes for both

forward and inverse problems is significantly reduced by

the use of adaptively refined meshes. A similar behavior is

observed for all choices of background absorption value.

We present image reconstructions in Figures 3 for the

case, in which the background absorption value is equal to
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(a) The uniform mesh with 625
nodes.
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(b) The uniform mesh with 313
nodes.
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(c) The adaptive mesh generated for
the forward problem for the source
located at (1.0,0): Background μa =
0.050 cm−1.
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(d) The adaptive mesh generated for
the inverse problem solution, with
418 nodes. Background μa = 0.050
cm−1.

Fig. 2. Examples of meshes used in the first simulation study.

TABLE III

THE ERROR ‖αλ − α̃λ
n‖L1(Ω) FOR EACH EXPERIMENT DESCRIBED IN THE

SIMULATION STUDY AND TABLE II. THE FIRST COLUMN SHOWS THE TYPE

OF THE MESHES (“U” FOR UNIFORM, “A” FOR ADAPTIVE) USED IN THE

FORWARD AND INVERSE PROBLEMS, RESPECTIVELY.

Background μa: 0.032 0.036 0.040 0.044 0.050

U-U ‖αλ − α̃λ
n‖L1(Ω) : 0.233 0.256 0.277 0.293 0.301

A-U ‖αλ − α̃λ
n‖L1(Ω) : 0.124 0.114 0.117 0.121 0.128

A-A ‖αλ − α̃λ
n‖L1(Ω) : 0.104 0.099 0.099 0.100 0.101

0.050 cm−1. Figure 3(a) displays the reference image used

to compute the corresponding error values given in Table III.

Figures 3(c) and 3(d) show that the optical heterogeneity is

resolved better by using adaptive meshes as compared to the

reconstructed image obtained by using uniform meshes, which

is shown in Figure 3(b). These results are consistent with the

error values given in Table III. Note that the number of nodes

in the adaptive meshes is almost equal to the number of nodes

that the uniform meshes have. In Figure 1(b), we show the

cross-sectional views from the reconstructed images.

V. CONCLUSION

In this work, based on the error analysis presented in [5],

we presented a verification of Theorems 1 and 2 and showed

that the proposed mesh generation algorithms significantly

improve the accuracy of the reconstructed optical images for a

given number of unknowns in the discrete forward and inverse

problems. Conventional error estimates do not include domain

specific factors. As a result, the adaptive mesh generation

algorithms based on conventional error estimates (12)-(13)

and (10) may lead to high errors in reconstructed optical
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(a) The optical absorption image
used as the reference for error com-
putations.
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(b) The reconstructed absorption im-
age using the uniform mesh in Fig-
ure 2(a) for the forward, and the
uniform mesh in Figure 2(b) for the
inverse problem.
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(c) The reconstructed absorption im-
age using an adaptive mesh for the
forward, and the uniform mesh in
Figure 2(b) for the inverse problem.
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(d) The reconstructed absorption im-
age using an adaptive mesh for the
forward, and the adaptive mesh in
Figure 2(d) for the inverse problem.

Fig. 3. The results of the simulation study, with the background μa = 0.050
cm−1.

images (see [6]).

We finally note that the adaptive mesh generation algo-

rithms presented in this paper can be adapted for the forward

and inverse problems of similar inverse parameter estimation

problems, such as electrical impedance tomography, optical

fluorescence tomography, bioluminescence tomography, mi-

crowave imaging etc.
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