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Abstract— In this paper we present an analytic
filtered-backpropagation inversion method for radar
imaging when the transmitters and receivers are mov-
ing along independent flight paths. The flight paths are
arbitrary, but assumed known. We assume a single-
scattering model for the radar data, and we assume
that the ground topography is known. We assume, in
addition, that the receiver can correctly associate the
data with the right transmitter.

I. I NTRODUCTION

For a long time there has been interest in radar
imaging in the case when the transmitters and re-
ceivers are not co-located ([1], [7], [12], [13], [14],
[15]). Much of this previous work deals with partic-
ularly simple trajectories such as lines and circles.
In this paper we show how arbitrary trajectories can
be handled.

Our approach is first to develop a physics-based
model for the received signal (section II), and
then to develop an approximate inversion method
(section III). Our approximate inversion method is
based on the microlocal-analysis techniques that
were first introduced for seismic imaging ([3], [2],
[5]) and were recently extended to radar imaging
([9], [10], [6], [16], [11]). These techniques give
rise to filtered-backpropagation algorithms, and the
resulting images have the desirable property that
visible edges in the scene appear in the correct
location with the correct orientation.

II. T HE MATHEMATICAL MODEL

We develop the mathematical model in the frame
of reference in which the target is not moving, but
both transmitter and receiver may be moving.

Fig. 1. Geometry

A. A model for the wave propagation

A scalar approximation to Maxwell’s equations is

∇2E(t, x)− (µ0ε(x)Ë(t, x)) = −µ0j̇(t, x). (1)

where the dots denote differentiation with respect to
time t, µ0 is the magnetic permeability of free space,
ε is the electric permittivity, andj is proportional to
the effective current density that is the source of the
field. We writeµ0ε(x) = µ0ε0+ρ(x) = c−2

0 +ρ(x);
this converts (1) into

∇2E(t, x)−c−2
0 ∂2

t E(t, x) = ρ(x)Ë(t, x)−µ0j̇(t, x),
(2)

B. A linearized scattering model

The field incident on the reflectivity distribution
ρ is the free-space fieldEin radiating from the
antenna:(

∇2 − c−2
0 ∂2

t

)
Ein(t, x) = −µ0j̇(t, x) (3)

We writeE = Ein+Esc in (2) and use (3) to obtain(
∇2 − c−2

0 ∂2
t

)
Esc(t, x) = ρ(x)Ë(t, x). (4)



We can write (4) as an integral equation

Esc(t, x) = −
∫

g(t− t′,x− z)ρ(z)Ë(t′,z)dt′dz,

(5)

where the outgoing Green’s function for the wave
equation is

g(t, x) ∝ δ(t− |x|/c0)
2|x|

=
∫

e−iω(t−|x|/c0)

4π|x|
dω

(6)
A commonly used approximation [8], often called

the Born approximationor the single scattering
approximation, is to replace the full fieldE on the
right side of (5) and (4) by the incident fieldEin,
which converts (5) to

Esc
B (t, x) ≈ −

∫
g(t− t′,x− z)ρ(z)Ëin(t′,z)dt′dz

(7)

The value of this approximation is that it removes
the nonlinearity in the inverse problem: it replaces
the product of two unknowns (ρ andE) by a single
unknown (ρ) multiplied by the known incident field.

C. A model for the field from an antenna

The source of the field radiated from the antenna
is the effective current densityj on the antenna. The
radiated field is the solution of (3), namely

Ein(t, x) =
∫

g(t− t′,x− y)µ0j̇(t′,y)dt′ dy.

(8)

We note that causality is evident from (8) and (6):
Ein(t, x) is affected only by those parts of the
current densitẏj(t′,y) for which t−t′ = |x−y|/c0.

We write −µ0j̇(t′,y) in terms of its Fourier
transformJs:

µ0j̇(t′,y) =
∫

e−iωt′Js(ω, x)dω, (9)

whereω denotes the angular frequency.
With the notation (9) and (6), (8) becomes

Ein(t, x) =
∫

e−iω(t−|x−y|/c0)

4π|x− y|
Js(ω, y)dωdy. (10)

Expression (10) has the advantage of showing
clearly the bandlimited nature ofEin.

Next we assume that the antenna is small com-
pared with the distance to the scatterers. We denote

the center of the antenna byy0; thus a point on the
antenna can be writteny = y0 + y′, wherey′ is a
vector from the center of the antenna to the pointy
on the antenna. In this notation, the assumption that
the scattering locationx is far from the antenna can
be expressed|y′| << |x− y0|. For suchx, we can
write

|x−y| = |x−y0|−(x̂− y0)·y′+O(|y′|2/|x−y0|),
(11)

whereŷ denotes a unit vector in the same direction
asy.

We use the expansion (11) in (10) to obtain

Ein(t, x,y0) ≈
∫

e−iω(t−|x−y0|/c0)

4π|x− y0|
e−iω(x̂−y0)·y′

Js(ω, y0 + y′)dωdy′

≈
∫

e−iω(t−|x−y0|/c0)

4π|x− y0|
Ĵs(ω, x,y0)dω

(12)

where we have written

Ĵs(ω, x,y0) =
∫

e−iω(x̂−y0)·y′
Js(ω, y0 + y′)dy′

(13)

This Fourier transform of the current density is
the antenna beam pattern in the far field at each
fixed frequency. We see from (12) that the field
emanating from the antenna is a superposition of
fixed-frequency point sources that are each shaped
by the antenna beam pattern.

D. The received signal

The field scattered from the reflectivity distribu-
tion ρ(z) due to the field (12) transmitted from
positiony is obtained by using (12) in (7):

Esc
B (t, x,y) ≈

∫
e−iω(t−(|x−z|+|z−y|)/c0)

(4π)2|x− z||z − y|
ρ(z)

Ĵs(ω, z,y) ω2dωdz (14)

The signal received at the antenna is the convolu-
tion of the field (14) with some weightjr(t, y+y′)
that depends on the antenna characteristics and
on the type of correlation reception. The receive
weighting could be different from the transmit
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weighting. Thus the received signal is

s(t) =
∫

Esc
B (t− t′,y + y′,y)jr(t′,y + y′)dt′dy′

=
∫

e−iω(t−t′−(|(y+y′)−z|+|z−y|)/c0)

(4π)2|y + y′ − z||z − y|
ρ(z)

Ĵs(ω, z,y)ω2dωdzjr(t′,y + y′)dt′dy′

(15)

As before, we write points on the receiving an-
tenna asx = x0 + x′, make the far-field approxi-
mation and write the receiver weighting patternjr

in terms of its temporal Fourier transform̂Jr. Thus
a model for the signals received at positiony is

s(t) = −
∫

e−iω(t−|x−z|/c0−|y−z|/c0)

(4π)2|x− z||z − y|
ρ(z)

Ĵr(ω, z,y)Ĵs(ω, z,y)ω2dωdz (16)

We now assume that the transmitting antenna is
moving along the pathγj , and the receiving antenna
is moving along the pathΓi. Under the start-stop
approximation, the datadi,j is

di,j(t, s) =
∫

e−iω[t−|Γi(s)−z|/c0−|γj(s)−z|/c0)

Ai,j(ω, s,z)dω ρ(z)dz

(17)

whereAi,j is

Ai,j(ω, s,z) = −
Ĵr

i (ω, z,y)Ĵs
j (ω, z,y)ω2

(4π)2|x− z||z − y|
(18)

We assume that each receiver can decompose the
data according to which transmitter emitted the sig-
nal. This could be done by separating the transmitted
signals in time, in frequency, or in their encoding.

III. I MAGE FORMATION

For each transmitter-receiver pair, we form the
imageIi,j by forming a weighted linear combination
of the data:

Ii,j(p) =
∫

eiω[t−|Γi(s)−p|/c0−|γj(s)−p|/c0]

Bi,j(ω, s,p)dω di,j(t, s)dtds (19)

where B is determined below. We note that the
phase used in (19) is the negative of the phase
in the model (17); this complex conjugation gives

the backpropagation operation (19) a time-reversal
interpretation.

The final image can be formed either coherently
(I =

∑
Ii,j) or noncoherently (I =

∑
|Ii,j | or I =∑

|Ii,j |2).
Into (19) we insert (17), obtaining

Ii,j(p) =
∫

Ki,j(p,z)ρ(z)dz (20)

whereKi,j is the point spread functionor impulse
response functionor ambiguity function

Ki,j(p,z) =
∫

e−iω[t−|Γi(s)−p|/c0−|γj(s)−p|/c0]∫
e−iω′[t−|Γi(s)−z|/c0−|γj(s)−z|/c0)

Bi,j(ω, s,p)dωAi,j(ω′, s, z)dω′dtds

(21)

The goal is to choose theBi,j so as to makeKi,j

as close to the delta function

δ(p− z) =
1
2π

∫
ei(p−z)·ξdξ (22)

as possible.
We simplify (21) by carrying out thet integration;

this gives us

Ki,j(p,z) =
∫

eik(|Γi(s)−p|+|γj(s)−p|

e−ik(|Γi(s)−z|+|γj(s)−z|)

Bi,j(ω, s,p)Ai,j(ω, s,z)dωds (23)

where we have writtenk = ω/c0.
Next we apply the identity

f(p)− f(z) =
∫ 1

0

d

dλ
f(z + λ(p− z))dλ

= (p− z) ·
∫ 1

0

∇f(y)|y=z+λ(p−z)dλ (24)

to f(z) = |Γi(s) − z| − |γj(s) − z|, obtaining for
the phase of (23)

k(|Γi(s)− p|+ |γj(s)− p|)
− k(|Γi(s)− z| − |γj(s)− z|)
= (p− z) ·Ξi,j(ω, s,p,z) (25)

where, forp = z,

Ξi,j(ω, s,p,p) = k

(
̂(p− Γi(s)) + ̂(p− γj(s))

)
(26)
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where the hats denote unit vectors.
At this point, the vectorsp,z, and Ξi,j are all

three-dimensional vectors. However, the integrations
in (19) and (23) are two-dimensional, which in-
dicates that we can expect to form only a two-
dimensional image. This is consistent with standard
practice; typical radar images show the projection
of a three-dimensional scene onto an assumed two-
dimensional surface, which is generally taken to be
a flat plane. Here we follow this convention: we
takeρ to be of the formρ(z) = ρ(z)δ(z3), so that
only the first two coordinates ofz (andp andΞi,j)
are relevant. To avoid complicating the notation,
we continue to use simplyz,p, andΞi,j ; however
beginning with (24) they should be considered to be
two-dimensional variables.

In (23) we make the change of variables

(ω, s) → ξi,j = Ξi,j(ω, s,p,z), (27)

which converts (23) into

Ki,j(p,z) =
∫

ei(p−z)·ξi,j Bi,j(ω, s,p)Ai,j(ω, s,z)∣∣∣∣∂(ω, s)
∂ξi,j

∣∣∣∣ dξi,j ,

(28)

where it is understood thatω ands refer toω(ξ) and
s(ξ). Comparing equation (28) and (22), we see that
we should choose

Bi,j(ω, s,p) =
|∂ξi,j/∂(ω, s)|
Ai,j(ω, s,p)

, (29)

which converts the leading order term of (28) into
the desirable form

Ki,j(p,z) =
∫

Ωp,i,j

ei(p−z)·ξdξ+(smoother) (30)

where we have dropped the subscripts on the dummy
variable and whereΩp,i,j is the set of vectors swept
out by (26) asω varies over the bandwidth ands
varies over values of the curve parameter for which
the pointp is in the antenna beams for transmitterj
and receiveri. It is this setΩp,i,j that determines the
resolution of the imageIi,j . In particular, from (20)
and (30), we have that the leading order contribution
to the image is

Ii,j(p) =
∫

Ωp,i,j

eip·ξ
∫

e−iz·ξρ(z)dzdξ (31)

which shows that the reconstructed image contains
precisely the Fourier components ofρ determined
by the setΩp,i,j .

IV. CONCLUSIONS ANDFUTURE WORK

We have exhibited an algorithm for producing
radar images from a transmitter and receiver moving
along independent and arbitrary known flight paths.
These images are known ([9], [10]) to preserve
visible edges in the scene.

Many interesting problems remain to be ad-
dressed. One problem is how to avoid the single-
scattering approximation needed to obtain (7); one
recent approach has been to use the distorted-
wave Born approximation, which incorporates prior
knowledge into the Green’s function ([6], [11]).
Another problem is how to better handle the three-
dimensional nature of the scene. For example, it is
possible to obtain three-dimensional scene informa-
tion from multiple receivers using interferometric
techniques. Another important three-dimensional is-
sue is to include shadowing and persistence effects.
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