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Abstract— This work describes the characterization efficiency
of optical properties of breast tumors based on the features
obtained using in vivo near-infrared (NIR) spectroscopy mea-
surements. Three features, relative blood concentration, oxygen
saturation and the size of the tumor, are used to diagnose benign
and malignant tumors. The performance of the proposed set of
features are evaluated by various classifiers using data acquired
from 44 patients with malignant tumors, and 72 patients with
benign tumors. The area under the receiver operating character-
istics (ROC) curve of the scaled nearest mean classifier (NMSC)
using the three features yields a value of 0.91 with a significance
level of 0.05. Our results suggest that the features, relative blood
concentration, and oxygen saturation can differentiate breast
tumors with a relatively high precision.

I. INTRODUCTION

American cancer society (ACS) estimates that a total of

approximately 200,000 new cases of invasive breast cancer

occur in women in the United States every year [1]. Currently,

there are over 2 million women living in the US who have been

diagnosed with and treated for breast cancer. A total of 40,410

women and 470 men are predicted to die from breast cancer in

the US during the year 2007 as per ACS estimates [1]. Breast

cancer continues to be the leading cancer site among American

women. Early detection is critical for effective treatment of

breast cancer. Patients with tumors 1 cm or less in size have

a greater than 90 percent long-term survival [2].

In recent years, there has been considerable interest in

near-infrared (NIR) optical spectroscopy and tomography tech-

niques since they provide contrast information that is specific

to oxyhemoglobin, deoxyhemoglobin, and water which can

potentially be used for early detection and diagnosis of breast

cancer [3]–[8].

Correct interpretation of the optical indices (i.e. de-

oxyhemoglobin, oxyhemoglobin, blood volume, water con-

tent, scattering, and absorption) obtained by optical spec-

troscopic/tomographic techniques is also important as well

as acquiring them. Several research groups demonstrated

that the contrast in optical indices can provide information

that allows for better characterization of breast cancer [3]–

[5]. In [3], Pogue et al. presented a way to measure and

obtain hemoglobin concentration, oxygen saturation, water

fraction, scattering power, and scattering amplitude. These

indices were then investigated for the differences between

healthy and diseased breast tissues. In [4], Grosenick et al.

reported on the optical indices, scattering and absorption

coefficients, hemoglobin concentration, and blood oxygen

saturation obtained using optical measurements. Their results

showed that these optical indices can be used to distinguish

carcinomas from healthy breast tissues. Recently, Khayat et

al. [5] presented characterization results of optical indices,

oxyhemoglobin, deoxyhemoglobin, blood volume, lipid and

water content, scattering and absorption coefficients, using

optical imaging. The results showed the ability of optical

imaging to characterize different types of breast lesions.

In this work, we evaluated the characterization efficiency

of optical properties of breast tumors using in vivo data

obtained by near-infrared (NIR) spectroscopy. Our evaluation

criteria is based on statistical classification techniques. Three

features, namely, relative blood concentration, ∆BV , oxygen

saturation, ∆Deoxy, and the size of the tumor, S, were used

to characterize benign and malignant tumors. The performance

of the proposed set of features were evaluated using various

classifiers on 44 patients with malignant tumors, and 72

patients with benign tumors. The area under the receiver

operating characteristics (ROC) curve of the scaled nearest

mean classifier (NMSC) using the three features yields a value

of 0.91 with a significance level of 0.05.

The rest of the paper is organized as follows: In Section

II, we present the NIR apparatus, and data protocol, followed

by feature extraction and tumor classification. In Section III,

we present statistical analysis of clinical data. Section IV

summarizes our results.

II. METHODS

A. Apparatus

In this study, a continuous wave (CW) near infrared spec-

trometer (NIRS) is used [9]. The apparatus includes a probe

(Fig. 2). In the center of the probe there is a 3-wavelength

light emitting diode (LED). The probe consisted of one multi-

wavelength LED as a light source and 8 silicon diodes as

detectors. The detectors surround the LED with a 4 cm radius.

The light intensity from the detectors was adjusted to be

approximately 1 volt and calibrated with a phantom with

known absorption and scattering coefficients.
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Fig. 1. The NIR probe with a multi-wavelength LED and 8 silicon diodes
as detectors.

B. Patients and Protocol

This study includes two centers, namely, the Abramson

Family Cancer Research Institute, Department of Radiology

of the Hospital of University of Pennsylvania (HUP), and the

Department of Gynecology of Leipzig University (DGLU).

HUP provided 24 patients with malignant and 64 patients

benign tumors. DGLU provided 20 patients with malignant

and 6 benign tumors.

The measurements are taken on the breast with tumor. Then,

the probe is transferred to the tumor free contralateral breast to

include the mirror image location of the suspected cancer. The

sensors giving the largest changes with respect to the mirror

image position on the contralateral breast are related to the

suspected cancer.

C. Feature Extraction

In this study, three features, namely, relative blood concen-

tration, ∆BV , oxygen saturation, ∆Deoxy, and the size of

the tumor, S, are used.

The features, ∆BV , and ∆Deoxy are obtained using

∆OD = ε∆CL (1)

where OD is the optical density, ε is the extinction coefficient,

C is blood concentration, L is the mean pathlength of photons,

and ∆ denotes relative change. Here, ε ≈ 1 cm−1, and L = 4
cm for a pathlength factor of 5.

Following (1), the relative blood concentration, ∆BV , and

the oxygen saturation, ∆Deoxy, can be approximated at two

different wavelengths by

∆BV ∝ 0.3∆OD730 + ∆OD850 (2)

∆Deoxy ∝ 1.3∆OD730 + ∆OD850 (3)

where ∆OD730, and ∆OD850 denote the relative changes in

optical density at 730 nm and 850 nm, respectively.

∆BV and ∆Deoxy can also be approximated by

∆BV ∝ ∆[Hb] + ∆[HbO2] (4)

∆Deoxy ∝ ∆[HbO2] − ∆[Hb] (5)

where ∆[Hb], and ∆[HbO2] denote the relative change in

deoxyhemoglobin (Hb) and oxyhemoglobin (Hb02).

The concentrations of Hb, and HbO2 in (4) and (5) are

calculated by the Beer-Lambert Law given by

∆OD = log
I0

I
(6)

where I is light intensity after absorption and scattering, and

I0 is the baseline light intensity obtained from the contralateral

breast, using known extinction coefficients of Hb, HbO2 and

differential pathlength factors [10].

Here, it is important to note that, ∆BV , and ∆Deoxy

values are based on a lipid blood oxygen model. Thus the

increments of BV and Deoxy are relative to the contralateral

breast:

∆BV = ∆BVtumor − ∆BVcontra (7)

∆Deoxy = ∆Deoxytumor − ∆Deoxycontra (8)

where ∆BVtumor, ∆BVcontra are relative blood volume in the

tumor breast and the mirror image position of the contralateral

breast, respectively, and ∆Deoxytumor, ∆Deoxycontra are

relative oxygen saturation in the tumor breast and the mirror

image position of the contralateral breast, respectively.

D. Feature Analysis and Tumor Classification

In this subsection, we present the set of tumor classifi-

cation features, and the malignancy differentiation criteria.

F1 denotes ∆BV , F2 denotes ∆Deoxy, and F3 denotes, S,

size of the tumor. We evaluate the malignancy differentiation

capability of the individual features and various combinations

of the these features using a set of classifiers, namely, k-nearest

neighbor classifier (KNNC), Parzen density based classifier

(PAR), automatic neural network classifier (NEURC), normal

densities based linear classifier (LDC), nearest mean classifier

(NMC), scaled nearest mean classifier (NMSC), normal den-

sities based quadratic classifier (QDC), uncorrelated normal

densities based quadratic classifier (UDC). The more details

information on these classifiers can be found in [12].

We evaluated the malignancy differentiation capability of

the following individual and combined features:

F1: ∆BV

F2 : ∆Deoxy

F3 : Tumor Size (S)

F1-F2: ∆BV and ∆Deoxy

F1-F2-F3: ∆BV , ∆Deoxy, and S

III. STATISTICAL ANALYSIS OF CLINICAL DATA

The evaluation is based on receiver operating characteristics

(ROC) methodology. The ROC curve is obtained by plotting

the probability of false positive rate versus the probability

of detection. The evaluation of classification method is done

using area under the ROC curve (AUC). First, we evaluated the

classification performance of all three features. Table I presents

the AUC values for 8 different classifiers for all three features.

The NMSC has the best performance in terms of classification

with a AUC value of 0.9098 followed by the Parzen classifier

with a AUC value of 0.9041.
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TABLE I

AUC VALUES FOR DIFFERENT CLASSIFIERS FOR F1-F2-F3: ∆BV , ∆Deoxy, S

Type NMSC PAR LDC UDC NEURC QDC NMC KNNC

AUC 0.9098 0.9041 0.9017 0.8984 0.8864 0.8843 0.8807 0.8752

TABLE II

AUC VALUES FOR DIFFERENT CLASSIFIERS FOR F1-F2: ∆BV , ∆Deoxy

Type NMSC PAR LDC UDC NEURC QDC NMC KNNC

AUC 0.9001 0.8993 0.8930 0.8908 0.8992 0.8821 0.8782 0.8645
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Fig. 2. Scaled Nearest Mean Classifier and F1-F2 2-D data clustering.

Next, we evaluated the performance of the two features mea-

sured by NIR spectroscopy. Table II presents the AUC values

for 8 different classifiers for features ∆BV and ∆Deoxy.

Again, the NMSC performed the best in terms of classification

with a AUC value of 0.9001. Finally, we evaluated the

individual classification performances of the three features.

Table III presents the AUC values for 8 different classifiers

for the feature ∆BV . The NMC has the best performance

in terms of classification with a AUC value of 0.8832. Table

IV presents the results 8 different classifiers for the feature

∆Deoxy. The NMC has the best performance in terms of

classification with a AUC value of 0.879. Table V presents

the results 8 different classifiers for the feature S. The QDC

has the best performance in terms of classification with a AUC

value of 0.5612.

As it can be seen from Tables I, and II, the best performing

feature set is the combination of the three features. We can

also conclude from Table V that, the tumor size can not be

used to differentiate healthy and diseased tissues with an AUC

value of around 0.5. However, the combination set of optical

indices, obtained using optical measurements, can differentiate

breast tumors with a relatively high precision with a AUC

value of 0.9. Similarly, optical indices, ∆BV and ∆Deoxy,

also performed well with AUC values of 0.883 and 0.879,

respectively.
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Fig. 3. Parzen and F1-F2 2-D data clustering.

Figures 2, and 3 show the distribution of features ∆BV , and

∆Deoxy extracted from benign and malignant tumors. The

thresholds were computed using scaled nearest mean classifier

and Parzen classifiers. Figure 4 presents, the ROC curves for

all three features, and the best two features, namely, ∆Deoxy

and ∆BV . The observed area under the ROC curve for F1-

F2-F3, and F1-F2 are 0.9098, and 0.9001, respectively. Figure

5 presents the ROC curves for individual features F1, and F2

using the nearest mean classifier. The observed area under the

ROC curve for F1, and F2 are 0.8832 and 0.8790, respectively.

IV. CONCLUSION

In this work, we evaluated the characterization efficiency

NIR optical spectroscopy using three features, relative blood

concentration, oxygen saturation, and the size of the tumor.

The characterization of malignant and benign tumors are

evaluated using different classifiers. Our results suggest that

the relative blood concentration, and oxygen saturation has

potential to differentiate malignant and benign breast tumors

with a relatively high accuracy. This set of features can

potentially be incorporated into a diagnostic systems to aid

physicians for breast cancer diagnosis. In the near future, we

will incorporate additional features to the current feature set.

We plan to analyze the new set of features using different
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TABLE III

AUC VALUES FOR DIFFERENT CLASSIFIERS FOR F1: ∆BV

Type NMSC PAR LDC UDC NEURC QDC NMC KNNC

AUC 0.8817 0.8764 0.8807 0.8779 0.8513 0.8778 0.8832 0.8302

TABLE IV

AUC VALUES FOR DIFFERENT CLASSIFIERS FOR F2: ∆Deoxy

Type NMSC PAR LDC UDC NEURC QDC NMC KNNC

AUC 0.8787 0.8764 0.8776 0.8711 0.8491 0.8613 0.8790 0.8331

TABLE V

AUC VALUES FOR DIFFERENT CLASSIFIERS FOR F3: S

Type NMSC PAR LDC UDC NEURC QDC NMC KNNC

AUC 0.5123 0.5292 0.4782 0.5429 0.5382 0.5612 0.5112 0.4827
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Fig. 4. ROC curves for F1-F2-F3 and F1-F2 using NMSC Classifier.
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Fig. 5. ROC curves for F1and F2 using NMC Classifier.

sampling techniques, i.e. hold-out, leave-one-out, resubstitu-

tion techniques, and further investigate the characterization

efficiency optical features. We also plan to compare the ROC

performance of the optical features, F1 and F2, with that of F3,

using a hypothesis testing method based on the AUC statistics.
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