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ABSTRACT

In this study, we combine a generalized Tikhonov regularization method with a priori anatomical information
to reconstruct the concentration of fluorophores in mouse with Chronic Obstructive Pulmonary disease (COPD)
from 4n vivo optical and Magnetic Resonance (MR) measurements. Generalized Tikhonov regularization incor-
porates a penalty term in the optimization formulation of the fluorescence molecular tomography (FMT) inverse
problem. Our design involves two penalty terms to make use of a priori anatomical structural information from
segmented MR images. The choice of the penalty terms guide the fluorophores in reconstructed image concen-
trates in the region where it is supposed to be and assure smooth flourophore distribution within tissue of same
type and enhances the discontinuities between different tissue types. We compare our results with traditional
Tikhanov regularization techniques in extensive simulations and demonstrate the performance our approach in
vivo mouse data. The results show that the increased fluorophore concentration in the mouse lungs is consistent
with an increased inflammatory response expected from the corresponding animal disease model.
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1. INTRODUCTION

Fluorescence molecular tomography (FMT) is a technology directed towards noninvasive quantitative molecular
imaging of whole animals and tissues.'It offers fully three-dimensional functional images to explore the fluo-
rophore activity inside biological tissue. FMT is an ill-posed inverse problem which presents certain challenges.
It suffers from a large number of unknowns and a relatively limited number of measurements which essentially
causes the under-determination property. In mean time, the solution of the FMT inverse problem is also highly
sensitive to the noise in the measurements. Therefore, regularization is needed in the reconstruction to obtain a
stable solution. Tikhonov regularization is a widely-used technique to deal with the ill-posedness of the inverse
problem. Based on the assumption that the magnitude of solution is small and varies slowly within the sup-
port, the Tikhonov regularization method formulates the inverse problem into an optimization framework and
constrains the magnitude and gradient of the solution by introducing penalty terms in objective functional of
optimization. The traditional Tikhonov regularization method provides us with a way to acquire a stable solu-
tion, but the resolution and contrast of the reconstructed image are still very low. A promising way to improve
the reconstruction result is by using a priori information provided by another anatomical imaging modalities
such as Magnetic Resonance Imaging (MRI) and X-ray to guide the reconstruction process. The effectiveness of
incorporating prior information in FMT reconstruction has been proved in several recent studies?.3

For diffuse optical tomography (DOT), a number of approaches have incorporated a priori information into
reconstruction®.% Unlike the DOT problem where the average optical absorption coefficient and scattering
coefficient are known, it is not possible to obtain an average fluorophore concentration value for the FMT
problem nor to use such information to guide reconstruction. In the FMT problem, typically two types of prior
information are available. One is the localization information of a certain fluorophore type based on its chemical
and physical properties. The other is the internal edge structure information of an optical medium from another
anatomical imaging modality.” For example, the fluorophore may target certain organs, and in the anatomical
images such as MR and X-ray images, these organs can be well segmented and located. In this case, the penalty
term in generalized Tikhonov regularization method can be designed to constrain the location of fluorophore
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concentration within these organs. On the other hand, the edge information in the anatomical images can also
be used to constrain the spatial variation and smoothness of the solution.

In this work, we formulate the inverse problem of FMT into an optimization framework with a general-
ized Tikhonov regularization method. We use a priori information about the localization of the fluorophore
concentration and anatomical structural information of the imaging domain to formulate the penalty terms in
generalized Tikhonov regularization. In the simulation study and the in vivo mouse experiment, we reconstruct
the FMT images with and without the incorporation of prior information and suggest a method to choose optimal
regularization parameters. The improved reconstruction result indicates the advantage and effectiveness of our
method of using a priori anatomical information in FMT reconstruction. In addition, we also reconstruct the
images using prior information inconsistent with true fluorophore distribution in simulation, results show us the
insensitivity of our method to wrong prior information.

The outline of this paper is as follow: Section 2 gives a brief introduction about the forward and inverse
problems of FMT. In Section 3, we discuss how to incorporate available a priori anatomical information into
generalized Tikhonov regularization and discretization of the objective functional. In Section 4 and 5, we perform
simulations and an in vivo mouse experiment and present improved reconstruction results by incorporating a
priori anatomical information into the reconstruction.

2. FORWARD AND INVERSE PROBLEM OF FMT
2.1 The Forward Problem

In frequency domain, the propagation of light at the excitation wavelength A; in a bounded domain 2 C R? can
be described by the diffusion equation below with a Robin boundary condition:®

VDMV () + [ () + 210 (x) = Q%) x €9, 1)
A1
<I>j)-‘1 (x) + 2aD)‘1(x)&{)g97n(X) =0, xeod, (2)

where @?1 (x) is the isotropic photon density at excitation wavelength A; due to the jth source Q;(x). Q;(x) is
the point source at xJ, D* (x) and ! (x) are the diffusion coefficient and absorption coefficient to the light with
wavelength A1. w is the modulation angular frequency and c is the speed of light propagating in the medium.
n is the direction perpendicular to the boundary, and a is the boundary mismatch parameter due to the light
reflection on the boundary.

For emission light at wavelength Aa, the photon density is described as below:?

-V D2 (x)V(I)]A,Q (X) + [/‘22 (X) + %]@;‘2 (x) = (I)]A,l (X)nuaf(x)%, X € Q, (3)
A2
@?2 (x) 4 2aD*2 (X)&{)éin(x) =0, xe€09, (4)

where f1,7(%) is the absorption coefficient due to fluorophore and 7(x) is the fluorescence lifetime. 7 is quantum
yield and is defined as the ratio of the number of photons emitted to the number of photons absorbed.

2.2 The Inverse Problem

The inverse problem of FMT consists of finding the unknown fluorophore concentration from measurements on
the boundary. First, we state the adjoint problem® associated with equation (1) and (2), but at wavelength \o:

VD)V (x) + 12 (x) %“’]W (x)=0, xeQ (5)
A2 x
U2 (x) + 2aD (x)aq’gin() —Qi(x), x €0, (6)
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where \1122 (x) is the photon density of the adjoint problem, Q5 (x) is the adjoint source located at kth detector’s
o . k
position x;.

Assume the Green’s function to equation(5) and (6) is given by G22 (x), then the relationship between the
measurements of kth detector at Xs due to jth source at x7 and the fluorophore concentration is

1 —iwt(x)

T orP ™ )

Ty = / G2 (%)@ (X)ftas ()

If there are N, sources and Ng detectors, the total number of measurements is M = Ny x Ng. The mea-
surements I'y ; can be assembled into an M x 1 vector I' = 11,021, , vy 1,012, T2 0,0 ,I‘Nd’NS]T. If the
amplitude of the source is time invariant, known as continuous wave (CW) FMT, then equation (7) can be
simplified as:”

Tootensn = / G2 ()N (x)a(x)dx,
Q

= /Q H—1yx N,k (X)a(x)dx,
Af(a(x)) (8)

where a(x) = npqf(x) can be considered the fluorophore concentration. H;_1)xn,+k(X) = G2 (x)(b;‘l (x) is the
((j — 1) x Ny + k)th kernel of the linear vector-valued operator Ay : H(2) — RM*1,

If we apply the adjoint operator of As to both side of equation (8), and let A = Ap Ay HY(Q) — HY ),
v = AT € H'(Q), then we have the forward model:”

V(%) = Ala(x)). (9)

This equation connects the measurements at boundary to the fluorophore concentration, where the operator A
is the forward operator. The inverse problem is solving this equation for a(x) by knowing v(x) and \A.

3. INCORPORATION OF THE A PRIORI ANATOMICAL INFORMATION INTO
GENERALIZED TIKHONOV REGULARIZATION

3.1 Theory

The generalized Tikhonov regularization minimizes the objective functional
Fla(x)) = /Q 7(x) = A(a(x))*dx + 6G(a(x)), (10)

to solve the inverse problem ~(x) = A(a(x)), where G : H'(Q) — R is a nonnegative penalty functional and 4 is
a regularization parameter. A common choice for G is a functional of the form

Q(a(X))=/§1|£(0¢(X)—@(X))Idxa (11)

where £ : H*(2) — H'(Q) is an appropriately chosen regularizing operator and &(x) is a prior estimate of a(x).

In FMT problem, it is difficult to obtain the exact estimation &(x) about the magnitude of solution «(x).
Based on the anatomical images from MRI, X-ray or other medical imaging modalities, different types of tissue
and organs can be well classified and located. Omne type of prior information is the localization information
of fluorophore concentration. Another type of prior information is the internal edge structure information of
imaging domain. That is, the spatial distribution of fluorophore concentration is expected to be discontinuous
across the boundary of different tissue and organs.
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The first type of information can be incorporated into Tikhonov regularization by using the regularizing
operator introduced by Arridge.!® Equation (11) takes the form of a penalty term R(a(x)):

R(a(x)) = /Q Ir(x)a()Pdx, (12)

where r(x) is a positive function with a lower value at positions where the fluorophore is expected to be.
Therefore, the penalty is weaker in regions where fluorophore is likely to be present.

For the second type of information, we can use the regularizing operator introduced by Kaipio,'! and formulate
the penalty term B(a(x)):

B(a(x)) = /Q 1B(x)Va(x)||*dx, (13)

where B : Q — R:}X% is a matrix-valued mapping on ). If the structural information is given in the form of a
function s(x), then B can be defined as

B(x) =1 —(1+[|Vs(x)*) " Vs(x)(Vs(x))", (14)

where the eigenvalues of B(x) are Ay (x) = \y(x) = 1 and A3(x) = (1+]|Vs(x)||?)~!. The eigenvector correspond-
ing to A3 is v3(x) = ||[Vs(x)||"'Vs(x) (Vs(x) # 0). By using eigenvalue decomposition of B(x), equation(13)
becomes

3
B(a(x)) = Z/ﬂ A (x)v] (x) - Va(x)Pdx. (15)

This functional is the square integral norm of the derivative of a(x) in direction of B(x)’s eigenvectors v;
with weights A;. Notice that the last eigenvector is the normalized Vs(x) and the eigenvalue for this eigenvector
is small when ||Vs(x)]| is large. Therefore, given a point close to a discontinuity in prior structural image s(x)
(i.e. the boundary between different tissue), the penalty for a rapid change of a(x) when x moves towards the
discontinuity (i.e. along the direction of Vs(x)) is smaller compared to the penalty when x moves along the
discontinuity'!(i.e. along the directions of other eigenvectors). If Vis(x) = 0, B(x) = I, the penalty for a change
of a(x) in all directions is the same for x moves along the discontinuity. This forces the reconstructed image to
be smooth except at the boundary of different tissues, where the image can show large changes.

Then, equation(10) is expressed as

Fla(x)) = /Q [7(x) = A(a(x))[dx + 61 R(a(x)) + 52B(ax(x)). (16)

61 and Jo are regularization parameters which balance the weights of two penalty terms and data residual

[7(x) = A(a(x))]-

3.2 Discretization

We discretize Q@ C R? into N voxels, then use o = [a(l), ce a(N)]T to denote reconstructed image. Here, we
consider a simple case of prior structural information. Suppose €2 is divided into two region S and /S, we know
the fluorophore is only in region S. Let s = [s()), ..., s(N)]T present the discretized prior structural image s(x),

(17)

() _ J so if the ith voxel € S,
77 0 if the ith voxel € Q/5S.

The partial derivatives 9s/0xk, k = 1,2,3 in Vs(x) are computed using finite difference approximation as
Dys, where Dy, is difference operator matrix in this type:

-1 0 -~ 0 1 00
0 -1 0 -~ 0 1 0
Dy=1 0 0o -1 0 --- 0 1

NXxN
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B(x) and its eigenvalues )\g-i) and eigenvectors V;i) = [v(i) e v(i)]T ( =1,2,3) at each voxel are computed.

§15 V525 Vj3
We assemble those eigenvalues and eigenvectors as
(1) (1)
V. Aj
Vik = , Aj = , 1=123, k=1,23.
(N) (N)
ik Aj
Then, the penalty term B(«a(x)) could be discretized as
3 3
B(a) =) _[4; ) VixDyal*. (18)
Jj=

1 k=1

In this case, we have

\@ 1/(1+s3) j =3 and ith voxel is on the boundary between S and Q/S,
J 1 otherwise.

Notice that the absolute value of sg is not necessary to compute Vj;. It is only needed to determine the last
eigenvalue of B(x). This eigenvalue controls the ratio between the penalty on the change of a(x) when x moves
towards discontinuity and moves along discontinuity. Therefore, we can assume )\gi) =X (0 < X < 1) and
choose Ay directly to control this ratio.

Similarly, the penalty term R(a(x)) in equation(16) becomes
R(a) = || Roll?, (19)
where R is diagonal matrix and

ro m =mn =1 and ith voxel € S,
Tman =14 1 m=mn=1and ith voxel € Q/S,
0 m#n,

and 0 < rg < 1.

We can discretize the operator Ay into a M x N matrix Ay, then discretize A as A = A?Af* and 7y as
v = A]Ic{ I'. In the end, we represent the generalized Tikhonov regularization objective functional in matrix form

3 3
F = Ao =] + 61| Ral® + 62 Y |A; Y Vis Dral® (20)
j=1 k=1

4. SIMULATION EXPERIMENT
4.1 Simulation Configuration

The simulation experiment was performed to study the effect of incorporating the prior information into gen-
eralized Tikhonov regularization in FMT. We simulated the imaging process of a 5 X 5 X 3 cm slab phantom
with interior fluorophore concentration. It was meshed into 10 x 10 x 7 = 700 voxels. The optical properties
for this simulation phantom were p, = 0.05 ecm~! and g, = 8 ecm™! (D = 1/3(uq + 1)) for both excitation
and emission. Within the phantom, ¢ = 2 x 10® m/s, and on the boundary of phantom, a = 0.5. A spherical
fluorophore with a radius of 1 ¢cm and nuqr = 0.5 cm™! was positioned in the center of phantom(see Fig.1(a)).
Twenty five unmodulated sources (w = 0) and 25 detectors were positioned on 5 x 5 grids on the top and bottom

*A;I is the conjugate transpose of Ay
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of phantom respectively. Next, 10% Gaussian white noise was added to the simulated measurements to simulate
real FMT imaging.

For the prior information in this simulation, we assumed the exact region of fluorophore given above is
known. Therefore, in prior structural image, voxels have value 1 in the central spherical region and 0 out-
side. Next, we assembled matrices R, A; and Vj; described in Section 3.2. In this study, we assumed
R(o) and B(a) have same weights in equation(20), therefore we fixed the ratio between d; and d2 roughly
as |RTR|1/ Zj—:l [I(A; Zizl VieDi)T (A Zizl VikDi)|l1. This makes the value of these two terms roughly the
same in scale. Different weights can be chosen on penalty terms R(«) and B(«), if needed.

z=lcm z=1.5cm z=Xm z=3cmi

z=0cm z=lem z=1.5cm

z=0cm z=lcm z=1.5cm

z=0cm z=1lcm 2=1.5cm z=2cm z=3cm

. H n . :

Figure 1. (a) The true image of fluorophore distribution; (b) Reconstructed image without prior information, §; = 4x10~*°
and 62 = 8 x 10™'*; (c) Reconstructed image with prior information, §; =2 x 107%, 6o = 4 x 107 and \g = 70 = 0.1; (d)
Reconstructed image with prior information, §; = 1.5 X 1075, 2 = 3 x 1077 and \¢ = ro = 0.01

=
W

4.2 Simulation Results

In the first simulation, the image was reconstructed without prior information. We set 7o = 1 and A\g = 1, so
traditional Oth and 1st order Tikhonov regularization were combined together during the reconstruction. The
L-curve method!'? was used to determine §; and d,. The L-curve is the curve between data residual || Aa — 7|
and norm of reconstructed image ||a|. The optimal regularization parameter is chosen at the corner of L-shaped
curve in Fig.2(a). The direction of increasing dg and 4 is indicated by an arrow in this figure. The turning point
of this curve is where ||| begins to increase faster than || Aa — || decreases and the reconstruction begins to fit
the noise but not the data. The reconstructed result with optimal parameters is shown in Fig.1(b).

In the second simulation, we made use of prior information in reconstruction. Parameters rg and Ay are usually
chosen empirically. In this simulation, we moderately set 1o = 0.1, Ay = 0.1 and ro = 0.01, A\g = 0.01. The
L-curves for both cases are plotted in Fig.2(b) and (c), and optimal regularization parameters were determined
in same way as the first simulation. The final reconstruction results with optimal regularization parameters are
shown in Fig.1(c) and (d). We can see a significant improvement of the contrast and resolution in final image.

4.3 Reconstruction Evaluation

To evaluate the result quantitively, we first define some image quality measures for the reconstructed image.
The contrast-to-background noise ratio (CBNR) is defined as the ratio of the mean value of the reconstructed
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Figure 2. (a) The L-curve of the reconstruction without prior information; (b) The L-curve of the reconstruction with
prior information, Ag = ro = 0.1; (¢) The L-curve of the reconstruction with prior information, Ag = 7o = 0.01; (d) The
CBNR and CONR versus ;1 in the reconstruction without prior information; (e) The CBNR and CONR versus ;1 in the
reconstruction with prior information, Ao = 7o = 0.1; (f) The CBNR and CONR versus 41 in the reconstruction with
prior information, Ao = ro = 0.01.

image in the fluorophore region to the standard deviation of the image in the background region. The contrast-
to-object noise ratio (CONR) is defined as the ratio of the mean value of the image in the fluorophore region to
the standard deviation of the image in the same region.!?

We plot the CBNR and CONR of the reconstructed image versus ; when 1o = A\g = 1, 19 = A\p = 0.1
and rg = Ag = 0.01 in the Fig.2 (d), (e) and (f). The solid vertical line indicates the choice of §; from L-
curve method. Notice that it always roughly picks out higher values for both CBNR and CONR. Therefore we
could conclude that the L-curve method does give comparatively optimal regularization parameters. In Tablel,
we summarize the CBNR and CONR of the reconstructed image with different choice of rg and Ao, and find
significant improvement for both CBNR and CONR of the reconstructed images (the first row in the table is the
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reconstruction without prior information).

Table 1. CBNR and CONR when using different 7o and Ao in reconstruction

To o 5 5y CBNR (dB) | CONR (dB)

1 1 4x10719 | 8 x 101! 14.40 15.40
0.1 | 0.1 | 2x107® | 4x107? 52.34 27.83
0.01 | 0.01 | 1.5x107% | 3x 1077 86.50 25.97

4.4 Mismatch of Prior Information

Thus far, the simulations make use of correct and well correlated prior information. In order to see the effects of
incorrect prior information, we laterally separated the fluorophore and the region assumed to have fluorophore
concentration in prior structural image by 2 cm. The true fluorophore distribution and prior structural image
are shown in Fig.3(a) and (b). We set 19 = A\g = 0.1 and 79 = A\¢p = 0.01 and used same method as before to
determine §; and d3. The reconstructed result is shown in Fig.3 (c) and (d). We find that the true fluorophore
concentration is reconstructed in the right position, but greater noise appears at the location of the wrong prior
structure. Also, the position of maximum concentration of fluorophore is now located nearer to that region.
Although the prior information is completely inconsistent, the reconstructed images has comparable resolution
to the result without prior information and is still acceptable.

z=0cm z=1cm 2=1.5cm z=2cm Z=3cm
104
0.2
4
(a)
z=0cm z=lcm z=1.5cm Z=dcm Z=3cm
1
n E n . i i
(b) ’
z=0cm z=1cm 2=1.5cm Z=Icm Z=3cm
1
08
06
04
02
()
z=0cm =lcm z=15cm Z=2cm z=3cm
1
08
05
04
02

(d)

Figure 3. (a) The true image of fluorophore concentration; (b) The wrong prior structural image; (c¢) Reconstructed image
with wrong prior information, §; = 1.6 x 107'%, 62 = 3.2 x 107" and Ao = r¢ = 0.1; (d) Reconstructed image with wrong
prior information, §; = 1.6 x 107107 J2 = 3.2 x 107 and g = ro = 0.01

5. IN VIVO MOUSE EXPERIMENT
5.1 Experiment Configuration

An in vivo mouse FMT experiment was also conducted to test our algorithm. The mouse first received intra-
tracheal lipopolysaccharide (LPS) instillation to trigger Chronic Obstructive Pulmonary disease (COPD). Next,
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a fluorescence probe (Prosense 680, Visen Medical, Woburn MA, excitation 672nm, emission 700-730nm) was
instilled into the mouse body. The probe is sensitive to major cathepsin which is associated with inflammation.
Based on this animal disease model, the fluorophore is expected to accumulate in the lungs and liver of the
mouse.

Optical measurements were obtained on the FMT imaging system developed by Ntziachristos et al.'* During
imaging process, 46 CW light sources were used to generate excitation light and a CCD camera (10° pixels) was
used to measure the intensity of light on the boundary of imaging domain. The 512 x 512 pixels of image obtained
by the CCD camera was equally divided into 81 square subimages, and the mean value of each subimage was taken
as the reading of each detector. The measurements were taken at both excitation and emission wavelength after
the instillation of fluorescence probe, and an normalized Born approximation'® was taken to the data. A slab
region of size 3.17 x 3.17 x 1.3 cm indicated by white square box in Fig. 4(a) was meshed into 20 x 20 x 9 = 3600
voxels, and the fluorophore concentration in this region was reconstructed.

For a priori anatomical information, MR images were acquired by a 4.7T MRI system (Bruker Instruments,
Billerica MA). FMT and MRI imaging was performed sequentially using a rigid frame for animal translation in
order to keep the mouse position unchanged. A high resolution MR image slice from the slab region at depth of
0.61 cm is shown in Fig.4(b). The MR images were processed by applying median filter and contrast enhancement
before the lungs, other parts of the body and background were segmented and marked. The Fig.4(c) shows the
segmentation result at the same depth: the lungs are shown in white, the background in black and other tissue
in grey. Based on the animal disease model, it is highly likely that the fluorophore present in the lungs while the
background is not expected to contain fluorophore. Notice that although fluorophore was expected to be present

in the liver, the prior anatomical information did not account for this.
(c)
(f)

Figure 4. (a) Picture of mouse; (b) The MR image at depth 0.61lcm; (c) Segmented MR image at depth 0.61cm; (d)
Reconstructed image without prior information, 61 = 10° and d> = 2.3 x 10°; (e) Reconstructed image with prior
information, ro = Ao = 0.5, r1 = 0.8, & = 10° and d2 = 2.1 x 10°; (f) Reconstructed image with prior information,
To = Ao = 0.1, r1 = 0.5, 61 = 10° and &> = 1.8 x 10°.

(d)

5.2 Reconstruction Result

First, we reconstructed the image using traditional Tikhonov regularization without prior anatomical information.
The optimal regularization parameters were chosen according to the L-curve. The result is shown in Fig.4(d).
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Next, the prior information was used in reconstruction. The prior anatomical images contained three different
regions and two boundaries. We assigned a different penalty on the magnitudes of voxels in three regions and
identical values to the last eigenvalues of B(x) for voxels on two boundaries:

ro when m = n and ith voxel is in lungs,
. ) m when m = n and 7th voxel is in other parts of mouse body,
™™ ) 1 when m = n and ith voxel is in background,
0 when m # n,

\@ Ao 7 =3 and ith voxel is on the boundary between any two regions,
77 1 1 otherwise.

Based on our animal disease model, 0 < rp < r1 < 1 and 0 < Ag < 1. To avoid hard constraint during
the reconstruction, we chose moderate values ro = A\g = 0.5, r1 = 0.8 and ro = A\g = 0.1, r; = 0.5. §; and
02 were also determined by L-curve method as before. The reconstructed images are shown in Fig.4(e) and (f)
respectively.

The result without using prior information shows two major regions of fluorophore concentration: the bigger
region diffuses through upper half of the mouse’s body and the smaller region with a higher value is located around
the liver. When using prior anatomical information in reconstruction, the major fluorophore concentration is
reconstructed within the lungs region. In the same time, the fluorophore concentration in liver is also captured,
although it is not contained in prior anatomical information. The result is consistent with our animal disease
model, and significant improvement of resolution and contrast is achieved by using prior information. Notice
that when smaller values of rg, 71 and Ay are chosen, the sharper boundaries between different regions show in
the reconstructed image and the result may be biased. Therefore, the value of these parameters should be chosen
carefully, and visual result may need to be checked when necessary.

6. CONCLUSION

We incorporated prior anatomical information into generalized Tikhonov regularization by using two penalty
terms, first introduced by Arridge and Kaipio. The L-curve method was used to determine optimal regular-
ization parameters in reconstruction. We determined that when the prior information is consistent with true
fluorophore concentration, the resolution and contrast of reconstructed images was improved significantly both
in the simulation study and in the in vivo mouse experiment. Incorrect prior information does not strongly bias
errors in the reconstruction, although the result is not improved at all. These results show us the prospect of
using prior information to guide the reconstruction of FMT.

A possible future exploration of how the parameters inside the two penalty terms R(«) and B(«) can affect
the reconstruction result and the optimal methodology of choosing these parameters may prove fruitful. For this
work, we only consider the regularization within a deterministic framework. Thus, more work may need to be
done to incorporate a priori information in hierarchical Bayesian framework in which the correlation between
fluorophore distribution and anatomical image could be explored further.
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