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ABSTRACT

In fluorescence diffuse optical tomography, the error due to discretization of the forward and inverse problems
leads to an error in the reconstructed image. Using a Galerkin formulation, we consider zeroth and first order
Tikhonov regularization terms and analyze the forward and inverse problems under an optimization formulation
which incorporates a priori information. We derive error estimates to describe the impact that discretization of
the forward and inverse problems due to finite element method has on the accuracy of the reconstructed optical
absorbtion image.
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1. INTRODUCTION

Fluorescence diffuse optical tomography (FDOT) is an imaging modality which capitalizes on light propagating at
near infrared (NIR) spectral ranges in tissues in which a fluorescent agent has been introduced.2 Measurements
collected on the boundary of the domain are used to reconstruct a three-dimensional image of the underlying
tissue and its properties. This functional image can lead to identification of diseased tissue for use in non-invasive
clinical diagnosis7 and other various medical applications.? Furthermore, recent developments in fluorescent
contrast agents means that specific events, cellular receptors,5 or tissue properties can be readily targeted.

The key challenge in fluorescence imaging rests with the image reconstruction algorithms. There are two main
issues, computational complexity and accuracy. Our desire is to reduce the complexity while maintaining the
highest possible accuracy in the reconstructed image. This is a difficult undertaking, as higher accuracy generally
comes at the expense of computational efficiency. Typically, image reconstruction in fluorescence tomography
occurs through a two loop system. The outer loop consists of solving the coupled system of partial differential
equations defining the forward problem to determine the light field. The inner loop solves the nonlinear inverse
problem for parameter estimation by applying various inversion techniques. This usually consists of a discrete
numerical approximation algorithm, such as the finite element method used in this paper, which introduces an
error into the reconstructed image based on the discretization employed. Clearly, poor choice of discretization
can lead to errors in the reconstruction.

The main premise of this work is to analyze the error in fluorescence optical imaging due to discretization.
We identify the key factors specific to the imaging problem that show how discretization impacts the accuracy
of the reconstructed optical absorption image.

There is a vast degree of work describing the impact of discretization in reconstructed optical imaging8911.10

Applying approximation error estimates allows the use of lower than normal mesh densities thus increasing
computational efficiency.1 Numerous studies have been performed on the discretization error of PDEs but less
is known about the error as it applies to estimation. One recent study applied discretization error estimates on
diffuse optical tomography.13 It was shown that developing an optimal adaptive mesh for each of the forward
and inverse solutions yielded greater clarity in the final reconstruction. In that paper, the application of linear
basis functions employed in the collocation method worked well with diffuse optical tomography although trouble
arises in applying the same method to FDOT because a second derivative operator which eliminates the linear
basis functions occurs in the analysis. Choosing other basis functions or employing a finite difference method on
the resultant equations, as was done in3 are both options to handle the second derivative operator. However, the
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finite difference method introduces its own error and it is possible to find tighter error bounds by reformulating
the analysis from? under the Galerkin methodology.

In this study, we model the forward problem as a coupled set of PDEs and ultimately consider the variational
form, as we apply a finite element method for solving the problem. The inverse problem is a nonlinear integral
equation which we linearize using an iterative method, where zeroth and first order Tikhonov regularization
terms are selected to address the ill-posedness of the resulting linear integral equation. Next, we establish the
inverse problem as an optimization problem using a variational formulation. We discretize the forward and
inverse problems using a finite element expansion of linear Lagrange basis functions. We analyze the error
due to discretized forward problem when there is no discretization due to the inverse problem and compute an
upper bound on this error. Next we examine the error due to discretization of the inverse problem and obtain
another error bound. We discuss the major implications established by these bounds and the overall effect on
the reconstructed images.

We note that the error analysis presented in this work can be used to design adaptive mesh refinement
schemes in order to reduce error in the final reconstructed image.

2. FORWARD PROBLEM

2.1. Notational Conventions

In this paper we denote operators by capital cursive Latin letters (A), finite element matrices by bold capital
Latin letters (A) and finite element approximations of a function (f) by capital letters (F ). Functions are
denoted by lowercase Latin and Greek letters. For a function g, we employ the following notational definitions:
g∗ indicates the adjoint, g indicates complex conjugate, g (bold) denotes vectorized quantities. Table 1 provides
a summary of key variables and function spaces used throughout the paper.

Table 1. Definition of function spaces and norms.

Notation Explanation
C(Ω) Space of continuous complex-valued functions on Ω
L∞(Ω) L∞(Ω) = {f | ess supΩ |f(x)| <∞ }
Lp(Ω) Lp(Ω) = {f | (∫Ω |f(x)|pdx)1/p <∞ }, p ∈ [1,∞)
Hp(Ω) Hp(Ω) = {f | (∑|z|≤p ‖Dz

wf‖20)1/2 <∞ }, p ∈ [1,∞)
‖f‖0 The L2(Ω) norm of f
‖f‖p The Hp(Ω) norm of f
‖f‖p∗ The norm of f in the dual space Hp∗(Ω)
‖f‖∞ The L∞(Ω) norm of f
‖f‖Lp(Ω) The Lp(Ω) norm of f
‖f‖0,m The L2 norm of f over the mth finite element Ωm

2.2. Forward problem derivation

We start with the coupled diffusion equations which describe the light transport in a fluorescent medium of a
bounded domain Ω ⊂ R3 with Lipschitz boundary ∂Ω

∇ · [Dx(r)∇φx(r, ω)]− [µax(r) + jω/c]φx(r, ω) = 0, (1)

∇ · [Dm(r)∇φm(r, ω)]− [µam(r) + jω/c]φm(r, ω) = −φx(r)ηµaxf (r)
1− jωτ(r)

1 + (ωτ(r))2
, (2)

where r = [r1, r2, r3] ∈ Ω, subscripts x,m denote the excitation and emission wavelengths, φx,m represent the
optical fields, Dx,m represent the isotropic diffusion coefficients. We assume the diffusion coefficients are known
and that they are identical during both the excitation and emission for all points in the closed domain; this
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implies D(r) := Dx(r) = Dm(r). The quantum efficiency is denoted by η, µaxf is the absorbtion coefficient
of the fluorophore, τ(r) is the lifetime of the fluorophore. Later, subsequent developments can be extended
to include multiple frequencies where τ is known. However, for the sake of exposition, we make the following
simplifying assumption that the frequency ω = 0. The quantities µax and µam represent the absorption coefficient
of the medium at the excitation and emission wavelengths, respectively. Typically these are represented as

µax(r) = µaxe(r) + µaxf (r), (3)
µam(r) = µame(r) + µamf (r), (4)

where the subscript e denotes endogenous properties and f denotes exogenous properties.

Let NS be the number of point sources at position ri for i = 1...NS along the boundary ∂Ω. Based on the
assumptions stated above, we use the following boundary value problem to model NIR light propagation at the
excitation wavelength due to the ith source,

∇ · [D(r)∇φx(r, ri)]− µax(r)φx(r, ri) = 0, (5)
∇ · [D(r)∇φm(r, ri)]− µam(r)φm(r, ri) = −φx(r, ri)ηµaxf (r), (6)

where r ∈ Ω. The Robin-type boundary conditions are

2D(r)
∂φx(r, ri)

∂n
+ ρφx(r, ri) = −S(ri), (7)

2D(r)
∂φm(r, ri)

∂n
+ ρφm(r, ri) = 0, (8)

where r, ri ∈ ∂Ω, ρ is a parameter governing the internal reflection at the boundary ∂Ω, and ∂/∂n denotes the
directional derivative along the unit normal vector on the boundary. In this work, S(ri) represents the ith point
source on the boundary, which is modeled by a Gaussian function centered at source position.13

In order to simplify the analysis of later sections, we make use of the adjoint problem associated with (6) and
(8). Let ND be the number of detectors. Then, for a detector located at rj ∈ ∂Ω, j = 1...ND

∇ · [D(r)∇g∗m(r, rj)]− µam(r)g∗m(r, rj) = 0, r ∈ Ω, (9)

2D(r)
∂g∗m(r, rj)

∂n
+ ρg∗m(r, rj) = S∗(rj), r ∈ ∂Ω, (10)

where S∗ is the adjoint source. For a point adjoint source located at the detector position rj ,

g∗m(r, rj) = gm(rj , r), r ∈ Ω, (11)

where gm is the Green’s solution to (6). Note that in this paper, we model the point adjoint source by a Gaussian
function with sufficiently low variance, centered at rj .

The emission field at rj due to the source at ri is given by the following nonlinear integral equation:

φm(rj , ri) =
∫

Ω

g∗m(r, rj)φx(r, ri)ηµaxf (r)dr. (12)

The relationship between φm and µaxf defined in (14) is nonlinear because g∗m is dependent on µamf which in
turn is related to µaxf . We assume that µax can be determined independently of µaxf . The nonlinearity is
therefore due entirely to the dependence of g∗m on µamf .

In the next section, we formally state the inverse problem and address the nonlinearity by using an iterative
linearization scheme based on first order Frechet derivatives.
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3. INVERSE PROBLEM

GivenNS sources andND detectors, we define Γi,j to be the measurement for a detector at position rj , j = 1...ND

due to a source at ri, i = 1...NS. The individual measurements can be grouped into the vector form,

Γ := [Γ1,1, ...Γ1,ND ,Γ2, 1, ...ΓNS,ND ]T , (13)

where the (i, j)th measurement satisfies the following model:

Γi,j =
∫

Ω

g∗m(r, rj)φx(r, ri)ηµaxf (r)dr. (14)

Our objective is to recover the quantity µaxf using the measurement vector Γ based on the nonlinear integral
equation (14) for each (i, j)th pair.

In the next section, to address the problem of nonlinearity in (14), we select an iterative linearization scheme
based on first order Frechet derivatives. Next, to address the ill-posedness, we discuss regularization in an
optimization framework and incorporation of a priori information about the unknown image µaxf . Then, by
taking the derivative of the resulting optimization problem and defining appropriate boundary conditions, we
convert it into a boundary value problem. In the final subsection, we show the variational formulation of the
boundary value problem and comment on the existence and uniqueness of the solution.

3.1. Iterative linearization

Consider an infinitestimal perturbation on µaxf ,1920

µaxf ← µaxf + δµaxf (15)

Then the corresponding perturbation δφm at each linearization step at detector position rj due to the source at
ri is given by the following linear integral equation

δφm(rj , ri) =
∫

Ω

g∗m(r, rj)φx(r, ri)ηδµaxf (r)dr (16)

where g∗m is the solution to the boundary value problem (9)-(10). To simplify notation, we introduce δµ(r) :=
ηδµaxf (r) which represents the unknown perturbed fluorophore absorption coefficient scaled by the quantum
efficiency. Furthermore, noting that the emission and excitation subscripts are fixed for the duration of this
analysis, we represent g∗j (r) := g∗m(r, rj) and φi(r) := φx(r, ri), suppressing the x,m dependence of these
functions.

We define δΓi,j to be the differential measurement at the ith source and jth detector normalized to the known
background fluorophore absorption. Let Hij(r) = g∗j (r)φi(r). Using (16) we model δΓi,j as follows:

δΓi,j =
∫

Ω

Hij(r)δµ(r)dr, (17)

:= (Aδµ)ij . (18)

We represent individual source-detector pairs as elements of a vector

δΓ := [δΓ1,1, · · · , δΓ1,ND , δΓ2,1, · · · , δΓNS,ND ]T (19)
:= Aδµ (20)

where A : L2(Ω) → R
NS×ND is a vector of operators whose (i, j)th entry acting on δµ corresponds to (18).

Although all norms on a finite dimensional space are equivalent, we select the norm on the range of A to be the
l1 norm as this proves useful in later analysis. Then, an upper bound for the linear operator can be given by

‖A‖L2(Ω)→l1 ≤
ND,NS∑

i,j

‖gjφi‖0. (21)
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The boundedness and the finite-dimensional range of operator A means it is compact.12

We define the adjoint∗ operator A∗ : R
NS×ND → L2(Ω) acting on a general function w ∈ R

NS×ND as

[A∗w](r) = [H∗
11(r) . . . H∗

NS1(r) . . .H∗
NSND

(r)]w (22)

where H∗
ij(r) = g∗j (r)φi(r) for j = 1, .., ND and i = 1, .., NS.

Let B = A∗A : L2(Ω)→ L2(Ω)

(Bδµ)(r) :=
∫

Ω

κ(r, ŕ)δµ(ŕ)dŕ, (23)

where

κ(r, ŕ) :=
ND,NS∑

i,j

H∗
ij(r)Hij(ŕ). (24)

Then, an alternate form of (20) can be expressed as follows:

γ(r) = (Bδµ)(r), (25)

where γ = A∗δΓ. Note that B is compact since A is compact. Therefore, (25) is ill-posed.

In the next section, we address the ill-posedness in an optimization framework by incorporating regularization
terms.

3.2. Inverse problem as an optimization problem and regularization
In this section, we address the ill-posedness of (25) through regularization in the optimization framework which
provides a suitable means for the incorporation of a priori information about the solution. In this respect, we
consider the following minimization problem where we seek a solution δµ̂ ∈ H1(Ω):

δµ̂ = min
δµ∈H1(Ω)

J (δµ,∇δµ) , (26)

where the H1(Ω) smoothness on the solution is imposed through the use of appropriate regularization terms.
The functional J in (26) can be decomposed into two parts, JL and JR as follows:

J(δµ,∇δµ) = JL(δµ) + JR(δµ,∇δµ), (27)

where JL measures the difference between the predicted and actual measurements

JL(δµ) = ‖Γ−Aδµ‖2l2 , (28)

and the regularization term JR contains the a priori information. In this work, we assume that a priori infor-
mation on the image and image gradient is available. To make use of such a priori information, we use both
zeroth- and first-order Tikhonov regularization terms simultaneously,13 ,21 ,

JR(δµ,∇δµ) = λ1

∫

Ω

[δµ(r)− β1(r)]2 dr + λ2

∫

Ω

|∇δµ(r)− β2(r)|2dr, (29)

where ∇δµ is the image gradient and λ1, λ2 > 0 are regularization parameters. Using (28) and (29), the
minimization problem (26) can be rewritten as follows:

δµ̂ = min
δµ∈H1(Ω)

⎛

⎝
ND,NS∑

j,i

[δΓj,i − (Aδµ)j,i]
2 + λ1

∫

Ω

[δµ(r)− β1(r)]2 dr

+ λ2

∫

Ω

|∇δµ(r)− β2(r)|2 dr
)

. (30)

∗For the definition of adjoint operators in Banach spaces see.12
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There are a number of methods in choosing appropriate regularization parameters,22 .23 In this work, we
assume that λ1 and λ2 are properly chosen and focus on deriving discretization error estimates. In the next
section, after defining appropriate boundary conditions, we consider the equivalent variational formulation of the
minimization problem in (30).

3.3. Inverse problem as boundary value problem and variational formulation

In this work, we follow a finite element method for the discretization of the inverse problem. Due to incorporation
of the regularization term on the gradient of the solution, a natural step is to formulate the minimization problem
as a variational one. In this section, we describe the derivation of the variational problem formulation of the
inverse problem by first considering the first order optimality condition for the minimization problem (30). Next,
with the aid of properly chosen boundary conditions, we transform the optimization problem into a boundary
value problem (BVP), which is followed by the variational formulation of the BVP. Finally, we show that a
unique solution exists to the variational formulation of the regularized inverse problem.

The solution of (30) satisfies ∂J/∂δµ(δµ,∇qδµ) = 0 where∇q is the gradient with respect to the rqth direction
for q = 1, 2, 3. In particular, if J =

∫
u(r, δµ, ∂δµ/∂rq)dr, the Gâteaux derivative18 is defined by

∂J

∂δµ
=

∂u

∂δµ
−
∑

q

∂

∂rq

(
∂u

∂δµq

)

. (31)

Taking the Gâteaux derivative of (30) with respect to δµ and setting it equal to zero yields:

Bδµ(r) + λ1δµ(r)− λ2∇2δµ(r) = f(r), (32)

where

f(r) := γ(r) + λ1β1(r) + λ2β2(r). (33)

Note that f(r) is composed of known terms from a priori information and measurements.

We consider (32) with the following Neumann boundary condition:

∂δµ

∂n̂
(r) = 0, r ∈ ∂Ω. (34)

where ∂δµ/∂n̂ is the directional derivative of δµ along the unit normal at the boundary ∂Ω. The boundary
condition in (34) implies that no changes in the pertubated fluorophore concentration occur across the boundary.

At this point, one can consider a finite difference scheme for the solution of the inverse problem which is
posed as a boundary value problem (32)-(34). However, as our goal in this paper is to apply a finite element
scheme for the discretization of the BVP, we obtain the corresponding variational (weak) problem. Hence, we
multiply both sides of (32) by a test function ψ ∈ H1(Ω), and integrate over Ω. Applying Green’s first theorem
to the last term on the left and using of the boundary condition in (34), we obtain

∫

Ω

ψ(r) [(Bδµ)(r) + λ1δµ(r)] dr + λ2

∫

Ω

∇ψ(r) · ∇δµ(r)dr =
∫

Ω

ψ(r)f(r)dr. (35)

A more convenient way to express (35) is through a bilinear form. Thus, we define

F(ψ, δµ) := (ψ,Bδµ) + λ1(ψ, δµ) + λ2(∇ψ,∇δµ) (36)
G(ψ) := (ψ, f), (37)

where the inner product is defined by

(k, l) :=
∫

Ω

k(r)l(r)dr.
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Hence, (35) can be expressed as
F(ψ, δµ) = G(ψ). (38)

It can be shown that the bilinear form (36) is bounded and coercive. Thus, by the Lax-Milgram lemma, we can
conclude that a unique solution exists for the problem (38),.12, 15 For an explicit statement of the Lax-Milgram
lemma, see Appendix II.

In the following section, we describe the discretization methods selected in this paper for each of the separate
forward and inverse discretizations as well as the combined forward and inverse discretization.

4. DISCRETIZATION BY FINITE ELEMENT METHOD OF THE FORWARD AND
INVERSE PROBLEMS

In the following sections, we first discuss the variational formulation and finite element discretization of the
forward problem. In practice, for arbitrary domains and background optical properties, no analytical solutions
exist for the forward problem when defined in a variational form. Thus, we discretize the forward problem and
obtain finite dimensional approximations of g∗j and φi, for j = 1, · · · , ND, i = 1, · · · , NS .

Next, we use the finite element solutions of the forward problem in the inverse problem formulation, which
implies an approximation to the inverse problem. The resulting inverse problem in general does not possess a
closed form solution. Therefore, finding the solution calls for numerical techniques. We discuss the discretization
of the resulting approximate inverse problem using projection by Galerkin method.

4.1. Discretization of the Forward Problem

In this section, we discuss the forward problem discretization. We express the coupled PDEs in their variational
form in order to apply a finite element method.

To do so we multiply (5) by a test function χ1 ∈ H1(Ω), and apply Green’s theorem to the second derivative
term. Then, using the boundary condition in (7) we have

∫

Ω

(∇χ1 ·D∇φi + µaxχ1φi)dr +
1
2ρ

∫

∂Ω

χ1φidl =
1
2ρ

∫

∂Ω

χ1Sidl. (39)

It can be shown that a unique solution for (39) exists and is bounded.12 Similarly, for a test function χ2 ∈ H1(Ω),
the variational form for the adjoint forward problem (9)-(10) becomes

∫

Ω

(∇χ2 ·D∇g∗j − µamχ2g
∗
j

)
dr +

1
2ρ

∫

∂Ω

χ2g
∗
j dl =

1
2ρ

∫

∂Ω

χ2S
∗
i dl (40)

for which it is possible to show that a unique, bounded solution exists as well.

Let Lk be the piecewise linear Lagrange basis functions, and Yi ⊂ H1(Ω) be the finite-dimensional subspace
spanned by {Lk}, i = 1, . . . , Ni for j = 1, . . . , ND which are associated with the set of points {rp}, p = 1, . . . , Ni,
on Ω. Similarly, we define Y ∗

j ⊂ H1(Ω) as the finite-dimensional subspace spanned by Lk, for k = 1, . . . , Nj for
j = 1, . . . , NS associated with a set of Nj points.

Next, the functions χ1, φi in (39) and χ2, g
∗
j in (40) are replaced by their finite-dimensional counterparts

Ξ2(r) :=
Ni∑

k=1

pkLk(r), ΦNi

i :=
Ni∑

k=1

ckLk(r). (41)

Ξ1(r) :=
Nj∑

k=1

pkLk(r), G
∗,Nj

j :=
Nj∑

k=1

dkLk(r) (42)

The representation ΦNi

i (G∗,Nj

j ) is an approximation to the function φi (g∗j ) for each source (detector). This
means that for each source and detector the dimension of the solution can be different; the parametersNi, Nj can
vary for each i and j, respectively. The finite dimensional expansions are therefore dependent on the parameters
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Ni, Nj as represented by the superscript. However, we suppress this cumbersome notation as the dependence is
clearly understood.

Substitution of (42)-(41) into the variational forward problem (39)-(40) yields the matrix equations

Mci = qi, (43)
M∗d∗

j = q∗
j , (44)

for ci = [c1, c2, ..., cNi]T and d∗
j = [d1, d2, ..., dNj ]T . Here M and M∗ are the finite element matrices and qi and

q∗
j are the load vectors resulting from the finite element discretization of the forward problem.

The H1(Ω) boundedness of the solutions g∗j and φi implies that the finite element discretization errors
e∗j := g∗j − G∗

j and ei := φi − Φi in the forward problem solutions are bounded. Let {Ωni} denote the set
of linear elements used to discretize (39) for n = 1, . . . , N i

∆, where N i
∆ is the number of elements for the ith

source such that
⋃Ni

∆
n Ωni = Ω for all i = 1, . . .NS . Similarly, let {Ωmj} denote the set of linear elements

used to discretize (40) for m = 1, . . . , N∗j
∆ where N∗j

∆ is the number of elements for the jth detector such that
⋃N∗j

∆
m Ωmj = Ω for all j = 1, . . .ND.

A bound for e∗j and ei on each finite element can be given by (Theorem 4.4.4 in15):

‖e∗j‖0,mj ≤ C‖g∗j ‖1,mjhmj , (45)
‖ei‖0,ni ≤ C‖φi‖1,nihni, (46)

where C is a positive constant, ‖ · ‖0,mj (‖ · ‖0,ni) and ‖ · ‖1,mj (‖ · ‖1,ni) are respectively the L2 and H1 norms
on Ωmj (Ωni), and hmj (hni) is the diameter of the smallest ball containing the finite element Ωmj (Ωni) in the
solution G∗

j (Φi).

In the next section, these approximate solutions to the forward problem are substituted into the inverse
problem operator. The error is estimated based on the resulting operators with approximations.

4.2. Simultaneous discretization of the inverse and forward problems

We substitute the forward problem expansions (42)-(41) into Hi,j , H
∗
i,j in the operators A,A∗ defined by (20)

and (22). The resulting operators are denoted by tildes (Ã, Ã∗
), indicating a finite element solutions of the

forward problem are used. By so doing, we arrive at the approximate variational problem formulation:

F̃(ψ, δ̃µ) = G̃(ψ). (47)

In (47), F̃(ψ, δ̃µ) and G̃(ψ) are given respectively by

F̃(ψ, δ̃µ) := (ψ, B̃δ̃µ) + λ1(ψ, δ̃µ) + λ2(∇ψ,∇δ̃µ) (48)
G̃(ψ) := (ψ, f̃), (49)

where

(B̃δ̃µ)(r) :=
∫

Ω

κ̃(r, r′)δ̃µ(r′)dr′

=
ND,NS∑

j,i

G∗
j (r)Φi(r)

∫

Ω

G∗
j (r

′)Φi(r′)δ̃µ(r′)dr′

and

f̃(r) := γ̃(r) + λ1β1(r) + λ2β2(r),

=
ND ,NS∑

j,i

G∗
j (r)Φi(r)Γi,j + λ1β1(r) + λ2β2(r).
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Next, we discretize the functions ψ and δ̃µ by representing them in their finite element expansions. Let
Vn ⊂ H1(Ω) denote a sequence of finite-dimensional subspaces of dimension n, spanned by the first-order
Lagrange basis functions {L1, . . . , Ln} which are associated with the set of points {rp}, p = 1, . . . , n, on Ω. We
replace ψ and δ̃µ in (38) by their respective, finite dimensional counterparts Ψn ∈ Vn and ∆̃µn ∈ Vn

Ψn :=
n∑

k=1

pkLk(r), (50)

∆̃µn :=
n∑

k=1

mkLk(r), (51)

where pk and mk are unknown coefficients. As it is clear that the finite-dimensional expansions are dependent
on the parameter n, this dependence is hereafter suppressed. Substituting (50)-(51) into (47) arriving at

F̃(Ψ, ∆̃µ) = G̃(Ψ). (52)

This can be transformed to a matrix equation

Fnm = Gn, (53)

where m = [m1, · · · ,mn]T represents the unknown coefficients in the finite expansion of (51) and Fn and Gn

are respectively the finite element matrix and the load vector resulting from the projection of (38) by Galerkin
method.

5. ANALYSIS OF THE ERROR IN FLUORESCENCE IMAGING DUE TO
DISCRETIZATION

In this work, we consider the solution of the problem stated in (38) to be exact since there is no introduction
of finite element methods contained in the formulation. It is our desire to examine the error in fluorescence
absorption imaging due to finite element discretization of the forward and inverse problems. We then use the
error analysis to design an adaptive mesh based on these error estimates that could reduce the total error in the
reconstructed image.

We have divided this section into two subsections. In the first, we derive an estimate for the error in
fluorescence absorption imaging due to forward problem discretization as described in the previous section. We
employ tildes to denote errors due to forward problem discretization; the resulting approximated problem is
given by (47). Note that the solution, δ̃µ satisfies this approximated equation and is different from δµ, which
is the exact solution of (38). Thus, the first error we find is the difference e = δµ − δ̃µ. Note that the inverse
problem has not been discretized for this case.

In the second subsection, we analyze the fluorescence absorption imaging error due to finite element dis-
cretization for the inverse problem by examining the approximated equation given by (52). In this formulation,
the statement of the problem has been fully discretized. Here, we describe the error in fluorescence absorption
imaging due to discretization of the inverse problem by comparing the solutions of (47) to (52), E = δ̃µ− ∆̃µ.
We define the total error as the difference between the solutions of (38) and (52) in terms of two contributors:

δµ− ∆̃µ = e+ E. (54)

Each of the error estimates are presented as theorems with proofs given in the appendices.

5.1. Error in fluorescence imaging due to forward problem discretization

Theorem 1:
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Let {Ωni} denote the set of linear elements used to discretize (39) for n = 1, . . . , N i
∆; such that

⋃Ni
∆

n Ωni = Ω
and hni be the diameter of the smallest ball that contains the nth element in the solution Φi, for all i = 1, . . .NS .
Similarly, let {Ωmj} denote the set of linear elements used to discretize (40) for m = 1, . . . , N∗j

∆ ; such that
⋃N∗j

∆
m Ωmj = Ω and hmj be the diameter of the smallest ball that contains the mth element in the solution G∗

j ,
for all j = 1, . . .ND. Then, a bound for the error between the solution δµ of (38) and the solution δ̃µ of (47)
due to the approximations F̃ and G̃ is given by:

‖δµ− δ̃µ‖1 ≤ C

min(λ1, λ2)
max

i,j
‖g∗jφi‖0

×
⎛

⎝
NS∑

i=1

N∗j
∆ ,ND∑

n,j

(2‖g∗j δµ‖0,ni + ‖g∗j ‖∞,ni‖α‖0)‖φi‖1,nihni

+
ND∑

j=1

Ni
∆,NS∑

m,i

(2‖φ∗i δµ‖0,mj + ‖φi‖∞,mj‖α‖0)‖g∗j ‖1,mjhmj

⎞

⎠ , (55)

where α ∈ L2(Ω) satisfies (25).

Proof: See24here. �

Theorem 1 provides two main implications. First, it shows the specific effect that the forward problem
discretization has on the accuracy of the reconstruction. This suggests that the forward problem discretization
scheme should take into account the inverse problem discretization accuracy, as it directly effects the error bound.
Second, this theorem suggests the regions where an adaptive mesh may be optimally refined. Clearly, using a small
value for hni is useful in places where contributing terms due to the jth detector (2‖g∗j δµ‖0,ni+‖g∗j ‖∞,ni‖α‖0) are
large. Similarly, restricting the size of hmj reduces the error where the source term contribution (2‖φ∗i δµ‖0,mj +
‖φi‖∞,mj‖α‖0) is large. Note also that the values of ‖g∗j ‖ (‖φi‖) are higher close to the jth detector (ith source).
Keeping hmj (hni) small near the detector (source) can counter this effect.

Furthermore, it is clear that other details can contribute to a higher error. The regularization parameters
scale the sum of terms. Choosing smaller values for λ1, λ2 can result in a higher error estimate since the
regularization parameters enter as a reciprocal. Additionally, the solutions to the forward problem ‖g∗jφi‖0 scale
the result of the error estimate. Note too that since the error is a sum over all sources and detectors, increasing
the number of either can impact the error estimate. Finally, we note this error estimate shows a dependence
not only on the finite-element discretization error for the forward problem solutions but also on the location
of the the heterogeneity with respect to the sources and detectors due to g∗j being large near the jth detector.
Thus, simply reducing the error of the finite element discretization may not automatically ensure accuracy in
the reconstructed image because the accuracy depends on the location of the heterogeneity.

5.2. Error in fluorescence imaging due to inverse problem discretization
Theorem 2:

Consider the Galerkin projection of the variational problem (47) on a finite dimensional subspace Vn ⊂ H1(Ω)
using a set {Ωt} of linear finite elements, for t = 1, · · · , N∆ whose vertices are at {rp}, p = 1, · · · , n such that
⋃N∆

t Ωt = Ω, and let ht be the diameter of the smallest ball that contains the tth element. Assume that the
solution δ̃µ of (47) also satisfies δ̃µ ∈ H2(Ω). Then, a bound for the error E due to Galerkin projection of (47)
with respect to the solution δ̃µ of (47) can be given by

‖δ̃µ− ∆̃µ‖1 ≤ C

min(λ1, λ2)

⎛

⎝max
i,j
‖G∗

jΦi‖0
N∆∑

t

NS,ND∑

i,j

‖ΦiG
∗
j‖0,t‖δ̃µ‖2,th

2
t

+λ1

N∆∑

t

‖δ̃µ‖2,th
2
t + λ2

N∆∑

t

‖δ̃µ‖2,tht

)

, (56)
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where λ1, λ2 > 0 are regularization parameters.

Proof: 24 �

We discuss the error estimate and possible implications on the reconstructed image here. The finite-element
solutions to the forward problem ‖G∗

jΦi‖0,t scale ‖δ̃µ‖2,t in (56). This demonstrates that the forward problem
solution is spatially dependent on the inverse problem discretization. It further implies that the error bound is
dependent on the location of the heterogeneity with respect to the sources and detectors as the forward problem
solutions are larger close to the sources and detectors. Note also that the number of sources and detectors, as
well as the number of terms in the finite element discretization all effect the error estimate. Similarly to Theorem
1, the regularization parameters have a reciprocal multiplicative effect on all terms in the error. However, in the
last two terms the regularization parameters λ1, λ2 effect the second and third term, respectively. Finally, the
mesh parameter h2

t should be kept small over regions where ‖δ̃µ‖2,t is large. As in the previous theorem, simply
keeping the mesh parameter small may not ensure a reduction of the error in the reconstructed image because
of the dependence on the location of the heterogeneity. However, this can be countered by refining the mesh size
when the following terms are large: ‖G∗

jΦi‖0,t and ‖ΦiG
∗
j‖0,t.

Combining results of Theorems 1 and 2 and rearranging the terms, both error estimates can be viewed in a
single equation. Let ‖G∗

jΦi‖0 ≤ ‖g∗jφi‖0 for all i = 1, · · · , NS and j = 1, · · · , ND. Then,

‖δµ− ∆̃µ‖1 ≤ C

min(λ1, λ2)
max

i,j
‖g∗jφi‖0

NS ,ND∑

i,j

⎛

⎝
N∗j

∆∑

n

(2‖g∗j δµ‖0,ni + ‖g∗j ‖∞,ni‖α‖0)‖φi‖1,nihni

+
Ni

∆∑

m

(2‖φ∗i δµ‖0,mj + ‖φi‖∞,mj‖α‖0)‖g∗j ‖1,mjhmj +
N∆∑

t

‖ΦiG
∗
j‖0,t‖δ̃µ‖2,th

2
t

⎞

⎠

+
C

min(λ1, λ2)

(

λ1

N∆∑

t

‖δ̃µ‖2,th
2
t + λ2

N∆∑

t

‖δ̃µ‖2,tht

)

. (57)

6. CONCLUSION

In this work, we analyzed the effect of discretization on the accuracy of fluorescence optical tomography. We
summarized the results of our analysis in two theorems which present bounds on the error in the reconstructed
fluorophore absorption coefficient resulting from discretization of the forward and inverse problems. These error
bounds show that the error in the reconstructed image due to the discretization of each problem depends on the
smoothness of both the forward and inverse problem solutions, their positions with respect to each other, and
the source-detector configuration.
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