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ABSTRACT

In this paper, we analyze the error resulting from the discretization of the forward and inverse problems in simul-
taneously reconstructed optical absorption and scattering images. Our analysis indicates the mutual dependence
of the forward and inverse problems, the number of sources and detectors, their configuration and the location
of optical heterogeneities with respect to sources and detectors affect the extent of the error in the reconstructed
optical images resulting from discretization. One important implication of the error analysis is that poor dis-
cretization of one optical coefficient results in error in the other, resulting in inter-parameter “cross-talk” due
entirely to discretization.

Keywords: discretization, error, analysis, optical imaging, cross-talk

1. INTRODUCTION

Imaging in Diffuse Optical Tomography (DOT) is comprised of two interdependent stages which seek solutions
to the forward and inverse problems. The forward problem is associated with describing the Near Infrared (NIR)
light propagation, while the objective of the inverse problem is to estimate the unknown optical parameters
from boundary measurements.1 In this work, we model the forward problem by the diffusion equation in the
frequency domain and the associated adjoint problem. For the inverse problem, we consider the simultaneous
estimation of the optical diffusion and absorption coefficients.

A number of factors affect the accuracy of the DOT imaging: model accuracy (dependent on the light
propagation model and/or linearization of the inverse problem), measurement noise, discretization, numerical
algorithm efficiency, and inverse problem formulation. In this work, we focus on the effect of discretization on
the accuracy of simultaneously reconstructed optical absorption and diffusion coefficients. In this respect, we
extend our work in.2, 3 First, we show the effect of forward problem discretization. Next, we show the effect
of discretization of the inverse problem whose formulation uses the numerical solutions of the forward problem.
Finally, we use the error analysis to devise novel adaptive mesh generation algorithms that reduce the error in
the reconstructed optical images due to discretization for a given number of unknowns (i.e. for a given number
of nodes in the adaptive meshes).

There has been extensive research on the estimation of discretization error in the solutions of partial dif-
ferential equations (PDEs).4–6 A somewhat different approach is followed in7, 8 where error in quantities of
interest is related to the discretization of the second order elliptic partial differential equation. In the area of
parameter estimation problems governed by PDEs, relatively little has been published. See for example9 for an
a posteriori error estimate for the Lagrangian in the inverse scattering problem for the time-dependent acoustic
wave equation and10 for a similar approach, and11 for a posteriori error estimates for distributed elliptic optimal
control problems. In the area of DOT, it was numerically shown that the approximation errors resulting from
the discretization of the forward problem can lead to significant errors in the reconstructed optical images.12

However, an analysis regarding the error in the reconstructed optical images resulting from discretization has
not been reported so far.

In this work, we model the forward problem by the frequency-domain diffusion equation. For the inverse
problem, we focus on the simultaneous estimation of the absorption and diffusion coefficients. We consider
the linear integral equation resulting from the iterative linearization of the inverse problem based on Born
approximation and use zeroth order Tikhonov regularization to address the ill-posedness of the resulting integral
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equation. We use finite elements with first order Lagrange basis functions to discretize the forward and inverse
problems and analyze the effect of the discretization on the reconstructed optical absorption and diffusion images.
Then, we analyze the error in the simultaneously reconstructed optical absorption and diffusion coefficients
resulting from the discretization of the forward and inverse problems.

In our analysis, we first consider the effect of the forward problem discretization when there is no discretization
of the inverse problem, and provide a bound for the resulting error in the reconstructed optical images. Next,
we analyze the effect of the discretization of the inverse problem whose formulation is based on the numerical
(finite element) solutions of the forward problem and we obtain another bound for the resulting error in the
reconstructed optical images. Our analysis shows that the error in the reconstructed optical images due to
discretization depends on the configuration of the source and detectors, the positions of the sources and detectors
with respect to locations of absorptive and diffusive heterogeneities, and on the regularization parameter(s). In
addition, we notice that the error in the reconstruction of one optical parameter depends on how well the other
optical parameter is discretized. As a result of this last implication, the error analysis provides an insight into
the so-called “inter-parameter crosstalk”13 that originates entirely from discretization.

Our analysis presents two important error estimates that can be employed to design new adaptive mesh
generation algorithms. Furthermore, the analysis provides a means to identify and analyze the error in the
simultaneously reconstructed optical images resulting from the linearization of the Lippmann-Schwinger type
equations14 using Born approximation, which will be an extension to our recent work.15 Furthermore, the
error analysis introduced in this paper is not limited to DOT, and can easily be extended for use in similar
two-parameter inverse problems.

Table 1. Definition of function spaces and norms.

Notation Explanation
f The complex conjugate of the function f
C(Ω) Space of continuous complex-valued functions on Ω ∪ ∂Ω
L∞(Ω) L∞(Ω) = {f | ess supΩ |f(x)| < ∞ }
Lp(Ω) Lp(Ω) = {f | (

∫
Ω |f(x)|pdx)1/p < ∞ }, p ∈ [1,∞)

Dz
wf zth weak derivative of f

Hp(Ω) Hp(Ω) = {f | (
∑

|z|≤p ‖Dz
wf‖2

0)
1/2 < ∞ }, p ∈ [1,∞)

W 1∞(Ω) W 1∞(Ω) = {f ∈ L1
loc(Ω)| max|z|≤1 ‖Dz

wf‖∞ ≤ ∞}
‖f‖0 The L2(Ω) norm of f
‖f‖p The Hp(Ω) norm of f
‖f‖∞ The L∞(Ω) norm of f
‖f‖0,m The L2 norm of f over the mth finite element Ωm

‖f‖p,m The Hp norm of f over the mth finite element Ωm

‖f‖∞,m The L∞ norm of f over the mth finite element Ωm

2. FORWARD AND INVERSE PROBLEMS

In this section, we describe the model for NIR light propagation and define the forward and inverse DOT
problems. Table 1 provides the definition of function spaces and norms used throughout the paper. We note
that we use calligraphic letters to denote the operators, e.g. Aa, I, K etc. The subscripts or superscripts a and
b will be used respectively to denote the relevance to absorption and diffusion coefficients, which will be defined
where they appear. The superscript ∗ denotes the adjoint and “tilde” will be used to denote a function or an
operator is an approximation to its accurate counterpart. Vector quantities are in bold characters, such as x.

2.1. Forward Problem
We use the following boundary value problem to model the NIR light propagation in a bounded domain Ω ⊂ R

3

with Lipschitz boundary ∂Ω1, 16:

−∇ · D(x)∇gj(x) +
(

µa(x) +
iω

c

)

gj(x) = Qj(x) x ∈ Ω, (1)
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gj(x) + 2aD(x)
∂gj

∂n
(x) = 0 x ∈ ∂Ω, (2)

where gj(x) is the photon density at x ∈ Ω ∪ ∂Ω with frequency ω, Qj is the jth point source located at
xj

s, j = 1, · · · , Ns, where Ns is the number of sources. D(x) is the diffusion coefficient and µa(x) is the
absorption coefficient at x, i =

√
−1, ω is the modulation frequency of the source, c is the speed of the light,

a = (1 + R)/(1 − R) where R is a parameter governing the internal reflection at the boundary ∂Ω, and ∂ · /∂n
denotes the directional derivative along the unit normal vector on the boundary. Note that we assume the
diffusion coefficient is independent of the absorption coefficient and is isotropic. For the general anisotropic
material, see.17

The adjoint problem1 associated with (1)-(2) is given by the following boundary value problem:

−∇ · D(x)∇g∗i (x) +
(

µa(x) − iω

c

)

g∗i (x) = 0 x ∈ Ω, (3)

g∗i (x) + 2aD(x)
∂g∗i
∂n

(x) = Q∗
i (x) x ∈ ∂Ω, (4)

where Q∗
i is the adjoint source located at the ith detector xi

d, i = 1, · · · , Nd, where Nd is the number of detectors.
We note that we approximate the point source Qj in (1) and the adjoint source Q∗

i in (4) by Gaussian functions
with sufficiently low variance, whose centers are located at xj

s and xi
d, respectively. Note also that for any source

Qj ∈ H1(Ω), our error analysis is valid. In this work, we consider the finite-element approximations of the
solutions of the forward problem. Hence, before we discretize the forward problem (see section 3.1), we consider
the variational formulations of (1)-(2) and (3)-(4).2 We note that a unique solution exists for each of these
variational problems. Furthermore, the following holds18, 19:

• In addition to above conditions, noting Qj , Q
∗
i ∈ C(Ω); the solutions gj , g

∗
i satisfy20

gj , g
∗
i ∈ W∞

1 (Ω). (5)

2.2. Inverse Problem

In this work, the objective of the inverse problem is to determine the unknown optical absorption and diffusion
coefficients of a bounded optical domain. To address the nonlinear nature of the inverse DOT problem, we
consider an iterative algorithm based on repetitive linearization of the inverse problem using first order Born
approximation.1 As a result, at each linearization step, the following linear integral equation relates the differ-
ential optical measurements to unknown small perturbations α and β on the absorption coefficient µa and the
diffusion coefficient D, respectively, assuming β = 0 on x ∈ ∂Ω:

Γi,j = −
∫

Ω

[
g∗i (x)gj(x)α(x) + ∇g∗i (x) · ∇gj(x)β(x)

]
dx (6)

:=
∫

Ω

[
Ha

i,j(x)α(x) + Hb
i,j(x)β(x)

]
dx

:=
(

[
Aa Bb

]
[

α
β

])

i,j

:= (Kabσ)i,j , (7)

where σ = [α β]T ∈ L2(Ω) × L2(Ω), Kab = [Aa Bb] : L2(Ω) × L2(Ω) → C
Nd×Ns , Ha

i,j(x) = −g∗i (x)gj(x) is the
(i, j)th kernel of the matrix valued operator Aa : L2(Ω) → C

Nd×Ns at x, and Hb
i,j(x) = −∇g∗i (x) · ∇gj(x) is

(i, j)th kernel of the matrix-valued operator Bb : L2(Ω) → C
Nd×Ns at x. gj is the weak solution of (1)-(2) and

g∗i (x) is weak solution of (3)-(4), and Γi,j is the (i, j)th entry in the vector Γ ∈ C
Nd×Ns , which represents the

differential measurement at the ith detector due to the jth source.1, 2 Thus,

Γ = Kabσ. (8)

Proc. of SPIE Vol. 6850  68500W-3



Note that approximating Q∗
i in (4) by a Gaussian function centered at xi

d implies that Γi,j corresponds to
the scattered optical field evaluated at xi

d, after filtering it by that Gaussian function.2 Thus, the Gaussian
approximation of the adjoint source models the finite size of the detectors. Similarly, approximating Qj in (1)
by a Gaussian function models the finite beam of the point source. We note the boundedness of the operators
Aa and Bb are bounded, which leads to the boundedness of Kab. Furthermore, the operators Aa and Bb are
compact.2, 21 Thus, for the given solution space L2(Ω) for both α and β, (8) is ill-posed. To address the
ill-posedness of (6), we regularize (8) with a zeroth order Tikhonov regularization.

2.3. Regularization of the inverse problem
Let A∗

a : C
Nd×Ns → L2(Ω) and B∗

b : C
Nd×Ns → L2(Ω) be the adjoint of the operators Aa and Bb defined

respectively by

(A∗
aΘ)(x) :=

Nd,Ns∑

i,j

Ha∗
i,j (x)Θi,j :=

Nd,Ns∑

i,j

−g∗i (x)gj(x)Θi,j, (9)

(B∗
aΘ)(x) :=

Nd,Ns∑

i,j

Hb∗
i,j(x)Θi,j :=

Nd,Ns∑

i,j

−∇g∗i (x) · ∇gj(x)Θi,j , (10)

for all Θ ∈ C
Nd×Ns , where Ha∗

i,j and Hb∗
i,j are the (i, j)th kernels of A∗

a and B∗
b , respectively. Then we define

K∗
ab :=

[
A∗

a B∗
b

]
.

Let A := A∗
aAa:L2(Ω) → L2(Ω), B := B∗

bBb:L2(Ω) → L2(Ω), AB := A∗
aB:L2(Ω) → L2(Ω), and BA :=

B∗
bAa:L2(Ω) → L2(Ω). Then,

(Aθ)(x) :=
∫

Ω

κA(x, x́)θ(x́)dx́, where κA(x, x́) :=
Nd,Ns∑

i,j

Ha∗
i,j (x)Ha

i,j(x́)

(Bθ)(x) :=
∫

Ω

κB(x, x́)θ(x́)dx́, where κB(x, x́) :=
Nd,Ns∑

i,j

Hb∗
i,j(x)Hb

i,j(x́)

(ABθ)(x) :=
∫

Ω

κAB(x, x́)θ(x́)dx́, where κAB(x, x́) :=
Nd,Ns∑

i,j

Ha∗
i,j (x)Hb

i,j(x́)

(BAθ)(x) :=
∫

Ω

κBA(x, x́)θ(x́)dx́, where κBA(x, x́) :=
Nd,Ns∑

i,j

Hb∗
i,j(x)Ha

i,j(x́)

for all θ ∈ L2(Ω). Note that κBA(x, x́) = κAB(x, x́).

Let

K :=
[

A AB

BA B

]

, and γ :=
[

γa

γb

]

:=
[

A∗
aΓ

B∗
b Γ

]

, (11)

where K : L2(Ω) × L2(Ω) → L2(Ω) × L2(Ω). Then, using a zeroth order Tikhonov regularization, the following
equation defines the inverse problem at each linearization step:

γ = (K + L)σλ := T σλ, (12)

where T := (K + L) : L2(Ω) × L2(Ω) → L2(Ω) × L2(Ω), σλ = [αλ βλ]T are approximations to α and β,
respectively, and L : L2(Ω) × L2(Ω) → L2(Ω) × L2(Ω) is given by

L :=
[

λaI 0
0 λbI

]

, (13)

where λa, λb > 0 and I is the identity operator. We finally note that a bound for T can be given by
‖T ‖L2(Ω)×L2(Ω)→L2(Ω)×L2(Ω) ≤ ‖Kab‖2

L2(Ω)×L2(Ω)→l1 + max(λa, λb).
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2.4. Existence and boundedness of the inverse operator

Consider the inverse problem formulation (12). Owing to the regularization term, the inverse operator T −1 :
L2(Ω) × L2(Ω) → L2(Ω) × L2(Ω) exists and by Lax-Milgram lemma16 it is bounded by

‖T −1‖L2(Ω)×L2(Ω)→L2(Ω)×L2(Ω) ≤
1

min(λa, λb)
.

In particular, the operator T −1 can be viewed as a 2 × 2 matrix of operators T −1
ij : L2(Ω) → L2(Ω), i, j = 1, 2,

i.e.:

T −1 :=
(

T −1
11 T −1

12

T −1
21 T −1

22

)

. (14)

We remark that the boundedness of T −1 is a result of the boundedness of the operators T −1
ij :

‖T −1
ij ‖L2(Ω)→L2(Ω) ≤ χij (15)

for some scalar value χij > 0, for i, j = 1, 2.

3. DISCRETIZATION OF THE FORWARD AND INVERSE PROBLEMS

In this section, we first consider the variational formulations of (1)-(2) and (3)-(4), and discuss the finite-element
discretization of the forward problem. Next, we describe the discretization of the inverse problem (12).

3.1. Forward Problem Discretization

In this section, we consider the finite element discretization of the forward problem defined by the variational
formulations of (1)-(2) and (3)-(4), and use their solutions to approximate the kernels κA, κB, κAB, and κBA.
As a result, we obtain finite dimensional approximations to K and γ in (11) respectively.

Let Lk be the first order Lagrange basis functions, and Yj ⊂ H1(Ω) be the finite-dimensional subspace
spanned by Lk, k = 1, . . . , Nj , where Nj is the dimension of the finite-dimensional subspace for the jth source,
j = 1, . . . , Ns. Similarly, we define Y ∗

i ⊂ H1(Ω) as the finite-dimensional subspace spanned by Lk, for k =
1, . . . , N∗

i , where N∗
i is the dimension of the finite-dimensional subspace for the ith detector, i = 1, . . . , Nd. In

this representation, Nj and N∗
i denote that for each source and detector, the dimension of the finite-dimensional

subspace can be different. Replacing φ and gj with their finite-dimensional counterparts Φj(x) =
∑Nj

k=1 pkLk(x),
Gj(x) =

∑Nj

k=1 ckLk(x); and replacing φ and g∗i with Φ∗
i (x) =

∑N∗
i

k=1 qkLk(x), G∗
i (x) =

∑N∗
i

k=1 dkLk(x) yields the
matrix equations:

Scj = qj , and S∗di = q∗
i , (16)

for cj = [c1, c2, · · · , cNj ]T and di = [d1, d2, · · · , dNi ]T . Here S and S∗ are the finite element matrices and qj and
q∗

i are the load vectors resulting from the finite element discretization of ??) and (??.

The H1(Ω) boundedness of the solutions gj and g∗i implies that the discretization error ej and e∗i in the
finite element solutions Gj and G∗

i is bounded. Let {Ωmj} denote the set of linear elements used to discretize

Ω for m = 1, . . . , N j
∆; such that

⋃Nj
∆

m Ωmj = Ω for all j = 1, . . .Ns. Similarly, let {Ωni} denote the set of linear

elements used to discretize Ω for n = 1, . . . , N∗i
∆ ; such that

⋃N∗i
∆

n Ωni = Ω for all i = 1, . . .Nd. Assuming the
solutions gj and g∗i for all j = 1, · · · , Ns i = 1, · · · , Nd also satisfy gj , g

∗
i ∈ H2(Ω), a bound for ej and e∗i on each

finite element can be found by using the discretization error estimates22:

‖ej‖0,mj ≤ C‖gj‖2,mjh
2
mj , (17)

‖e∗i ‖0,ni ≤ C‖g∗i ‖2,nih
2
ni, (18)
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where C is a positive constant, ‖ · ‖0,mj (‖ · ‖0,ni) and ‖ · ‖2,mj (‖ · ‖2,ni) are respectively the L2 and H1 norms
on Ωmj (Ωni), and hmj (hni) is the diameter of the smallest ball containing the finite element Ωmj (Ωni) in the
solution Gj (G∗

i ). Similarly,

‖∇ej‖0,mj ≤ C‖gj‖2,mjhmj , (19)
‖∇e∗i ‖0,ni ≤ C‖g∗i ‖2,nihni. (20)

3.2. Approximation of T and γ with finite element solutions Gj and G∗
i

Following the discretization of the forward problem and the solution of the resulting discrete forward problem,
we can rewrite the inverse problem formulation (12) by replacing gj and g∗i with Gj and G∗

i in T and γ.
Consequently, we get the following inverse problem formulation, which is an approximation to the regularized
inverse problem formulation in (12):

T̃ σ̃λ = γ̃, (21)

where

T̃ := K̃ + L :=
[

Ã ÃB

B̃A B̃

]

+
[

λa 0
0 λb

]

(22)

γ̃ :=
[

γ̃a

γ̃b

]

:=
[

Ã∗
aΓ

B̃∗
b Γ

]

. (23)

are the approximations to T and γ, respectively, and σ̃λ is an approximation to the solution σλ as a result of

the forward problem discretization: σ̃λ =
[
α̃λ β̃λ

]T

. In (22), the kernels of the integral operators Ã, B̃, ÃB, and

B̃A are given respectively by

κ̃A(x, x́) :=
Nd,Ns∑

i,j

H̃a∗
i,j (x)H̃a

i,j(x́), κ̃B(x, x́) :=
Nd,Ns∑

i,j

H̃b∗
i,j(x)H̃b

i,j(x́),

κ̃AB(x, x́) :=
Nd,Ns∑

i,j

H̃a∗
i,j (x)H̃b

i,j(x́), κ̃BA(x, x́) :=
Nd,Ns∑

i,j

H̃b∗
i,j(x)H̃a

i,j(x́),

where H̃a
i,j(x) = −G∗

i (x)Gj(x) and H̃b
i,j(x) = −∇G∗

i (x) · ∇Gj(x). Note that H̃a∗
i,j = H̃a

i,j and H̃b∗
i,j = H̃b

i,j . The
operator T −1, can be interpreted similar to T̃ −1 as a 2 by 2 matrix of operators T̃ −1

ij , each of which is bounded
by χ̃ij for some scalar value χ̃ij > 0, for i, j = 1, 2:

In the following section, we describe the discretization of the inverse problem (21) which uses the finite
element approximations Gj and G∗

i of gj and g∗i in its formulation.

3.3. Discretization of the inverse problem
For the discretization of the inverse problem (21), we use projection by the Galerkin method. Below, we give
the details of the Galerkin method.

Let Xa, Xb ⊂ L2(Ω) denote the finite-dimensional subspaces spanned by first order Lagrange polynomials
{L1, . . . , LNa} and {L1, . . . , LNb}, associated with vertices located at xa

p p = 1, · · · , Na and xb
r r = 1, · · · , N b,

respectively, where Na and N b are the dimensions of Xa and Xb. Note that Xa and Xb are not necessarily
identical.

Let {Ωt}, t = 1, · · · , Na
∆ denote a set of linear finite elements such that

⋃Na
∆

t Ωt = Ω and {Ωu} be a set of

linear finite elements used for u = 1, · · · , N b
∆ such that

⋃Nb
∆

u Ωu = Ω. Then, we express σ̃λ
n,m = [α̃λ

n β̃λ
m]T on

these finite elements as

α̃λ
n(x) =

Na
∑

k=1

akLk(x), and β̃λ
m(x) =

Nb
∑

l=1

blLl(x). (24)
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Next consider the test function ζ = [ζa ζb]T ∈ Xa × Xb given by

ζa(x) =
Na
∑

k=1

ca
kLk(x), and ζb(x) =

Nb
∑

l=1

cb
l Ll(x).

Then, the Galerkin method approximates the solution of (21) by an element σ̃λ
n,m = [α̃λ

n β̃λ
m]T ∈ Xa ×Xb, which

satisfies (
T̃ σλ

n,m, ζ
)

= (γ̃, ζ) (25)

for all ζ ∈ (Xa×Xb). We note that by Lax-Milgram theorem, a unique solution σλ
n,m ∈ (Xa×Xb) exists for (25)

owing to the regularization which results in the positive-definiteness of the operator T̃ .16, 21 Equivalently, (25)
can be interpreted as follows:

Pa,bT̃ σλ
n,m = Pa,bγ̃, (26)

where Pn,m is the matrix of orthogonal projection operators

Pa,b =
(

Pa 0
0 Pb

)

(27)

where Pa : L2(Ω) → Xa and Pb : L2(Ω) → Xb are the orthogonal projection operators.21 We note that the
following condition holds for (Pa,bT̃ ) : Xa × Xb → Xa × Xb (see proof of theorem 13.27 in21):

‖(Pa,bT̃ )−1Pa,b‖L2(Ω)×L2(Ω)→Xa×Xb ≤ 1
min(λa, λb)

. (28)

3.4. Summary: The inverse problem and its approximations

In this work, we consider the regularized inverse problem in (12) as the baseline for the error analysis. In this
respect, we first consider the effect of discretization of the forward problem on the optical imaging accuracy, thus
consider the inverse problem (21), i.e.

T̃ σ̃λ = γ̃,

Next, to show the effect of inverse problem discretization, we project the above equation on the finite-dimensional
subspaces Xa × Xb, and consider the resulting inverse problem formulation: (25)

Pa,bT̃ σ̃λ
n,m = Pa,bγ̃.

Thus, we have three different inverse problem formulations:

1. The exact inverse problem formulation (12),

2. the inverse problem formulation (21) with the degenerate kernels, and

3. the full discrete inverse problem (25), which is the projection of (21) onto the finite dimensional subspaces
(Xa × Xb) ⊂ (L2(Ω) × L2(Ω)) using Galerkin method.

4. DISCRETIZATION-BASED ERROR ANALYSIS

As a result of operator approximation and discretization of the inverse problem, the reconstructed images σ̃λ
n =

[α̃λ
n β̃λ

n ]T are approximations to the actual images σλ = [αλ βλ]. Projecting the inverse problem onto finite-
dimensional sub-spaces Xa and Xb and the discretization error in the solutions of the forward problem result
in error in the reconstructed images. Therefore, the accuracy of the reconstructed image is challenged by the
discretization schemes followed in the numerical solutions of the forward and inverse problems.

The error in the solution σ̃λ
n,m of (25) with respect to the actual solution σλ of (12) has two contributors:

We write σ̃λ
n,m = σ̃λ − en,m, where en,m = [ea

n eb
m]T is the error resulting from projection of the inverse problem
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with the operator approximation and denote σ̃λ = σλ − ẽ, where ẽ = [ẽa ẽb]T is the error due to forward problem
discretization. As a result, we arrive at the following conclusion:

σ̃λ
n,m = σ̃λ − en,m = σλ − en,m − ẽ. (29)

Therefore, we can write an upper bound for the error σλ − σ̃λ
n,m as follows:

‖σλ − σ̃λ
n,m‖ = ‖σλ − σ̃λ + σ̃λ − σ̃λ

n,m‖ = ‖ẽ + en,m‖ ≤ ‖ẽ‖ + ‖en,m‖. (30)

4.1. Effect of forward problem discretization

The following theorem presents a bound for the L2(Ω) norm of the error between the solution σ̃λ of (21) and
the solution σλ of (12).

Theorem 1:

Let {Ωmj} denote the set of linear elements used to discretize Ω for m = 1, . . . , N j
∆; such that

⋃Nj
∆

m Ωmj = Ω,
and hmj be the diameter of the smallest ball that contains the element Ωmj in the solution Gj , for all j =
1, . . .Ns. Similarly, let {Ωni} denote the set of linear elements used to discretize Ω for n = 1, . . . , N∗i

∆ ; such that
⋃N∗i

∆
n Ωni = Ω, and hni be the diameter of the smallest ball that contains the element Ωni in the solution G∗

i , for
all i = 1, . . .Nd. Assume further that the solutions gj and g∗i admit smoothness such that gj , g

∗
i ∈ H2(Ω) and

σλ is boundeds. Let

a(j, m) :=
Nd∑

i=1

‖g∗i αλ‖0,mj‖gj‖2,mj b(j, m) :=
‖α‖0 + ‖β‖0

2

Nd∑

i=1

‖g∗i ‖∞,mj‖gj‖2,mj,

c(j, m) :=
Nd∑

i=1

∥
∥|∇g∗i |βλ

∥
∥

0,mj
‖gj‖2,mj d(j, m) :=

‖α‖0 + ‖β‖0

2

Nd∑

i=1

‖∇g∗i ‖∞,mj‖gj‖2,mj,

and

a∗(i, n) :=
Ns∑

j=1

‖gjα
λ‖0,ni‖g∗i ‖2,ni b∗(i, n) :=

‖α‖0 + ‖β‖0

2

Ns∑

j=1

‖gj‖∞,ni‖g∗i ‖2,ni,

c∗(i, n) :=
Ns∑

j=1

∥
∥|∇gj |βλ

∥
∥

0,ni
‖g∗i ‖2,ni d∗(i, n) :=

‖α‖0 + ‖β‖0

2

Ns∑

j=1

‖∇gj‖∞,ni‖g∗i ‖2,ni.

Given the a priori discretization error estimates (17)-(18) and a generic constant C > 0, a bound for the error
between the solution αλ and the solution α̃λ of (12) due to the approximations T̃ and γ̃ is given by:

‖αλ − α̃λ‖0 ≤ 2C max
i,j

‖g∗
i gj‖1

×

⎛

⎜
⎝

Ns∑

j=1

N
j
∆∑

m=1

[(χ̃11 + χ̃12)a(j, m) + χ̃12b(j, m)] h2
mj + [(χ̃11 + χ̃12)c(j, m) + χ̃12d(j, m)]hmj

+

Nd∑

i=1

N∗i
∆∑

n=1

[(χ̃11 + χ̃12)a
∗(i, n) + χ̃12b

∗(i, n)] h2
ni + [(χ̃11 + χ̃12)c

∗(i, n) + χ̃12d
∗(i, n)] hni

⎞

⎠

and a bound for the error between the solution βλ and the solution β̃λ of (12) due to the approximations T̃ and
γ̃ is given

‖βλ − β̃λ‖0 ≤ 2C max
i,j

‖g∗
i gj‖1
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×

⎛

⎜
⎝

Ns∑

j=1

N
j
∆∑

m=1

[(χ̃21 + χ̃22)a(j, m) + χ̃22b(j, m)] h2
mj + [(χ̃21 + χ̃22)c(j, m) + χ̃22d(j, m)]hmj

+

Nd∑

i=1

N∗i
∆∑

n=1

[(χ̃21 + χ̃22)a
∗(i, n) + χ̃22b

∗(i, n)] h2
ni + [(χ̃21 + χ̃22)c

∗(i, n) + χ̃22d
∗(i, n)] hni

⎞

⎠

Theorem 1 shows that the error in the reconstructed absorption image α̃λ depends on the diffusive heterogene-
ity and the solutions of the forward problem. Similarly, the error in the reconstructed diffusion image β̃λ depends
on the absorptive heterogeneity and the solutions of the forward problem. With these observations, theorem 1
suggests the use of meshes designed individually for the solutions Gj , j = 1, · · · , Ns and G∗

i , i = 1, · · · , Nd. Note
also that the position of the detectors with respect to the sources is another factor that affects the error bound
in theorem 1.

Note that the conventional interpolation error estimates given in (17)-(18) and (19)-(20) depend on only
the smoothness and support of gj and g∗i .16 On the other hand, the error estimates in Theorem 1 show that
the accuracy of the reconstructed images α̃λ and β̃λ depend on the location of the absorptive and diffusive
heterogeneities with respect to the sources and detectors, as well as on the bounds (17)-(18) and (19)-(20).

The parameters χ̃ij i, j = 1, 2 affect the bounds on ‖αλ − α̃λ‖0 and ‖βλ − β̃λ‖0. Note that the parameters
χ̃ij , i, j = 1, 2 depend on the regularization parameters λa, λb and on the kernels of the operator T . We also
note that the kernels of T can be scaled to make χ̃ij almost identical for all i, j = 1, 2.23 Otherwise, the effect
of forward problem discretization may be greater on one of the reconstructed optical coefficients as compared
to the other one. Finally we note that increasing the number of sources and detectors increases the bounds on
‖αλ − α̃λ‖0 and ‖βλ − β̃λ‖0.

4.2. Effect of inverse problem discretization

In this section, we show the effect of inverse problem discretization on the optical imaging accuracy. In the
analysis, we consider the inverse problem formulation and derive a bound for the L2(Ω) norm of the error en,m

between the solution of (21) and the solution of (26).

Theorem 2:

Let {Ωt} denote the set of linear elements used to discretize Ω for t = 1, . . . , Na
∆; such that

⋃Na
∆

t Ωt = Ω, and hta

be the diameter of the smallest ball that contains the element Ωt in the solution. Similarly, let {Ωu} denote the
set of linear elements used to discretize Ω for u = 1, . . . , N b

∆; such that
⋃Nb

∆
u Ωu = Ω, and hub be the diameter

of the smallest ball that contains the element Ωu. Assume that the solutions α̃λ and β̃λ are sufficiently smooth
such that

α̃λ, β̃λ ∈ H1(Ω).

Then,

‖α̃λ − α̃λ
n‖0 ≤ C(1 + λaπ11)

N∆
a∑

t=1

‖α̃λ‖1,tahta + Cλbπ12

N∆
b∑

u=1

‖β̃λ‖1,ubhub

+C(π11 + π12)max
i,j

‖G∗
i Gj‖1

×

⎛

⎝
N∆

a∑

t=1

Nd,Ns∑

i,j

‖G∗
i Gj‖0,ta‖α̃λ‖1,tahta +

N∆
b∑

u=1

Nd,Ns∑

i,j

‖∇G∗
i · ∇Gj‖0,ub‖β̃λ‖1,ubhub

⎞

⎠ .
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and

‖β̃λ − β̃λ
m‖0 ≤ C(1 + λbπ22)

N∆
b∑

u=1

‖β̃λ‖1,ubhub + Cλaπ21

N∆
a∑

u=1

‖α̃λ‖1,tahta

+C(π21 + π22)max
i,j

‖G∗
i Gj‖1

×

⎛

⎝
N∆

a∑

t=1

Nd,Ns∑

i,j

‖G∗
i Gj‖0,ta‖α̃λ‖1,tahta +

N∆
b∑

u=1

Nd,Ns∑

i,j

‖∇G∗
i · ∇Gj‖0,ub‖β̃λ‖1,ubhub

⎞

⎠ .

The theorem shows that the accuracy of the reconstructed image α̃λ
n depends on the discretization scheme

followed to discretize β̃λ as well as the discretization scheme followed to discretize α̃λ itself. Similarly, the
theorem shows that the accuracy of the reconstructed image β̃λ

m depends on the discretization scheme followed
to discretize α̃λ as well as the discretization scheme followed to discretize β̃λ itself.

Theorem 2 shows the spatial dependence of the inverse problem discretization on the forward problem solution.
The position of the detectors with respect to the sources is another factor that determines the extent of the error
bound in theorem 2.

The parameters πij i, j = 1, 2 affect the bounds on ‖α̃λ − α̃λ
n‖0 and ‖β̃λ − β̃λ

m‖0. Note that, similar to χ̃ij ,
the parameters πij , i, j = 1, 2 depend on the regularization parameters λa, λb and on the kernels of the operator
T̃ . Similar to the kernels of T , the kernels of T̃ can be scaled to make πij almost equal.23, 24

5. CONCLUSION

In this work, we presented an error analysis to show the relationship between the error in the simultaneously
reconstructed optical absorption and diffusion coefficient images and the discretization of the forward and inverse
problems.

We summarized the results of the error analysis in two theorems which provide an insight into the effect of
forward and inverse problem discretizations on the accuracy of diffuse optical imaging. These theorems show
that the error in the reconstructed optical images due to the discretization of each problem is bounded by roughly
the multiplication of the discretization error in the corresponding solution and the solution of the other problem.
One important implication of the error bounds is the dependence of the error in the reconstruction of one optical
parameter (say the absorption coefficient) on the discretization of the other optical parameter (say the diffusion
coefficient).
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