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Abstract
Diffuse optical tomography (DOT) in the near infrared involves the
reconstruction of spatially varying optical properties of a turbid medium from
boundary measurements based on a forward model of photon propagation.
Due to the nonlinear nature of DOT, high quality image reconstruction is a
computationally demanding problem which requires repeated use of forward
and inverse solvers. Therefore, it is desirable to develop methods and
algorithms that are computationally efficient. In this paper, we develop two-
level overlapping multiplicative Schwarz-type domain decomposition (DD)
algorithms to address the computational complexity of the forward and inverse
DOT problems. We use a frequency domain diffusion equation to model photon
propagation and consider a nonlinear least-squares formulation with a general
Tikhonov-type regularization for simultaneous reconstruction of absorption
and scattering coefficients. In the forward solver, a two-grid method is used as
a preconditioner to DD to enhance convergence. In the inverse solver, DD is
initialized with a coarse grid solution to achieve local convergence. We show
the strong local convexity of the nonlinear objective functional resulting from
the inverse problem formulation and prove the local convergence of the DD
algorithm for the inverse problem. We provide a computational cost analysis of
the forward and inverse solvers and demonstrate their performance in numerical
simulations.

1. Introduction

Diffuse optical image reconstruction based on the diffusion equation is a nonlinear ill-posed
problem that calls for the use of nonlinear minimization methods with regularization to stabilize
the solution [1].

Due to lack of analytical solutions for practical applications with arbitrary geometries,
DOT image reconstruction is often posed as an optimization problem involving two coupled
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steps, namely forward and inverse problems. Each step consists of an iterative solver whose
solution is used as an input to the other solver. More precisely, the forward solver computes
the photon density and its Jacobian with respect to the current optical coefficient estimates,
and the inverse solver updates the optical coefficients based on the output of the forward step.
The updated coefficients are then used in the forward solver to recompute the photon density
and its Jacobian. As a result, the computational complexity of DOT image reconstruction
quickly grows with the number of unknowns and dimension. Thus, real time computation of
DOT requires numerical techniques to reduce the complexity of the problem.

In this paper, we develop two-level domain decomposition (DD) algorithms to address
the computational complexity of the forward and inverse problems. More specifically, we
develop an overlapping multiplicative Schwarz-type DD algorithm equipped with a two-grid
preconditioner to solve the forward problem resulting from the finite element discretization
of the frequency-domain diffusion equation. For simultaneous absorption and scattering
coefficient reconstruction, we consider a nonlinear least-squares formulation with a general
Tikhonov-type regularization. To solve the resulting optimization problem, we develop a
two-level overlapping multiplicative Schwarz-type DD algorithm, where we use a trust region
method for minimization. Finally, under the conditions that lead to the local strong convexity
of the nonlinear objective functional considered for the inverse problem formulation, we prove
the local convergence of the DD algorithm developed for the inverse problem.

DD methods originate from the Schwarz alternating procedure, which is known to be
the first DD method applied for solving partial differential equations (PDEs) [32]. In the last
two decades, motivated by the need for fast and efficient algorithms for solving large-scale,
three-dimensional problems, DD methods have been extensively developed and applied in the
area of numerical solution of PDEs [31, 33]. DD methods involve partitioning of bounded
domains into two or more sub-domains, thereby dividing the original problem into a series of
smaller sized sub-problems defined on the sub-domains. As a result, DD methods allow the
parallel solution of the resulting sub-problems, making the computation extremely efficient.

Owing to the computational advantages they offer, DD methods have been applied
to inverse problems as well. In [4–6, 36, 38], DD methods were applied to constrained
convex minimization problems arising from variational inequalities, where the term ‘space
decomposition’ was introduced for DD methods in the context of optimization problems. In
[5, 36, 38], the convergence of DD methods has been shown for convex optimization problems.
DD methods have also been applied to a number of application specific inverse problems,
including Radon transform inversion in radar and x-ray tomography [8, 9], geophysics [14],
parameter estimation problems [37], inverse heat conduction problem [29] and welding and
metal cutting problems [23, 28]. In the area of DOT, a ‘data driven zonation’ method coupled
with extended Kalman filtering was applied in conjunction with a DD method [15], where
the convergence of the DD algorithm was shown empirically. In this work [15], instead
of partitioning the main inverse problem formulation, independent local inverse problems
were formulated on each non-overlapping sub-domain, using the measurement data due to
the source–detector pairs that were physically present in the sub-domain. In the same work,
a multi-grid algorithm was used to accelerate the finite difference solution of the forward
problem; however, DD methods were not used. A similar multi-grid-based approach for
the forward problem was also presented in [30]. Multi-grid algorithms in the context of
optimization have been proposed for the solution of the inverse DOT problem as well [26, 40],
however in both of these studies [26, 40], a multi-grid was used as an iterative solver and DD
methods were not considered. In [16, 17], a fast adaptive composite-grid (FAC) algorithm was
proposed for the linearized DOT inverse problem, which can be viewed as a fully overlapping
Schwarz-type domain decomposition algorithm [13], to provide enhanced spatial resolution
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in a region of interest. Most recently in [34], a multi-level overlapping Schwarz-type domain
decomposition algorithm was proposed for the linearized inverse DOT problem, which was
posed as a linear least-squares problem without regularization. In all these studies [16, 17, 34],
DD methods were not pursued for the solution of the forward problem and convergence of the
proposed algorithms was presented empirically.

In this work, we consider an overlapping partitioning of the optical domain to convert
the finite element formulation of the frequency-domain diffusion equation into a number of
smaller-sized sub-problems and use a multiplicative Schwarz-type DD algorithm. For the
numerical solution of elliptic PDEs such as the frequency-domain diffusion equation, it has
been shown that one-level domain decomposition methods are not efficient in conveying the
information on one sub-domain to the others, which is attributed to the rapid decay of Green’s
function of these PDEs and the dependence of the solution on the boundary conditions [33].
An effective way to address this issue is to use multi-grid methods [33]. Therefore, we employ
a two-grid preconditioner to enhance the global communication of the multiplicative Schwarz-
type DD algorithm applied on the fine resolution level. We note that the multiplicative nature
of the Schwarz algorithm provides a higher convergence rate as compared to that of the
additive Schwarz algorithms (section 3.3). We refer to [10, 33] for a detailed discussion about
the convergence analysis of DD methods with multi-grid preconditioners for the numerical
solution of elliptic PDEs. For the inverse problem, we consider a nonlinear optimization
problem resulting from the nonlinear least-squares formulation with a general Tikhonov-type
regularization. Unlike the approach in [15], we formulate a single inverse problem on the
whole domain using the boundary measurements due to all source–detector pairs. Then,
we apply a two-level Schwarz-type multiplicative DD algorithm coupled with a trust region
method to successively minimize the resulting objective functional on each overlapping sub-
domain. In this case, the coarse level serves to provide a good initial guess for the fine level,
where the inverse problem is formulated. Under some mild conditions, we show the local
strong convexity of the nonlinear objective functional. Then, we prove the local convergence
of the DD algorithm for the nonlinear inverse DOT problem by using the local strong convexity
property of the nonlinear inverse problem formulation. In this context, the coarse-level solution
used as the initial guess to the fine level is crucial in achieving the convergence. Note that we
show the convergence properties of the DD algorithm for the inverse problem, independent
of the optimization method. Therefore, the convergence properties do not change if the
trust region method is replaced by another optimization method. We perform two sets of
experiments to show the computational savings provided by the proposed DD algorithms as
compared to non-DD algorithms.

The rest of the paper is organized as follows: in section 2, we define the forward problem
and formulate the inverse problem, respectively. In section 3, we present the DD algorithms
developed for the solution of the forward and inverse problems, and discuss the convergence
properties and computational complexity of the proposed algorithms. Section 4 presents the
numerical simulations and section 5 summarizes our results and conclusions. The paper
includes an appendix for the proof of the local convergence of the DD algorithm developed
for the inverse problem.

2. Diffuse optical tomography

2.1. Photon diffusion equation in the frequency domain

We model the propagation of light in biological tissue by the diffusion equation with Robin
boundary conditions [1]. In the frequency domain, the photon diffusion equation is given as
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follows:

−∇ · (κ∇�) +
(
µa +

iω

c

)
� = q in �

� + 2aκ
∂�

∂ν
= 0 on ∂�

(2.1)

where � is a Lipschitz domain in R
n, n = 2, 3; ∂� is its boundary, � is the photon density, c

is the speed of light, ω is the angular frequency of the source q, ν is the unit outward normal
vector on the boundary, a is a parameter to account for the refractive index mismatch at the
boundary, and µa,µ

′
s and κ = 1

3(µa+µ′
s )

are the absorption, reduced scattering and isotropic
diffusion coefficients, respectively. For the general anisotropic material, see [19].

The unique identification of the optical coefficients µa and κ in (2.1) when Dirichlet-
to-Neumann map is given (or when infinite sources and infinite detectors are given) can be
easily shown by using the uniqueness results for the isotropic case [35]. For the uniqueness
of the optical coefficients when κ has an anisotropic anomalous region contained in a known
background, see [18, 20, 22].

In [2, 3], numerical examples show that the Rytov approximation provides better DOT
images as compared to the Born approximation. Therefore, we use the Rytov measurements
[27] on the boundary:

� = log

(
−κ

∂�

∂ν

)
(2.2a)

= log

(
1

2a
�

)
. (2.2b)

Then, the Jacobian of � with respect to µa and µ′
s is given as follows:

∂�

∂µa

(r) = − 1

2a�(r)

∫
�

[−3κ(r ′)2∇G(r, r ′)∇�(r ′) + G(r, r ′)�(r ′)] dr ′, (2.3a)

∂�

∂µ′
s

(r) = − 1

2a�(r)

∫
�

−3κ(r ′)2∇G(r, r ′)∇�(r ′) dr ′ (2.3b)

where r ∈ ∂�,� is the complex conjugate of �, and G is Green’s function of (2.1).

2.2. Discretization and finite element method

Suppose that there are Ns sources located at rj , j = 1, . . . , Ns ; and Nd detectors located on
the boundary of �, at ri+Ns

, i = 1, . . . , Nd . Let �j be the solution of (2.1) for the point source
qj (r) = δ(r − rj ). Define

�i,j = log(�j (ri+Ns
)), (2.4)

for the ith detector and the j th source.
Consider the finite element space spanned by the bases uk, k = 1, . . . , Nn. Note that

for a piecewise bilinear element, Nn is the same as the number of nodes. Let Tm denote the
elements for m = 1, . . . , Ne, where Ne is the number of the elements. Then, the finite element
formulation for (2.1) in this finite element space for the point source qj located at rj , is given
as follows: [

K + C +
1

2a
A

]
�j = f j , (2.5)
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where K,C,A are Nn × Nn matrices and f j is a Nn × 1 column vector given by

Kkl =
∫

�

κ∇uk∇ul

Ckl =
∫

�

(
µa + i

ω

c

)
ukul

Akl =
∫

∂�

ukul

f
j

l =
{

1 if l = j

0 otherwise,

for k, l = 1, . . . , Nn.
Next, we define the following function spaces:

V y = {η ∈ L2(�)|Ly � |η(r)|r∈� � Uy}, (2.6a)

V
y

Ne
= {η ∈ V y |η is constant at each Tm,m = 1, . . . , Ne}, (2.6b)

where y is either µa or µ′
s , and Ly and Uy are positive constants. Note that we can choose

different values for Ly and Uy depending on µa and µ′
s . Let η ∈ V

y

Ne
be η = (η1, . . . , ηNe

),
then we define the norms in V y and V

y

Ne
as follows:

‖η‖V y = ‖η‖L2(�) for η ∈ V y,

‖η‖V
y

Ne
=
√√√√ Ne∑

m=1

η2
m|Tm| for η = (η1, . . . , ηNe

) ∈ V
y

Ne
,

where |Tm| is the area of Tm.
Assume that µa ∈ V

µa

Ne , µ
′
s ∈ V

µ′
s

Ne . Let �j(k) be the value of �j at the kth node point,
G(k : j) be the value of Green’s function at the kth node point due to the j th point source,
and κ(m) be the value of κ at the mth element Tm. By discretizing (2.3a), we obtain the value
of the Jacobian of �i,j at the mth element as follows:

∂�i,j

∂µa

(m) = − 1

2a�j (i)

Nn∑
k,l=1

G(i : k)[−3κ(m)2Em(k, l) + Fm(k, l)]�j(l), (2.7a)

∂�i,j

∂µ′
s

(m) = − 1

2a�j (i)

Nn∑
k,l=1

G(i : k)[−3κ(m)2Em(k, l)]�j(l), (2.7b)

where

Em(k, l) =
∫

Tm

∇uk∇ul, (2.8a)

Fm(k, l) =
∫

Tm

ukul. (2.8b)

We note that in most practical applications, computing G(i : k) for each point source
located at the kth node and evaluating at the ith detector location is not feasible. Instead, we
consider the adjoint problem associated with (2.1) [1], with the adjoint point source located at
the ith detector position. Then, the solution G∗(k : i) to the adjoint problem at the kth node
for the adjoint source at the ith detector location satisfies G∗(k : i) = G(i : k).
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2.3. DOT as a nonlinear ill-posed optimization problem and the trust region method

Although the unique determination of µa and µ′
s from the measurement � at the boundary is

possible for infinite sources and detectors when ω �= 0 and κ is known near the boundary [1],
the unique solvability of inverse DOT problem for finite sources and detectors is not known. In
addition, when the number of measurements is less than the total number of unknowns in the
discretized inverse problem, the underdetermined problem challenges the determination of the
optical coefficients. However, even in the overdetermined case, the inevitable ill posedness of
the inverse problem may result in large perturbations in the reconstructed optical coefficients
due to the small amount of noise in the measurements. In order to address the ill posedness, we
use general Tikhonov-type regularization and consider the following nonlinear minimization
problem:

(µa, µ
′
s) = argmin F(η, ν),

(η,ν)∈V
µa
Ne

×V
µ′

s
Ne

(2.9)

where

F(η, ν) = 1

2

Ns∑
j=1

Nd∑
i=1

(�i,j (η, ν) − Mi,j )
2 + α�(η, ν). (2.10)

In (2.10), Mi,j denotes the measurement at the ith detector due to the j th source, � is a

non-negative operator from V
µa

Ne
× V

µ′
s

Ne
into non-negative real numbers R

+ ∪ {0}, and α > 0
is the regularization parameter. For example, � can be chosen as follows:

�(η, ν) = ‖L1(η − η∗)‖2
V

µa
Ne

+ ‖L2(ν − ν∗)‖2

V
µ′

s
Ne

, (2.11)

where (η∗, ν∗) ∈ V
µa

Ne
× V

µ′
s

Ne
is a given prior for the optical coefficients, and L1 and L2 are

Ne ×Ne matrices. Note that depending on the choice of L1 and L2, (2.11) can be either zeroth-
or first-order Tikhonov regularizer. For other regularization methods, see [19].

Note that (2.10) can be extended in a straightforward manner to include multi-frequency
measurements. However, to simplify our notation, we will present the rest of our development
for the single frequency measurements.

The optimization problem in (2.9) is composed of two steps; the step to determine the
minimizing direction at the current coefficients (µa, µ

′
s); and the step to perform a line

search on those minimizing directions. In the Newtonian method, the minimizing direction is
−(F ′′)−1F ′, where F ′ and F ′′ are the Jacobian and the Hessian of F with respect to (µa, µ

′
s),

respectively.
In this paper, we adopted the trust region method [12], one of the Newtonian approaches,

which updates (µa, µ
′
s) in (2.9) iteratively as

(µa, µ
′
s) ← (µa, µ

′
s) + (δµa, δµ

′
s),

by solving the following quadratic minimization problem formulated at the previous update
of (µa, µ

′
s):

(δµa, δµ
′
s) = arg min

x∈K

{
1
2xtF ′′(µa, µ

′
s)x + xtF ′(µa, µ

′
s)
}
, subject to ‖Dx‖ � T .

(2.12)

In (2.12), D is a scaling matrix, T is a trust region parameter and K is a subspace of V µa ×V µ′
s .

The scaling matrix D is used to handle the constraints for the minimization. To stabilize the
minimization, we control the trust region parameter T, similar to the way the parameter λ in
the Levenberg–Marquardt method is controlled [7, 24, 25]. To avoid extensive computation,
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the subspace K is chosen as the two-dimensional subspace composed of the gradient direction
and the approximate Newton direction. This makes the trust region method suitable for
large-scale constrained optimization problems like the one in (2.9).

Note that F ′ and F ′′ for a given (µa, µ
′
s) in (2.12) are given as follows:

F ′ = J tb + α�′, (2.13a)

F ′′ = J tJ + Hb + α�′′, (2.13b)

where b = �i,j (µa, µ
′
s) − Mi,j , J and H are the Jacobian and the Hessian of the operator

�i,j , respectively. J is given by J = J(i,j)(m) = ( �i,j

∂µa
(m),

�i,j

∂µ′
s
(m)

)
, i = 1, . . . , Nd, j =

1, . . . , Ns,m = 1, . . . , Ne as in (2.7a). For the computation of H, see [21].

Taking the vanishing gradient point x = (δµa, δµ
′
s) ∈ Vµa

Ne
× V

µ′
s

Ne
of the quadratic form

1
2 xtF′′(µa, µ

′
s)x + xtF′(µa, µ

′
s) in (2.12), we obtain

F ′′(µa, µ
′
s)(δµa, δµ

′
s) = −F ′(µa, µ

′
s). (2.14)

Using (2.13a), we get

[J t (µa, µ
′
s)J (µa, µ

′
s) + H(µa, µ

′
s)b + α�′′](δµa, δµ

′
s) = −[J (µa, µ

′
s)

tb + α�′]. (2.15)

Thus, if δµa and δµ′
s are sufficiently small, the trust region method can be used to solve

(2.12) at each iteration without considering the scaling matrix D.
We discuss in section 3.2 how we apply the two-level multiplicative DD method to solve

the optimization problem in (2.9) and (2.10) by the trust region method.

3. Two-level domain decomposition methods for diffuse optical tomography

In this section, we describe the two-level domain decomposition methods considered in
this paper, as applied to the forward and inverse problems. For simplicity and notational
clarity, we will describe our notation and approach for the two-dimensional optical domain
� = [a, b] × [c, d] ⊂ R

2 and bilinear finite elements. Its extension to the three-dimensional
domain is straightforward, by appropriate definition of operators and function spaces.

Let �h denote the domain � that is uniformly divided by Nx times in the x-axis direction
and Ny times in the y-axis direction. Thus, �h has Nn = (Nx + 1) × (Ny + 1) nodes and
Ne = Nx × Ny elements. We shall call �H with (Nx/2 + 1) × (Ny/2 + 1) nodes and Nx/2 ×
Ny/2 elements, the coarse level of �h, assuming Nx and Ny are even.

Let �h be decomposed into a disjoint union of d sub-domains �l, l = 1, . . . , d such that

�h =
d⋃

l=1

�l. (3.16)

Equation (3.16) describes the non-overlapping domain decomposition. For the overlapping
domain decomposition, we define �w

l , l = 1, . . . , d; an extension of �l , recursively for all
non-negative integers w as follows: �0

l = �l , and �w
l is the union of �w−1

l and its adjacent
elements in contact with the boundary of �w−1

l , where w will be called the width of the
overlapping region. Thus, the overlapping domain decomposition is given by

�h =
d⋃

l=1

�w
l . (3.17)

Figure 1 illustrates an overlapping and a non-overlapping domain decomposition for two sub-
domains. Table 1 lists the acronyms and explanations for the algorithms developed in this
paper.
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Figure 1. Overlapping domain decomposition and nonoverlapping domain decomposition.

Table 1. The acronyms and explanations of the algorithms.

Non-DDM Non-domain decomposition method
—trust region method for the inverse solver using (2.9) and (2.10).
and finite element method for the forward solver
without using domain decomposition and multigrid methods

MODDM Multiplicative overlapping domain decomposition method

TMODDM Two-level multiplicative overlapping domain decomposition method
—the forward solver :
multiplicative Schwarz method with two-grid preconditioner

MSDM Multiplicative space decomposition method

TMSDM Two-level multiplicative space decomposition method
—the inverse solver :
multiplicative Schwarz method with coarse-level initialization
using (2.9) and (2.10).

3.1. Two-level multiplicative overlapping domain decomposition method for the forward
problem

The forward problem is defined by the boundary value problem (2.1), which is approximated
by the finite element formulation (2.5). In this work, we apply a two-level multiplicative
overlapping domain decomposition method (TMODDM) to solve (2.5) in an attempt to
reduce the computational complexity of the forward problem. In this context, the multi-level
structure in TMODDM functions to speed up the convergence, while DD lets us formulate the
forward problem as a sequence of smaller-sized problems, thereby reducing the computational
requirements. Each sweep of TMODDM involves two steps: the coarse-level correction and
the sub-domain correction. In the following discussion, we describe these steps in detail.

We list the notation and explanation for the variables used in the algorithm TMODDM in
table 2.

3.1.1. The coarse-level correction: By formulating a smaller-sized problem on the coarse
grid �H , the coarse-level correction step provides an approximation to the error in the optical
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Table 2. The notation used in the algorithm TMODDM.

�0
j Initial guess for the photon density for the j th source

�
n−1+ 1

d+1
j The update of �n−1

j by coarse-level correction

at the nth sweep of TMODDM

�
n−1+ p+1

d+1
j The update of �

(n−1)+ 1
d+1

j after p successive sub-domain

corrections on ∪p

k=1�
w
k at the nth sweep of TMODDM

density estimate, which in turn is used to update the optical density on �h. The coarse-level
correction step can be explained in detail as follows:

Let �n denote the current solution update for the optical density � on �h after the nth
sweep of TMODDM. The coarse-level correction in the (n+ 1)th sweep starts with computing
the residual [11] on the fine grid �h:

rh ←
(

K + C +
1

2a
A

)
h

�n − f, (3.18)

and restricting it onto the coarse grid �H :

rH ← R(rh), (3.19)

where R : R
(Nx+1)×(Ny+1) → R

(Nx/2+1)×(Ny/2+1) is the restriction operator. In this work, we use
the full weighting restriction operator [39], which performs a nine-point weighted averaging.
An approximation to the error in the solution update �n can be obtained by solving the defect
equation [39] formulated on �H :(

K + C +
1

2a
A

)
H

eH = rH . (3.20)

Then, the solution of (3.20) is used to update �n, which completes the coarse-level correction:

�n+ 1
d+1 ← �n + P(eH ), (3.21)

where P : R
(Nx/2+1)×(Ny/2+1) → R

(Nx+1)×(Ny+1) is the prolongation operator. In this work, we
use a bilinear prolongation operator [11].

3.1.2. Sub-domain correction. Following the coarse grid correction step, the sub-domain
correction is performed on the fine grid �h, by employing a multiplicative overlapping domain
decomposition method (MODDM). In this step, the boundary value problem (2.1) is redefined
on each of the overlapping sub-domains with appropriate boundary conditions. Then, the
solution of the boundary value problem formulated on each sub-domain is used to update the
optical density. In the following, we present the details of the sub-domain correction.

Let �n+ p

d+1 be the current optical density estimate, obtained by updating �n+ 1
d+1 with the

solutions of the boundary value problems formulated on the sub-domains �w
1 ,�w

2 , . . . , �w
p−1.

Then, the boundary value problem on the sub-domain �w
p is formulated as

−∇ · (κ∇v) +
(
µa +

iω

c

)
v = q in �w

p (3.22a)

v + 2aκ
∂v

∂ν
= 0 on ∂�w

p ∩ ∂�, (3.22b)

v = �n+ p

d+1 on ∂�w
p \∂�. (3.22c)
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Then, the solution of (3.22a) is used to obtain the new optical density estimate on � as follows:

�n+ p+1
d+1 =

{
v in �w

p

�n+ p

d+1 in �\�w

p .
(3.23)

Recursive application of this procedure for the rest of the sub-domains �w
l : l = p + 1, p +

2, . . . , d completes the sub-domain correction step and results in the optical density update
�n+1 for the next TMODDM sweep. We refer to the pseudo-code in algorithm 1 for a summary
of the coarse-level correction and sub-domain correction steps in TMODDM.

3.2. Two-level multiplicative overlapping space decomposition method for the inverse
problem

In this work, we apply a two-level multiplicative overlapping space decomposition method
(TMSDM) to solve the inverse problem in (2.9). We use the term ‘space decomposition’ to
distinguish the DD method developed for the optimization problem (2.9) from TMODDM
described in section 3.1. Although both methods involve domain decomposition; in the
forward problem, the DD method is applied on a partial differential equation, whereas in the
inverse problem, it is applied to an optimization problem.

In the forward problem, we obtain the value of the photon density at each node, whereas
in the inverse problem, we are interested in the constant value of the optical coefficients on
each element. Note that this is a direct consequence of the different discretization schemes
followed in the forward and inverse problems. Even though TMSDM can be applied for any
overlapping domain decomposition, in this work, we use the same domain decomposition in
both forward and inverse problems to avoid introducing new notation.

Algorithm 1 TMODDM

Ns : The number of sources.
Nd : The number of detectors.
MF : The maximum number of sub-domain correction sweeps.
for j = 1, . . . , Ns + Nd do

Initialize �0
j .

for n = 1, . . . ,MF do
Start coarse-level correction

r
j

h ← (
K + C + 1

2a
A
)
h
�n−1

j − f j , {Compute the residual}
r

j

H ← R
(
r

j

h

)
Restrict the residual

e
j

H ← (
K + C + 1

2a
A
)−1
H

r
j

H , {Compute the error on �H }
�

n−1+ 1
d+1

j ← �n−1
j + P

(
e
j

H

) {Update the photon density}
end coarse-level correction

for l = 1, . . . , d do

Update �
n−1+ l+1

d+1
j at �w

l by (3.22) and (3.23) {Sub-domain correction}
end for

end for
end for

Compute �i,j and ∂�i,j

∂µa
(m),

∂�i,j

∂µ′
s
(m),m = 1, . . . , Ne using (2.4) and (2.7).

{Post-processing}
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Table 3. The notation used in the algorithm TMSDM.

µ0 Initial guess for the optical coefficients µ = (µa, µ
′
s )

µn−1+ 1
d+1 The update of µn−1 by the coarse-level inverse solver

at the nth sweep of TMSDM

µn−1+ p+1
d+1 The update of µ(n−1)+ 1

d+1 after p successive sub-domain
corrections on ∪p

k=1�
w
k at the nth sweep of TMSDM

TMSDM consists of two steps: coarse-level initiation and sub-domain correction. The
coarse-level initiation step provides an initial guess for the fine level, by solving (2.9) on the
coarse level. The sub-domain correction involves the minimization of (2.9) on the fine level,
iteratively on each sub-domain using a multiplicative space decomposition method (MSDM).
In the following, we present the details of coarse-level initiation and sub-domain correction.

We list the notation and explanation for the variables used in the algorithm TMSDM in
table 3.

3.2.1. Coarse-level initiation: By solving a smaller sized minimization problem formulated
on the coarse grid �H , the coarse-level initiation provides a computationally viable
approximation for the optical coefficient estimates. This approximation is then used as
an initial guess at the first sweep of the sub-domain correction step. In theorem 1, we show
the local convergence of the sub-domain correction step under the condition that the initial
guess is sufficiently close to the solution. Therefore, the coarse-level initiation is motivated to
achieve the convergence of the sub-domain correction. The coarse-level initiation step can be
described as follows:

Let (µa, µ
′
s)

0 denote the initial guess for the optical coefficients on �h for the optical
coefficients (µa, µ

′
s). The coarse-level initiation starts with downsampling (µa, µ

′
s)

0 onto the
coarse grid �H :

(µa, µ
′
s)

0
H ← D((µa, µ

′
s)

0), (3.24)

where the downsampling operator D : R
Ne → R

Ne/4 is defined by

D(h)(mx,my) = 1
4 [h(2mx − 1, 2my − 1) + h(2mx − 1, 2my)

+ h(2mx, 2my − 1) + h(2mx, 2my)], (3.25)

for 1 � mx � Nx/2, 1 � my � Ny/2, h ∈ R
Ne , where Ne/4 = Nx/2 × Ny/2 is the number

of elements on the coarse level. Then, we formulate the inverse problem on the coarse grid
with the initial guess (µa, µ

′
s)

0
H and seek a solution to the following minimization problem:

(µa, µ
′
s)

1
d+1
H = argmin FH(η, ν),

(η,ν)∈V
µa
Ne/4×V

µ′
s

Ne/4

(3.26)

where V
y

Ne/4 = {η ∈ V y |η is constant at each Tm,m = 1, . . . , Ne/4} for y = µa,µs and FH :

V
µa

Ne/4 × V
µ′

s

Ne/4 → R is given by

FH(η, ν) = 1

2

Ns∑
j=1

Nd∑
i=1

(�i,j (η, ν) − Mi,j )
2 + α�H (η, ν),

and �H : V
µa

Ne/4 × V
µ′

s

Ne/4 → R
+⋃{0}. Then, the initial guess (µa, µ

′
s)

1
d+1 for the sub-domain

correction step is obtained by upsampling (µa, µ
′
s)

0
H to the fine grid �h:

(µa, µ
′
s)

1
d+1 ← U

(
(µa, µ

′
s)

1
d+1
H

)
, (3.27)
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where the upsampling operator U : R
Nx/2×Ny/2 → R

Nx×Ny in (3.27) is the bilinear prolongation
operator.

3.2.2. Sub-domain correction: Following the coarse grid initiation step, the sub-domain
correction is performed on the fine grid �h. In this step, the inverse problem (2.9) is solved by
successively minimizing the objective functional in (2.9) with respect to the unknown optical
coefficients on each sub-domain. Thus, the optimization problem (2.9) is decomposed into a
sequence of smaller minimization problems, using MSDM.

Before we give the details of the sub-domain correction step, we first introduce some

notation. Recall that (η, ν) ∈ V
µa

Ne
× V

µ′
s

Ne
. Then, for each l = 1, . . . , d, we can decompose

(η, ν) into orthogonal components as follows:

(η, ν)l =
{
(η, ν) in �w

l

(0, 0) in �\�w

l ,
(3.28)

and

(η, ν)l⊥ =
{
(0, 0) in �w

l

(η, ν) in �\�w

l ,
(3.29)

such that (η, ν) = (η, ν)l + (η, ν)l⊥ .
The first sub-domain correction sweep is initiated by the update (µa, µ

′
s)

1
d+1 provided by

the coarse-level initiation. Let (µa, µ
′
s)

n+ p

d+1 be the estimate for the optical coefficients in the
(n + 1)th sub-domain correction sweep, obtained by updating (µa, µ

′
s)

n+ 1
d+1 with the solution

estimates obtained on the sub-domains �w
1 ,�w

2 , . . . , �w
p−1. Then, the inverse problem on the

sub-domain �w
p reads

(µa, µ
′
s) = argmin F((η, ν)p + (η, ν)p⊥),

(η,ν)∈V
µa
Ne

×V
µ′

s
Ne

(3.30)

subject to

(η, ν)p⊥ = (µa, µ
′
s)

n+ p

d+1

p⊥ ,

where F(η, ν) is given by (2.10). Thus, the minimization is performed over only (η, ν) on
�w

p . Then, the solution of (3.30) is used to obtain the new optical coefficients update on � as
follows:

(µa, µ
′
s)

n+ p+1
d+1 =

{
(µa, µ

′
s)p in �w

p

(µa, µ
′
s)

n+ p

d+1

p⊥ in �\�w

p .
(3.31)

Successive application of this procedure for the rest of the sub-domains �w
l : l =

p + 1, p + 2, . . . , d completes the (n + 1)th sweep of the sub-domain correction step and
results in the optical coefficient update (µa, µ

′
s)

n+1 for the next sub-domain correction sweep.
We refer to the pseudo-code in algorithm 2 for a summary of the coarse-level initiation and
sub-domain correction steps in TMSDM.

3.3. Convergence of TMODDM and TMSDM

Assume that the mesh size of the finite element formulation is O(h) and that the sub-domains
are of diameter O(H) and the width of the overlapping region is O(δH), where 0 � δ < 1.
Then the following convergence behaviour is known for algorithm TMODDM (see section
2.5 in [33]).

(a) Convergence is poor if δ = 0, but improves rapidly as δ increases.
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(b) If δ is fixed, the number of sub-domain correction sweeps required for convergence is
bounded independent of h,H and H/h.

(c) The number of sub-domain correction sweeps required for convergence is roughly half of
that needed for the additive Schwarz method.

Algorithm 2 TMSDM

d: The number of sub-domains.
MU : The maximum number of sub-domain correction sweeps.
Initialize µ0 on �h.
Start coarse-level initiation
(µa,µ

′
s)

n
H ← D((µa, µ

′
s)

n)

Solve (µa, µ
′
s)

n/(d+1)

H = arg min
(η,ν)∈V

µa
Ne/4×V

µ′
s

Ne/4
FH(η, ν)

(µa, µ
′
s)

n+ 1
d+1 ← U

(
(µa, µ

′
s)

n+ 1
d+1

H

)
end coarse-level initiation
for n = 1, . . . , MU do

for l = 1, . . . , d do
(µa, µ

′
s) = arg min

(η,ν)∈V
µa,l

Ne
×V

µ′
s ,l

Ne

F (η, ν)

subject to (η, ν)l⊥ = (µa, µ
′
s)

n+ l
d+1

l⊥

Update the optical coefficients by (3.31)
end for

end for

Therefore, in terms of convergence, multiplicative Schwarz algorithms are more advantageous
as compared to additive Schwarz algorithms. This follows from the fact that the multiplicative
Schwarz algorithms take advantage of immediate use of the solution update in the successive
neighbouring sub-problem. On the other hand, in additive Schwarz algorithms, one computes
the solutions to the localized sub-problems independent of each other and uses the solution
updates in the following sub-domain correction sweep. We refer to [31] and [33] for a detailed
discussion of the Schwarz algorithms.

The local linear convergence of the algorithm MSDM is shown below, using the results
in [5].

Theorem 1. Let � be the regularization operator given in (2.11), and �′ and �′′ denote the
first- and second-order Fréchet derivatives of �. Assume that there is a positive constant C�

such that yt�′′y � C�yty for all y ∈ V
µa

Ne
× V

µ′
s

Ne
.

Let (µa, µ
′
s)

n be the nth step MSDM approximation of (µa, µ
′
s). Assume that

‖(µa, µ
′
s) − (µa, µ

′
s)

q‖
V

µa
Ne

×V
µ′

s
Ne

� αC�

CHCJ

, (q = 0, . . . , n). (3.32)

Then,

‖(µa, µ
′
s)

n − (µa, µ
′
s)‖V

µa
Ne

×V
µ′

s
Ne

�
(

8

9

)n
α2C�

C2
HCJ

[C�CJ + C̃�CH ], (3.33)

where C̃� = ‖�′‖
V

µa
Ne

×V
µ′

s
Ne

→R
and CJ ,CH are positive constants such that

‖J (µa, µ
′
s)‖V

µa
Ne

×V
µ′

s
Ne

→R
Ns×Nd

� CJ , (3.34a)
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‖H(µa, µ
′
s)‖V

µa
Ne

×V
µ′

s
Ne

→R
Ns×Nd

� CH . (3.34b)

Proof. See the appendix for the proof of theorem 1.
Note that CJ and CH depend on the frequency ω. For the multi-frequency measurement

case with Nω frequencies ω1, . . . , ωNω
, let

CJ = max
i=1,·,Nω

C
ωi

J , CH = max
i=1,·,Nω

C
ωi

H , (3.35)

where C
ωi

J and C
ωi

H are the frequency-dependent norm bounds. Then, theorem 1 can be
extended to the multi-frequency measurement case in a straightforward manner, by replacing
the norm bounds in (3.34a) and (3.34b) by the bounds given in (3.35).

For the general Tikhonov regularizer, � is chosen as

�(η, ν) = ‖L1(η − η∗)‖2
V

µa
Ne

+ ‖L2(ν − ν∗)‖2

V
µ′

s
Ne

.

Therefore, if L1 and L2 are positive definite, the assumption of yt�′′y � C�yty in theorem 1
holds since

(η, ν)t�′′(η, ν) = ηtL1η + νtL2ν.

Clearly, this assumption holds for the zeroth-order Tikhonov regularization. For the
appropriate choice of the discrete approximation of the differential operator, the first-order
Tikhonov regularizer also satisfies the assumption in theorem 1.

Note that in [21], we have shown that the first- and second-order Fréchet derivatives of the
coefficient-to-measurement operator with respect to (µa, µ

′
s) exist and are bounded. Similarly,

J and H, being finite approximations to the first- and second-order Fréchet derivatives, satisfy
(3.34a) and (3.34b). �

3.4. Computational cost of the algorithms

In this subsection, the computational cost of the proposed algorithms is analysed. We will call
the method solving (2.5) and (2.15) without any domain decomposition the non-DD method
and compare it with the proposed methods.

The system matrices for equations (2.5) and (2.15) are 2Nn × 2Nn and 2Ne × 2Ne,
respectively. Assume that we require O

(
N

q
n

)
and O

(
N

q
e

)
(1 � q � 3) floating point operations

for each equation with the non-DD method. Note that for a full nonzero matrix, q = 3 and for
a diagonal matrix, q = 1. Suppose that we use d sub-domains with equal nodes and elements
for the proposed algorithms.

The coarse-level computation needs 4−q times (in two dimensions) or 8−q times (in three
dimensions) the computations required on the fine level computation for the forward and
inverse solvers. Thus, if we neglect the coarse-level computation, the computational cost of
algorithm MODDM is MF d1−q (for one computer) and MF d−q (for d parallel computers)
times that of the non-DD method, where MF is the maximum number of sub-domain
correction sweeps. Recall that MF is the maximum sweep of all sub-domain corrections
followed by the coarse grid correction. It is well known that for a given MF , the convergence
behaviour of TMODDM is independent of Nn, d and Nn/d (see (a)–(c) below subsection 3.3).
Furthermore TMODDM has good convergence behaviour and it has better convergence
behaviour for smaller MF as compared to MODDM. In this work, we have chosen MF = 3
when TMODDM is used in the inverse solver in section 4.2. This analysis shows that
by using multiple sub-domains, algorithm TMODDM can achieve significant reduction in
computational requirements.
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Table 4. The comparison of the computational costs for the non-DD method, TMSDM on one,
d, and d2 computers. q is a constant between 1 and 3 depending on the sparsity of the system
matrix. In the table, Nn is the number of nodes, Ne is the number of elements, d is the number of
sub-domains, MF is the number of sweeps for the forward solver and MU is the number of sweeps
for the inverse solver.

Computational cost

Method Forward solver Inverse solver

Non-DDM O(N
q
n ) O(N

q
e )

TMSDM on 1 computer MF d1−qO(N
q
n ) MU d1−qO(N

q
e )

TMSDM on d computers MF d1−qO(N
q
n ) MU d−qO(N

q
e )

TMSDM on d2 computers MF d−qO(N
q
n ) MU d−qO(N

q
e )

The computational cost of algorithm TMSDM with algorithm TMODDM as the forward
solver, and the computational cost of the non-DD method are tabulated in table 4, using 1,

d and d2 computers. When d parallel computers are used, the parallel computing is applied
to the inverse problem only, whereas when d2 computers are used, the parallel computing
is applied to both the inverse and forward problems. Note that this comparison for the
inverse solver is based on the assumption that the speed of data communication between
parallel computers is sufficiently fast. Parallel computation is not treated in this paper, but
the proposed algorithms combined with the parallel computing are expected to provide more
efficient results.

4. Numerical simulations

In this section, we demonstrate the performance of the algorithms TMODDM and TMSDM
using simulated optical data. In section 4.1, we conduct a series of experiments to test and
compare the performance of TMODDM to that of the one-level DD method. In section 4.2,
we test TMSDM in a number of experiments, where we consider µa-only, µ′

s-only and
simultaneous µa and µ′

s reconstructions. For the summary of method descriptions, we refer
to table 1.

In our experiments, we set the angular frequency ω = 2π × 100 MHz, and a = 1, except
for the simultaneous absorption and reduced scattering imaging case, where we use two
frequencies: ω1 = 300 MHz and ω2 = 500 MHz. Note that for the µa-only simulation, zero-
mean Gaussian noise with standard deviation equal to 1% of the average of the measurements
was added to the measurements. Similarly, for the µs-only case, we added zero-mean Gaussian
noise with standard deviation equal to 0.5% of the average of the measurements. For the
simultaneous µa and µ′

s imaging, we considered additive zero-mean Gaussian noise with
standard deviation equal to 5% of the average of the measurements. For the inverse problem
formulation, we chose the following zeroth-order Tikhonov regularizer with the regularization
parameter α = 10−2:

�(η, ν) = ‖η‖2
V

µa
Ne

+ ‖ν‖2

V
µ′

s
Ne

, (4.36)

for η ∈ V
µa

Ne
and ν ∈ V

µ′
s

Ne
.

4.1. Algorithm TMODDM

In this experiment, we evaluate the performance of TMODDM, for an optical medium
whose absorption and scattering coefficient distributions are shown in figures 2(a) and (b),
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Figure 2. (a) The original µa image. The white region represents background tissue with µa value
of 0.05 cm−1, and the black region represents an anomaly with µa value of 0.2 cm−1. (b) The
original µ′

s image. The white region represents background tissue with µ′
s value of 8 cm−1, and

the black region represents an anomaly with µ′
s value of 16 cm−1. (c) 2×2 domain decomposition

of � = [0, 6] × [0, 6]. (d) The LINPACK solution of the frequency-domain diffusion equation for
a point source located at (6, 3). (e) Relative L2 error versus number of floating point operations
for one- and two-level MODDM. (f) Relative L2 error versus number of floating point operations
for TMODDM with domain decompositions with the overlap region width w = 1, 2 and 3 pixels.
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respectively. The black region in figure 2(a) shows an anomaly with absorption coefficient
µa = 0.2 cm−1, where the background has an absorption coefficient µa = 0.05 cm−1.
Figure 2(b) shows the reduced scattering coefficient of the same medium, where the black
region and the background have reduced scattering coefficients µ′

s = 16 and µ′
s = 8 cm−1,

respectively. We divide the square domain � = [0, 6] × [0, 6] cm2 into 32 × 32 uniform
pixels. Next, we decompose the domain into four overlapping sub-domains with 2/3 cm of
overlap region, as shown in figure 2(c).

We consider the solution of the diffusion equation (2.1) for a point source located at (6, 3)

and compare the performance of TMODDM and the one-level DD method (MODDM) using
the following relative L2(�) error:

‖�A − �L‖L2(�)

‖�L‖L2(�)

, (4.37)

where �L is the LINPACK solution of (2.5), and �A is either the TMODDM or MODDM
solution. Figure 2(d) shows the LINPACK solution for the point source located at (6, 3).
Figure 2(e) shows the relative L2(�) error versus the number of floating point operations for
TMODDM and MODDM. We observe that TMODDM converges faster than the one-level
MODDM, with a smaller number of floating point operations.

Next, to show the effect of overlap width on the performance of TMODDM, we consider
three cases where the overlap region consists of 1, 2 and 3 pixels, respectively. Figure 2(f)
shows the relative L2(�) error versus the number of floating point operations for each overlap
width. We see that the convergence improves as the width gets larger. This verifies the
convergence result stated in (a) below subsection 3.3.

4.2. Algorithm TMSDM

In this section, we evaluate the performance of TMSDM in two sets of experiments using
simulated data. In the first experiment, we consider µa-only and µ′

s-only reconstructions and
compare TMSDM to the non-DD method. In the second experiment, we consider simultaneous
reconstruction of µa and µ′

s using TMSDM and compare the performance to that of the non-DD
method. For the description of the non-DD method, we refer to table 1.

For the forward solver, we use TMODDM with the maximum number of sub-domain
correction sweeps MF set to 3. In order to evaluate the performance of the inverse solvers
and compare TMSDM to the non-DD method, we define the following signal-to-noise-ratio
(SNR):

SNR = 20 log10
‖y‖L2(�)

‖yA − y‖L2(�)

, (4.38)

where yA is the actual optical coefficient (either µa or µ′
s) and y denotes the reconstructed

optical coefficients, obtained by using either TMSDM or the non-DD method.

4.2.1. Experiment 1. In this experiment, we consider two cases. In the first one, we
assume that the reduced scattering coefficient of the medium is known and set it to 8 cm−1,
and we reconstruct the absorption coefficient of the medium. Figure 3(a) shows the circular
heterogeneity with µa = 0.20 cm−1 embedded in a background with µa = 0.05 cm−1.

In the second case, we assume that the absorption coefficient of the medium is known and
is set to µa = 0.05 cm−1 and we reconstruct the reduced scattering image. Figure 4(a) shows
the circular heterogeneity with µ′

s = 16 cm−1 embedded in a background with µ′
s = 8 cm−1.
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Figure 3. The set-up and the results regarding the µa-only reconstruction. (a) The original µa

image and the source–detector configuration. The white region represents background tissue with
µa value of 0.05 cm−1, and the black region represents an anomaly with µa value of 0.2 cm−1.
(b) The 2 × 2 domain decomposition and uniform 32 × 32 discretization of �. (c) The value
of the objective functional versus the number of floating point operations of the non-DD method
and TMSDM. (d) The SNR versus the number of floating point operations of the non-DD method
and TMSDM. (e) The absorption image reconstruction by the non-DD method after 12.893 × 109

floating point operations, with SNR = 8.174. (f) The reconstruction by TMSDM after 8.561 × 109

floating point operations with SNR = 9.955.
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Figure 4. The set-up and the results regarding the µa-only reconstruction. (a) The original µ′
s

image and the source–detector configuration. The white region represents background tissue with
µ′

s value of 8 cm−1, and the black region represents an anomaly with µ′
s value of 16 cm−1. (b) The

2×2 domain decomposition and uniform 32×32 discretization of �. (c) The value of the objective
functional versus the number of floating point operations of the non-DD method and TMSDM.
(d) The SNR versus the number of floating point operations of the non-DD method and TMSDM.
(e) The reduced scattering image reconstruction by the non-DD method after 13.165×109 floating
point operations, with SNR = 15.5. (f) The reconstruction by TMSDM after 8.373 × 109 floating
point operations with SNR = 15.6.
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Figure 5. The set-up and the results regarding the simultaneous µa and µ′
s reconstruction. (a) The

original µ′
a image and the source–detector configuration. The white region represents background

tissue with µa value of 0.05 cm−1, and the black region represents an anomaly with µa value of
0.2 cm−1. (b) The original µ′

s image. The white region represents background tissue with µ′
s value

of 8 cm−1, and the black region represents an anomaly with µ′
s value of 16 cm−1. (c) The 2 × 2

domain decomposition and uniform 32 × 32 discretization of �. (d) The value of the objective
functional versus the number of floating point operations of non-DD method and TMSDM. (e) The
SNR for the absorption coefficient reconstruction versus the number of floating point operations of
non-DD method and TMSDM. (f) The SNR for the reduced scattering coefficient reconstruction
versus the number of floating point operations of non-DD method and TMSDM.
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Figure 6. The simultaneous reconstruction results of the absorption and reduced scattering
coefficients shown in figures 5(a) and (b). (a), (b) The simultaneous reconstruction of the
absorption and reduced scattering coefficients by using the non-DD method after 6.780 × 1010

floating point operations with SNR(µa) = 9.346 and SNR(µ′
s ) = 13.935. (c), (d) The

simultaneous reconstruction of the absorption and reduced scattering coefficients by using
TMSDM after 2.459 × 1010 floating point operations, with SNR(µa) = 8.920 and SNR(µ′

s ) =
14.899.

Figures 3(c)–(d) and figures 4(c)–(d) show the value of the objective functional and the
SNR versus the number of floating point operations. Figures 3(e), 4(e) and figures 3(f), 4(f)
show the reconstructed images using non-DD and TMSDM methods, respectively.

Figures 3(c) and 4(c) show that at a given number of floating point operations, TMSDM
achieves a lower objective functional value as compared to the non-DD method. Similarly,
figures 3(d) and 4(d) show that at a given number of floating point operations, TMSDM
achieves a higher SNR value.

For the µ′
a-only imaging, the reconstructed images shown in figures 3(e)–(f) indicate that

TMSDM provides qualitatively and quantitatively better results as compared to the non-DD
method. Note that the reconstructed µa image using TMSDM was obtained after 8.561 × 109
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floating point operations, while the image using the non-DD method was obtained after
12.893 × 109 floating point operations. Similarly figures 4(e)–(f) show the reconstructed
µ′

s images obtained after 13.165 × 109 and 8.373 × 109 floating point operations, by using
the non-DD method and TMSDM, respectively. Similar to the µa-only imaging case, these
images indicate that TMSDM outperforms the non-DD method.

4.2.2. Experiment 2. In this experiment, we test the performance of TMSDM in the
simultaneous reconstruction of absorption and reduced scattering images and show the
convergence of the algorithm experimentally.

Figure 5(a) shows an inclusion with µa = 0.20 cm−1 in a background with µa =
0.05 cm−1. Figure 5(b) shows the reduced scattering coefficient of the same medium, where
the circular inclusion corresponding to an object with µ′

s = 16 cm−1 is embedded in a
background with µ′

s = 8 cm−1. Figure 5(c) shows the domain decomposition with uniform
discretization for the forward and inverse problems.

Figure 5(d) shows the value of the objective functional versus the number of floating point
operations for both TMSDM and the non-DD method. We see that TMSDM achieves a lower
objective functional value at a lower number of floating point operations.

Figures 5(e) and (f) show the SNR value achieved by TMSDM and the non-DD method
versus the number of floating point operations, respectively for absorption and reduced
scattering images. These images indicate that TMSDM outperforms the non-DD method,
especially for the reduced scattering image. The reconstructed images shown in figure 6
are consistent with the performance numbers given in figures 5(d)–(f). We note that the
images reconstructed by using TMSDM are obtained in 2.459×1010 floating point operations,
while the images obtained by using the non-DD method require 6.780 × 1010 floating point
operations.

5. Conclusion

In this work, we developed two-level overlapping domain decomposition algorithms to address
the computational complexity of the forward and inverse problems associated with DOT
imaging. We used the frequency-domain diffusion equation to model NIR light propagation.
In order to address the ill-posed nature of the inverse problem, we used a nonlinear least-squares
formulation with a general Tikhonov regularization term to recover both the absorption and
scattering coefficients.

In the forward problem, we employed an overlapping domain decomposition algorithm
with a two-grid preconditioner (TMODDM), and for the nonlinear inverse problem, we used
an overlapping space decomposition algorithm with a coarse-level initiation (TMSDM). We
proved the local convergence of the TMSDM method under the conditions that lead to the
strict local convexity of the objective functional formulated for the inverse problem. For
notational brevity, we described both DD algorithms for a 2D bounded optical domain and
uniform discretization. Nevertheless, the extension of the algorithm for the 3D case and
adaptive discretization is straightforward. This requires replacing the 2D finite elements
with 3D finite elements and definition of 3D restriction (downsampling) and prolongation
(upsampling) operators for the two-level algorithms.

Note that in our inverse problem solver, measurements from all source–detector pairs are
used for each sub-domain. This accounts for the contribution of all sources to the boundary
data. Therefore, this scheme does not impose any constraints on how the image domain is
decomposed into sub-domains.
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We analysed the computational complexity of both algorithms and demonstrated their
performance in three different numerical simulations, where we considered simultaneous
absorption and reduced scattering coefficient reconstruction as well as absorption only and
reduced scattering only reconstructions. Our study shows that TMODDM provides lower
relative error than the one-level MODDM for the same floating point operations and the
relative error becomes much lower as the width of the overlapping region grows. Similarly,
TMSDM provides lower objective functional values and higher SNR than the non-DD
method for the same number of floating point operations, in all experiments including the
simultaneous absorption and reduced scattering reconstruction. If parallel computers are
used, the computational efficiency of TMSDM is expected to be further enhanced.

Finally, the local convergence properties of the algorithms do not change when they are
implemented only for a region of interest (ROI). Therefore, if an ROI is identified either by
a priori information provided by a secondary imaging modality such as magnetic resonance
or x-ray; or by a posteriori information obtained from the coarse-level solution, the optical
coefficients can be updated only in the sub-domains covering the ROI, providing further
reduction in computational requirements.
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Appendix A. The proof of theorem 1

Lemma 1. Let µ = (µa, µs) and µ̃ = µ + δµ, δµ = (δµa, δµ
′
s). If ||δµ||

V
µa
Ne

×V
µ′

s
Ne

� ε+αC�

CH CJ

for some ε > 0, then F ′′ satisfies

ε‖δµ‖
V

µa
Ne

×V
µ′

s
Ne

� (δµ)tF ′′(µ)(δµ). (A.1)

Proof. Let G and G̃ be Green’s function for the optical coefficients µ and µ̃, respectively.
Then, we get

|b|l2 =
∣∣∣∣log

(
1

2a
G̃(i : j)

)
− log

(
1

2a
G(i : j)

)∣∣∣∣
l2

=
∣∣∣∣log

( |G̃(i : j)|
|G(i : j)|

)∣∣∣∣
l2

= log

(
1 +

|(RG̃)(i : j)|
|G(i : j)|

)
� |(RG̃)(i : j)|

|G(i : j)| � CJ ‖δµ‖
V

µa
Ne

×V
µ′

s
Ne

,

where R = R1 + R2 and

R1ψ(r) =
∫

�

G(r, r ′)ψ(r ′) dr ′.

R2ψ(r) =
∫

�

∇G(r, r ′) · ∇ψ(r ′) dr ′.

For the norm boundedness of R, see [21].
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Therefore, using (2.13), (3.34), and (A.2), we get

δµtF ′′δµ = (J δµ)t (J δµ) + δµtHbδµ + αδµt�′′δµ (A.2)

� (J δµ)t (J δµ) + αδµt�′′δµ − CHδµtδµ|b| (A.3)

� (αC� − CHCJ |δµ|)δµtδµ. (A.4)

Thus, we have proved the lemma. �

The inequality (A.1) is called the local strong convexity. With this property and the
theorem in [5], we will prove theorem 1.

Proof of theorem 1. The proof of theorem 1 is based on the proof in theorem 3.1 [5].
Let µ = (µa, µ

′
s) and δµ = (δµa, δµ

′
s). Let the restrictions of V

y

Ne
, y = µa,µ

′
s to the non-

overlapping and overlapping sub-domain �p be W
p,y

Ne
and V

p,y

Ne
for p = 1, . . . , d, respectively,

such that

W
y,p

Ne
= {

x ∈ V
y

Ne
|x = 0 on �\�p

}
, (A.5)

V
y,p

Ne
= {

x ∈ V
y

Ne
|x = 0 on �\�w

p

}
, (A.6)

where y = µa,µ
′
s . Then, W

y,p

Ne
, p = 1, . . . , d are mutually disjoint, W

y,p

Ne
⊂ V

y,p

Ne
, and

V
y

Ne
= V

y,1
Ne

+ · · · + V
y,d

Ne
= W

y,1
Ne

+ · · · + W
y,d

Ne
.

Since we did not consider the coarse-level correction step in this theorem, we will use p and
d instead of p + 1 and d + 1 in (3.31). Let µn be the solution of MSDM after n sweeps of
sub-domain correction and µn+ p

d be the solution obtained by updating µn with the solution
estimates obtained on the sub-domain �w

1 , . . . , �w
p (p � d). Define

zn
p =

{
µ − µn+ p

d in �p

(0, 0) in �\�p

and en+ p

d = µn+ p

d − µn+ p−1
d ∈ V

µa,p

Ne
× V

µ′
s ,p

Ne
. Then, zn

p ∈ W
µa,p

Ne
× W

µ′
s ,p

Ne
and we obtain

µ − µn =
d∑

p=1

zn
p, ‖µ − µn‖

V
µa
Ne

×V
µ′

s
Ne

=
 d∑

p=1

‖zn
p‖2

V
µa
Ne

×V
µ′

s
Ne

1/2

(A.7)

and

en+ p

d = argmin F
(
µn+ p−1

d + vp

)
,

vp∈V
µa,p

Ne
×V

µ′
s ,p

Ne

(A.8)

Equation (A.8) implies that〈
F ′(µn+ p−1

d + en+ p

d

)
, vp − en+ p

d

〉
� 0 for all vp ∈ V

µa,p

Ne
× V

µ′
s ,p

Ne
(A.9)

where 〈 ·, ·〉 is the l2 inner product in the space V
µa,p

Ne
× V

µ′
s ,p

Ne
. Using (A.1) and the Taylor

expansion for F, we get

F(w) − F(v) � 〈F ′(v), w − v〉 +
ε

2
‖w − v‖2

V
µa
Ne

×V
µ′

s
Ne

, (A.10)

for all v,w ∈ V
µa

Ne
× V

µ′
s

Ne
such that ‖v − w‖

V
µa
Ne

×V
µ′

s
Ne

� ε+αC�

C2
F

. Inserting w = µn+ p−1
d and

v = µn+ p

d in (A.10) and using (A.9) with vp = 0, we get

F
(
µn+ p−1

d

)− F
(
µn+ p

d

)
� ε

2

∥∥en+ p

d

∥∥2

V
µa,p

Ne
×V

µ′
s ,p

Ne

� 0
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and

F(µn) − F(µn+1) �
d∑

p=1

(
F
(
µn+ p−1

d

)− F
(
µn+ p

d

))
� ε

2

d∑
p=1

∥∥en+ p

d

∥∥2

V
µa,p

Ne
×V

µ′
s ,p

Ne

� 0. (A.11)

Since µ = argmin
v∈V

µa
Ne

×V
µ′

s
Ne

F (v), we get

〈F ′(µ), v − µ〉 � 0 for all v ∈ V
µa

Ne
× V

µ′
s

Ne
, (A.12)

as in (A.8). Inserting w = µn and v = µ into (A.10) and using (A.12), we get

F(µn) − F(µ) = 〈F ′(µ), µn − µ〉 +
ε

2
‖µn − µ‖2

V
µa
Ne

×V
µ′

s
Ne

� ε

2
‖µn − µ‖2

V
µa
Ne

×V
µ′

s
Ne

� 0. (A.13)

Finally, we obtain

0 � F(µn+1) − F(µ) �
〈
F ′(µn+1), µn+1 − µ

〉
(using (A.10))

=
〈
F ′(µn+1),

d∑
p=1

en+ p

d + µn − µ

〉
=

d∑
p=1

〈
F ′(µn+1, en+ p

d

)− zn
p

〉
�

d∑
p=1

〈
F ′(µn+1) − F ′(µn+ p

d

)
, en+ p

d − zn
p

〉
(using (A.9))

=
d∑

p=1

d∑
l=p+1

〈
F ′(µn+ l

d

)− F ′(µn+ l−1
d

)
, en+ p

d − zn
p

〉
=

d∑
p=1

d∑
l=p+1

〈
F ′′(yn

l )en+ l
d , en+ p

d − zn
p

〉
for some yn

l which lies between µn+ l
d and µn+ l−1

d

� ε

(
d∑

l=1

∥∥en+ l
d

∥∥2

V
µa
Ne

×V
µ′

s
Ne

)1/2
 d∑

p=1

∥∥en+ p

d − zn
p

∥∥2

V
µa
Ne

×V
µ′

s
Ne

1/2

(using (A.1))

� ε

 d∑
l=1

∥∥en+ l
d

∥∥2

V
µa
Ne

×V
µ′

s
Ne

+

 d∑
p=1

∥∥en+ p

d

∥∥2

V
µa
Ne

×V
µ′

s
Ne

1/2  d∑
p=1

‖zn
p‖2

V
µa
Ne

×V
µ′

s
Ne

1/2


� 2(F (µn) − F(µn+1)) + 2
√

F(µn) − F(µn+1)
√

F(µn) − F(µ)

(using (A.7), (A.11) and (A.13)).

Let dn = F(µn)−F(µ), then the above equation and the Cauchy–Schwarz inequality implies

dn+1 � 2(dn − dn+1) + 2
√

dn − dn+1

√
dn

�
(

2 +
1

2η

)
(dn − dn+1) + 2ηdn,
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for all η > 0. Thus, we obtain

dn+1

dn

� 4η2 + 4η + 1

6η + 1
. (A.14)

The left-hand side of (A.14) takes a minimum value 8
9 < 1 when η = 1

6 . Thus we have the
following successive inequalities:

dn � 8

9
dn−1 �

(
8

9

)2

dn−2 � · · · �
(

8

9

)n

d0. (A.15)

Using the mean-value theorem, (2.13a), (3.32), (3.34a) and (A.2), we can estimate d0 as
follows:

d0 = F(µ0) − F(µ) � sup
0<θ<1

|F ′(θµ0 + (1 − θ)µ)||µ − µ0|

� C2
J |µ − µ0|2 + αC̃�|µ − µ0| � α2C2

�

C2
H

+
α2C�C̃�

CHCJ

. (A.16)

Using (A.15) and (A.16), we obtain (3.33). �
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