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Abstract—Compartmental modeling of indocyanine green
(ICG) pharmacokinetics, as measured by near infrared (NIR)
techniques, has the potential to provide diagnostic information
for tumor differentiation. In this paper, we present three different
compartmental models to model the pharmacokinetics of ICG
in cancerous tumors. We introduce a systematic and robust ap-
proach to model and analyze ICG pharmacokinetics based on the
extended Kalman filtering (EKF) framework. The proposed EKF
framework effectively models multiple-compartment and mul-
tiple-measurement systems in the presence of measurement noise
and uncertainties in model dynamics. It provides simultaneous
estimation of pharmacokinetic parameters and ICG concentra-
tions in each compartment. Moreover, the recursive nature of the
Kalman filter estimator potentially allows real-time monitoring of
time varying pharmacokinetic rates and concentration changes
in different compartments. Additionally, we introduce an infor-
mation theoretic criteria for the best compartmental model order
selection, and residual analysis for the statistical validation of the
estimates. We tested our approach using the ICG concentration
data acquired from four Fischer rats carrying adenocarcinoma
tumor cells. Our study indicates that, in addition to the pharma-
cokinetic rates, the EKF model may provide parameters that may
be useful for tumor differentiation.

Index Terms—Compartmental analysis, extended Kalman filter,
indocyanine green, pharmacokinetics, tumor characterization.

I. INTRODUCTION

NEAR INFRARED (NIR) diffuse optical imaging and spec-
troscopy methods provide quantitative functional informa-

tion that cannot be obtained by the conventional radiological
methods [1]–[3]. NIR techniques can provide in vivo measure-
ments of the oxygenation and vascularization states, uptake and
release of optical contrast agents, and chromophore concentra-
tions with high sensitivity. In particular, NIR diffuse optical
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techniques in conjunction with optical contrast agents have the
potential to characterize angiogenesis, and to differentiate be-
tween malignant and benign tumors [4]–[7].

At present, indocyanine green (ICG) is the only NIR optical
agent approved for human use. In NIR measurements, the pres-
ence of ICG within an imaging volume results in an increased
signal that can be observed over the course of the experiment.
Study of the time kinetics of ICG concentration curves may pro-
vide physiologically relevant information for tumor differenti-
ation. Specifically, cancerous tissue types are expected to show
high and fast uptake due to the proliferation of “leaky” angio-
genetic microvessels, while normal and fatty tissue show little
uptake.

A number of research groups reported compartmental mod-
eling of ICG time-kinetic measurements using NIR methods for
tumor diagnosis in animal and human subjects [8]–[10]. A com-
partmental model is a mathematical description of the concen-
trations of contrast agents in which each compartment repre-
sents a kinetically distinct tissue type. It consists of a set of cou-
pled ordinary differential equations (ODE) and a measurement
model. Coefficients of the ODE’s are the physiological param-
eters of interest that represent rates of exchange between dif-
ferent compartments. These parameters are nonlinearly related
to the total concentration of ICG measured by NIR methods.
Furthermore, concentration of ICG in each compartment cannot
be directly measured noninvasively by NIR techniques, making
the pharmacokinetic parameter estimation a highly nonlinear
problem.

Current methods of ICG compartmental modeling involve
curve fitting methods and various techniques for solving dif-
ferential equations. Gurfinkel et al. presented a two-compart-
ment model for ICG kinetics and estimated model parameters
[8]. The measurements were obtained using a frequency domain
photon migration system coupled with a charge-coupled device.
The pharmacokinetic parameters were estimated for each pixel
based on a curve fitting method. This study indicated that model
parameters show no difference in the ICG uptake rates between
normal and diseased tissue. Cuccia et al. presented a study of
the dynamics of ICG in an adenocarcinoma rat tumor model
[9]. A two-compartment model describing the ICG dynamics
was used to quantify physiologic parameters related to capil-
lary permeability. The ICG concentration curves were fitted to
the compartmental model using a nonlinear least squares Lev-
enberg-Marquart algorithm. It was shown that different tumor
types have different capillary permeability rates. Intes et al. pre-
sented the uptake of ICG by breast tumors using a continuous
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wave diffuse optical tomography apparatus [10]. A two-com-
partment model was used to analyze the pharmacokinetics of
ICG. A curve fitting algorithm, namely the nonlinear Nelder-
Mead simplex search, was used to estimate the pharmacoki-
netic parameters. This study showed that the malignant cases
exhibit slower rate constants (uptake and outflow) as compared
to healthy tissue.

While the studies described above demonstrate the feasibility
of the ICG pharmacokinetics in tumor characterization; due to
the highly nonlinear nature of the pharmacokinetic parameter
estimation, variation in parameter values from one subject to
another, and sparse data available in clinical and laboratory set-
tings, a systematic and robust approach is needed to model, es-
timate and analyze ICG pharmacokinetics. Such an approach
must include: 1) a method for compartmental model order se-
lection; 2) a robust method of estimating ICG pharmacokinetic
parameters; 3) a method of validating the selected model and
the estimation results.

In this paper, we present three different compartmental
models for the ICG pharmacokinetics in cancerous tumors
and propose an extended Kalman filtering (EKF) framework
to estimate the model parameters. The models capture the
transportation of ICG between the vascular and extravascular
compartments, including interstitial fluid region, parenchymal
cell, intracellular binding site, and extravascular, extracellular
spaces (EES). The extended Kalman filter (EKF) is a recursive
modeling and estimation method with numerous advantages
in ICG pharmacokinetic modeling. These include: 1) effective
modeling of multiple compartments, and multiple measurement
systems governed by coupled ordinary differential equations,
in the presence of measurement noise and uncertainties in the
compartmental model dynamics; 2) simultaneous estimation of
pharmacokinetic model parameters and ICG concentrations in
each compartment, which are not accessible in vivo by means
of NIR techniques; 3) recursive estimation of time-varying
pharmacokinetic model parameters; 4) statistical validation of
estimated concentrations and error bounds on the pharmacoki-
netic parameter estimates; 5) incorporation of available a priori
information about the initial conditions of the permeability rates
into the estimation procedure; 6) potential real-time monitoring
of ICG pharmacokinetic parameters and ICG concentrations
in different compartments due to the recursive nature of the
EKF estimation method. Additionally, we present a method
for selecting the optimal compartmental model order based on
a Bayesian information criterion, and a statistical validation
method based on residual analysis.

We test our approach using the ICG concentration data ac-
quired from four Fisher rats carrying adenocarcinoma tumor
cells. Two-, three- and four-compartment models are fitted to
data and pharmacokinetic model parameters and concentrations
in different compartments are estimated using the EKF frame-
work. The Bayesian information criterion suggests that the two-
compartment model provides a sufficient fit for our data. The es-
timated model order and the model parameters are further val-
idated by residual analysis. The model parameters are used to
differentiate between two types of cancerous tumors. Our study
suggests that the permeability rates out of the vasculature are
higher in edematous tumors as compared to necrotic tumors.

Additionally, we observe that in the two-compartment model,
the ICG concentration curve is higher in the EES compartment
in edematous tumors. This suggests that the ratio of the peak
value of the ICG concentrations in different compartments may
be a useful parameter to differentiate tumors.

The paper is organized as follows: In Section II, we present
the two-, three- and four-compartment models for ICG pharma-
cokinetics in tissue. In Section III, we present the state-space
representation of the compartmental models; estimation of ICG
pharmacokinetic parameters and ICG concentrations in the EKF
framework; and an optimal model order selection criterion. In
Section IV, we present the experimental results obtained from
Fischer rat data. Section V summarizes our results and conclu-
sion. Appendix I includes the derivation of the likelihood func-
tion used in the Bayesian information criterion.

II. ICG PHARMACOKINETIC MODELING USING NIR
MEASUREMENTS

A. Indocyanine Green

ICG is an optical dye commonly used in retinopathy and he-
patic diagnostics. Given its low toxicity and FDA approval, it
has recently been utilized as a blood pooling agent for the detec-
tion and diagnosis of cancerous tumors by means of NIR optical
methods. The absorption peak of ICG is 805 nm and the fluo-
rescence peak is at 830 nm. ICG has strong affinity for blood
proteins. In plasma, ICG is near-completely bound, primarily to
albumin. As a result, its in vivo kinetics are similar to those of
a 70-kD molecule, although it has a molecular weight of about
700 D [11]–[15].

ICG is eliminated from the body primarily through the bile.
Outside of the circulatory system, it is not available for removal
until it returns to the system. The kinetics of this transition offers
a potential means of noninvasively assessing the leakiness of
large molecules from the microvasculature; this permeability is
a characteristic of the poorly developed vasculature observed
in angiogenesis. The increase in local microvasculature density
is also expected to induce increased perturbation in the optical
signal from intercapillary ICG.

There are some differences in the delivery of ICG between
normal and cancerous vasculature. In normal tissue, ICG acts
as a blood flow indicator in tight capillaries of normal vessels.
However in tumors, ICG may act as a diffusible (extravascular)
flow in the leaky capillary of cancer vessels. To investigate the
validity of this hypothesis, one has to employ at least a two-com-
partment model composed of plasma and EES. Additionally, the
permeability rate is expected to increase as the malignancy ad-
vances [9], [10]. Fig. 1(a) and (b) illustrates the ICG flow for
healthy and malignant tissue, respectively.

B. Compartmental Analysis of ICG Pharmacokinetics

Compartmental modeling allows relatively simple and
effective mathematical representation of complex biological
responses due to contrast agents. A region of interest is assumed
to consist of a number of compartments, generally representing
a volume or a group of similar tissues into which the contrast
agent is distributed. The concentration change in a specific
compartment is modeled as a result of the exchange of contrast
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Fig. 1. An illustration of the ICG flow (a) in tight capillary of normal vessel
and (b) in permeable capillary of tumor tissue.

Fig. 2. A simple illustration of the capillary extracapillary structure.

agent between connected compartments. These changes are
modeled by a collection of coupled ODEs; each equation
describing the time change dictated by the biological laws that
govern the concentration exchanges between the interacting
compartments [16]–[19]. In this paper, we investigate three
different compartmental models for the ICG kinetics and deter-
mine the optimal model order based on Bayesian information
criteria.

1) Four-Compartment Model: Fig. 2 illustrates the capil-
lary and extracapillary space relevant to the four compartment
model. The four-compartment model includes capillary region,
interstitial fluid region, parenchymal cell region and intracel-
lular binding site as compartments [20]. The ICG, injected in-
travenously into the subject, can pass from the capillary into the
reversible binding site inside the cell through the interstitial fluid
region and the parenchymal cell region [20]–[22]. Moreover, in
advanced tumor stages, the leakiness around the tumor vessels
is expected to increase, resulting in higher permeability rates
during the transportation of ICG into the compartments. A block
diagram of the four-compartment transport and chemical model
of ICG delivery is shown in Fig. 3(a).

Let and denote the ICG concentrations
in plasma, the interstitial fluid region, the parenchymal cell
region and the intracellular binding site, respectively; and let

and be the constants used
as equilibrium coefficients as shown in Fig. 3(a). Then the set of
differential equations representing the ICG transition between
the four compartments is given as follows.

The leakage into and the drainage out of plasma

(1)

The leakage into and the drainage out of the interstitial fluid
region

(2)

Fig. 3. Block diagrams of the (a) four-compartment, (b) three-compartment,
and (c) two-compartment models for the ICG pharmacokinetics.

The leakage into and the drainage out of the parenchymal cell

(3)

The leakage into and the drainage out of the intracellular
binding site

(4)

Physiologically, the equilibrium constants are defined by the
permeability surface area products given as , where is
the capillary permeability constant, is the capillary surface
area, and is the tissue density. is proportional to the flow
rate into and out of the capillary and
and represent intra-tissue physiologic effects during ICG
delivery from the capillary to the binding site. Note that the su-
perscript denotes the order of the compartmental model.

The actual bulk ICG concentration in the tissue measured by
NIR spectroscopy, , is a linear combination of the ICG con-
centrations in the four different compartments

(5)

where and , are volume fractions of plasma,
the interstitial fluid region, the parenchymal cell region and the
intracellular binding site, respectively.

2) Three-Compartment Model: In this model, the
parenchymal cell and intracellular binding site compartments
are combined to form a single compartment called parenchymal
cell. This amounts to the assumptions that the transport of ICG
into the intracellular binding site is negligible as compared
to the other compartments and, therefore, omitted from the
model. A block diagram of the three-compartment transport
and chemical model of ICG delivery is shown in Fig. 3(b). The
three-compartment transport equations are given as follows:
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The leakage into and the drainage out of plasma

(6)

The leakage into and the drainage out of the interstitial space

(7)

The leakage into and the drainage out of the parenchymal cell

(8)

The total ICG concentration measured by NIR

(9)

where and and and are as defined in
the four-compartment model.

3) Two-Compartment Model: In the two-compartment
model, the tumor region is assumed to be composed of two
compartments, namely the plasma and the extra-cellular
extra-vascular space (EES) [9], [23], [24]. The EES is defined
as the region that lies outside of both the vascular region and
the tumor cells. The transport of the ICG to the third and fourth
compartments are assumed to be negligible. Therefore, the last
two compartments in the four compartment model is omitted.
We consider transcapillary leakage to occur only at the tumor
site. We also assume that a small perturbation of the global
plasma concentration does not affect the bulk removal. Fig. 3(c)
shows the block diagram of the two-compartment model for the
ICG kinetics. Let and denote the ICG concentrations in
plasma and the EES, respectively. Then the two-compartment
ICG chemical transport equations are given as follows.

The leakage into and the drainage out of plasma

(10)

The leakage into and the drainage out of the EES

(11)

The parameters and govern the leakage into and
the drainage out of the EES, respectively. The parameter
describes the ICG elimination from the body through kidneys
and liver.

Actual bulk ICG concentration in the tissue measured by NIR
is a linear combination of plasma and EES ICG concentrations
given by

(12)

where the parameters and denote the plasma and EES
volume fractions, respectively.

III. EXTENDED KALMAN FILTERING FOR THE ICG
PHARMACOKINETICS

For the rest of our discussion, we shall use the explicit form
of the two-compartment model as a running example to clarify
our notation. Note that for the rest of the paper, all matrices
and vectors will be in boldface and scalar quantities will be in
nonboldface notation.

A. State-Space Representation of the ICG Pharmacokinetics

Coupled differential equations resulting from the two-com-
partment modeling of the ICG pharmacokinetics can be
expressed in state-space representation as follows:

(13)

where is the Wiener process increment, .
Here, and can be thought of as uncorrelated zero-mean
Gaussian processes with covariance matrix , and variance ,
respectively.

In vector-matrix notation, the continuous time state-space
representation for the -compartment model is given by

(14)

In (14), denotes the concentration vector; is the
system matrix, is the measurement matrix and is the
parameter vector whose elements are the pharmacokinetic con-
stants and the volume fractions for the compartment model.
For example the parameter vector for the two-compartment
model is given by

(15)

The ICG measurements in (14) are collected at discrete time
instances, , where is the sampling period.
Therefore, the continuous model described in (14) has to be dis-
cretized. To simplify our notation, we shall use
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and . The discrete state space system and the
measurement models are given as follows:

(16)

where is the discrete-time system matrix
and is the discrete-time measurement matrix.

and are zero-mean Gaussian white noise processes
with covariance matrix and variance , respectively. Dis-
cretization of state-space models can be found in various system
theory books, see for example [25].

An explicit form of the discrete state space model for the two-
compartment case is given as follows:

(17)

where is the th row and th column entry of the system
matrix . Note that the matrix entry is an exponential
function of the parameters and .

To simplify the estimation process, we shall first estimate the
matrix entries, , of the discrete-time system matrix
and then compute the pharmacokinetic parameters for each
compartmental model.

B. Modeling of ICG Pharmacokinetic Parameters and
Concentrations in an Extended Kalman Filter Framework

The Kalman filter provides a recursive method to estimate
the states in state-space models, in which the states are driven
by noise, and the measurements are collected in the presence
of measurement noise [26]–[28]. In the case of nonlinear state-
space models, the extended Kalman filter linearizes the model
around the current state estimate, and then applies the KF to
the resulting linear model. The EKF framework is also utilized
for the joint estimation of the unknown system and/or mea-
surement parameters and states. In a linear state-space model
when both states and system parameters are unknown, the linear
state-space model can be regarded as a nonlinear model in which
the linear system parameters and states are combined to form the
new states of the nonlinear model. This system is then linearized
and solved for the unknown states using the KF estimator. We
consider a linear Taylor approximation of the nonlinear model.
The details of the linearization procedure and a general discus-
sion on EKF can be found in [27] and [29]–[31].

In our problem, the objective is to simultaneously estimate the
states, i.e., the ICG concentrations in each compartment, and the
system and measurement parameters, i.e., the pharmacokinetic
parameters and the volume fractions. Let denote the discrete-
time parameter vector of the pharmacokinetic rates and volume

fractions. For example, in the two-compartment model, is
given by

(18)

Note that the parameter vector , derived from the state
space model (17), is time independent. In order to estimate
within the EKF framework, the following dynamic model is in-
troduced:

(19)

where is a zero-mean white noise process with covariance
matrix [27]. Here, can be thought of as the th update
of the parameter rather than its value at time .

We append the parameter vector to the ICG concen-
tration vector to form the new nonlinear state-space
model given by

(20)

where .

C. EKF Joint Estimation of ICG Concentrations,
Pharmacokinetic Parameters, and Volume Fractions

In this section, we will summarize the major steps of the EKF
estimator for the joint estimation of ICG concentrations and
compartmental model parameters.

Let the subscript denote the estimate at time given all
the measurements up to time . Then the 1-step ahead prediction
of the ICG concentrations and the compartmental model param-
eters are given as follows:

(21)

For the two-compartment model, (21) becomes

(22)

The error covariance matrix, , of the 1-step ahead pre-
dictions is given as follows:

(23)
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where is the Jacobian of the nonlinear EKF system function
at time . Explicitly, it is given by:

(24)

where and denote zero and identity matrices, respectively.
The Jacobian matrix for the two-compartment model becomes

(25)

where is a 6 2 zero matrix, and is a 6 6 iden-
tity matrix.

The 1-step ahead predictions are updated to the th-step esti-
mates by means of the Kalman gain matrix which is given by

(26)

where is the following vector:

(27)

For the two-compartment model the vector becomes

(28)

The th-step estimate of the concentrations and the parame-
ters are obtained recursively using

(29)

For the two-compartment case, the th-step estimate of the con-
centrations and the parameters is

(30)

The error covariance matrix, , of the th-step estimates
is updated as

(31)

where is the identity matrix.
In general, the convergence of EKF depends on proper

choices of the initial values of the parameters, , initial values
of the concentrations, , and proper selection of the noise

covariance matrices , and the variance [33]. The pa-
rameter controls the convergence of the Kalman gain . To
ensure stability, we set much higher than the
term in (26). However, setting very high values of leads to
slow convergence of the Kalman gain . The main cause of
divergence in EKF can be tracked down to the fact that a change
in the parameter vector has no direct effect on the Kalman gain;
in other words, there is no coupling term between the Kalman
gain and the parameter vector [34]. Based on this observation,
we improved the convergence of the EKF by modifying the
term in (24), as described in [34].

It has been shown that if and are selected less
than the actual values, it leads to overconfidence in the accuracy
of the estimates of the error covariance matrix [32]. Therefore,
we regarded these matrices as tuning parameters and not as the
estimates of the true covariance matrices, as suggested in [32].

Theoretically, the state estimates can be initialized at the
expected value of the ICG concentrations, i.e., .
One approach to the initialization of the parameters is to
utilize the state-space presentation given in (16). Since

is a zero-mean random variable. If we express the variance of
the measurement in terms of the variance of using
the measurement model in (16), and solve for , we get the
estimate as the most appropriate value for initialization.
The details of the selection of the initial values for the parame-
ters can be found in [27].

The initialization of the error covariance matrix is also im-
portant for the performance of the EKF. The error covariance
matrix is the matrix which provides information about the error
bounds for the estimates. Theoretically, the initial error covari-
ance matrix is a diagonal matrix where the diagonal entries are
the initial estimates of the variance of concentrations and phar-
macokinetic parameters, i.e.,

(32)

In depth discussion on the convergence properties of the EKF
can be found in [27] and [32]–[34].

D. Compartmental Model Order Selection

We adopted the Bayesian information criterion (BIC) for the
optimal model order selection. BIC is a well known information
theoretic criterion, in which the optimal model order is selected
by minimizing a cost function to avoid overfitting. The cost
function depends on the number of observations, the number
of unknown parameters to be estimated and the likelihood func-
tion. A detailed discussion of the BIC can be found in [35]–[37].

In order to calculate the BIC for different compartmental
models, we first derived a likelihood function for the extended
Kalman filter. The derivation is based on maximum likeli-
hood estimation of the parameters in the Kalman filtering
framework given as in [38] and [39]. We then modified this
likelihood function for the extended Kalman filter estimator for
the joint estimation of compartmental model parameters and
concentrations. The details of the derivation is provided in the
Appendix I.
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TABLE I
FOUR-COMPARTMENT MODEL: ESTIMATED PHARMACOKINETIC PARAMETERS USING EKF ALGORITHM

TABLE II
THREE-COMPARTMENT MODEL: ESTIMATED PHARMACOKINETIC PARAMETERS USING EKF ALGORITHM

IV. EXPERIMENTAL RESULTS—ICG PHARMACOKINETICS IN

FISCHER RAT DATA

We applied the proposed EKF framework to the pharmacoki-
netic analysis of ICG data obtained from four Fischer rats with
adenocarcinoma. R3230ac adenocarcinoma cells were injected
below the skin into four Fischer rats three weeks prior to mea-
surements. The tumor size for the rats varies in diameter from
5 to 30 mm. Measurements were conducted with a combined
frequency-domain and steady-state optical technique that facili-
tates rapid measurement of tissue absorption. Frequency domain
measurements were obtained at 674, 800, 849, 898, and 915 nm,
modulated at frequencies from 50 to 601 MHz, sweeping a total
of 233 frequencies. Tumors were also imaged by use of con-
trast-enhanced magnetic resonance imaging and coregistered
with the location of the optical probe. In addition, a broadband
continuous wave reflectance measurement spanning the range
650–1000 nm was performed with a spectrometer. With the re-
duced-scattering coefficient spectrum and diffusion theory, the
broadband reflectance spectra were converted to absorption co-
efficient spectra. The absolute concentration of ICG, together
with oxy-hemoglobin, deoxy-hemoglobin, and water were cal-
culated by using multiple linear regressions of ICG extinction
coefficient spectra to the calculated absorption spectrum at ap-
proximately every second for 10 min. A detailed discussion of
the measurement process and apparatus can be found in [40] and
[41].

Fig. 4 presents the ICG concentrations ( M) from four dif-
ferent rats. Tumors in Rat 1 and 2 are classified as necrotic be-
cause of their low tissue oxy-hemoglobin, low total hemoglobin,
and low gadolinium-diethylene-triamine penta-acetic acid (Gd-
DTPA) enhancement levels. Tumors in Rat 3 and 4 are classified
as edematous due to their high water content [42]. It can be ob-
served from Fig. 4 that the necrotic cases display low peak ICG
concentration values and slowly rising slopes unlike the edema-
tous cases with high peak values and sharp rising slopes.

We estimated the pharmacokinetic rates for the four-, three-
and two-compartment models. Each data set has 504 measure-
ments. The reported parameter estimates are the asymptotic
values obtained when the extended Kalman filter has converged.

Fig. 4. ICG concentrations measured in tissue for four different rats.

In other words, the predicted parameter values corresponding
to the final estimate, i.e., . The results are
given in Tables I, II, and III, respectively. The error bounds
on the estimates are derived from the covariance matrix of
the EKF estimator. The estimated pharmacokinetic rates for
all compartmental models indicate that the exchange rates
between the capillary and the adjacent compartment (ISS
or EES), , are significantly different for
the necrotic and edematous tissue. We observe that for the
four- and three-compartment models, the estimated exchange
rates between the ISS and parenchymal cell compartments,

, are comparable. Similarly, the estimated rate
of drainage out of the plasma, , are consistent
for all models.

Based on the model parameter estimates, we computed the
BIC values for each rat data to reveal overfitting. The BIC values
and the number of unknown parameters for each rat data are tab-
ulated in Table IV. The BIC suggests that the two-compartment
model is sufficient for all four measurement sets.

We further analyze the goodness-of-fit of the compartmental
models by means of residual analysis. The basic idea of residual
analysis is to compare the actual measurements with their
1-step ahead predictions, , based on the estimated
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TABLE III
TWO-COMPARTMENT MODEL: ESTIMATED PHARMACOKINETIC PARAMETERS AND VOLUME FRACTIONS USING EKF ALGORITHM

TABLE IV
TEST FOR MODEL ORDER SELECTION FOR THREE DIFFERENT COMPARTMENTAL

MODELS FOR FOUR DIFFERENT DATA SETS

TABLE V
THE MEAN AND VARIANCE OF THE ERROR BETWEEN THE ESTIMATES AND

MEASUREMENTS

TABLE VI
SNR VALUES FOR THREE DIFFERENT COMPARTMENTAL MODELS FOR FOUR

DIFFERENT DATA SETS

parameters. A detailed discussion on residual analysis can be
found in [26] and [43]. The mean and variance of the residual
error for the four-, three- and two-compartmental models are
tabulated in Table V. To normalize the error with respect to
the magnitude of the actual measurements, we calculated the
signal-to-noise ratio (SNR) using the median value of the mea-
surements and the mean of the residual errors for each rat data.
As seen from the results in Table VI, the SNR values are higher
for the two-compartment case for all data sets. These results
show that the two-compartment model provides the minimum
bias and the best statistical efficiency. Fig. 5 shows the measured
total concentration data and its 1-step ahead prediction based on
the two-compartment model for each rat data. Clearly, there is
a good agreement between the actual and the predicted values.

Based on the BIC and residual analysis, we conclude that the
two-compartment model provides the best statistical fit for the
rat data and investigate the estimated model parameters in more
detail.

In the two-compartment model, the rate of leakage into the
EES from the capillary, , range from 0.0247 to 0.0840 s

Fig. 5. ICG concentration measurement data and 1-step prediction of the mea-
surements for four different rats.

and the rate of drainage out of the EES and into the capil-
lary, , range from 0.0106 to 0.0777 s . Note that the per-
meability rates for the necrotic cases are lower than the ones
observed for the edematous cases. Additionally, the estimated
values for the pharmacokinetic rates are much higher than the
normal tissue values due to the increased leakiness of the blood
vessels around the tumor region [9], [44]. The estimated plasma
volume fractions agrees with the values reported earlier [9], and
the values presented in the literature [45], [46]. These results
confirm that can be large in tumors and that its magnitude
varies with respect to the stage of the tumor [24]. The estimated
values of the EES volume fraction, , range from 0.218 to
0.53, in agreement with the 0.2 to 0.5 range reported earlier [23].
Note that these results are valid only for the ICG pharmacoki-
netics in tumor cells R3230ac, adenocarcinoma and may not be
generalized for other types of contrast agents or tumor types.

Fig. 6 shows the estimated ICG concentrations in plasma and
the EES compartments for the two-compartment model for Rats
1 to 4. Note that the concentration curves in Figs. 5 and 6 follow
a similar time course since the curves in Fig. 6 is a linear combi-
nation of the curves in Fig. 5. Note that initial estimates of con-
centrations are noisy due to the limited data used in the recursive
EKF estimation. This can be improved by Kalman backward
smoothing [47]. The peak values of the plasma concentration,

, range from 2.72 M to 4.28 M. The absolute value of the
concentrations may not be very useful. However, concentration
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Fig. 6. ICG concentrations in plasma,C (t) and EES,C (t), for four different
rats. (a) Rat1, (b) Rat2, (c) Rat3, and (d) Rat4.

of ICG in a compartment relative to the one in another compart-
ment may provide useful information. We consider the ratio of
the peak concentrations in plasma and the EES as a potential pa-
rameter to discriminate different tumors. The peak ratio
for Rats 1 to 4 is 0.551, 0.593, 0.787, 1.151, respectively. This
ratio is higher in edematous cases consistent with the fact that
ICG-albumin leaks more into the EES in edematous tumors. Ad-
ditionally, the ICG concentration in plasma decays faster than
the ICG concentration in the EES due to its elimination through
the liver and kidneys.

V. CONCLUSION

In this paper we present three different compartmental
models, an extended Kalman filtering framework for the mod-
eling, and estimation of ICG pharmacokinetics in cancerous
tumors based on NIR measurements. Additionally, we intro-
duce an information theoretic criterion and residual analysis for
model selection and statistical validation. The proposed com-
partmental models are fit to data obtained from Fischer rats with
adenocarcinoma cells. The pharmacokinetic rates and volume
fractions are estimated for all models. The estimated rates for
all compartmental models indicate that the exchange rates be-
tween the capillary and the adjacent compartment (ISS or EES)
are significantly larger for the edematous tissue as compared
to the necrotic cases. Based on the BIC and residual analysis,
we conclude that the two-compartment model provides the
best statistical fit for the rat data and ICG pharmacokinetics.
Parameters of this model indicate that the permeability rates are
higher for edematous cases as compared to the necrotic tumors.
Additionally, we estimated the ICG concentrations in different
compartments. The concentrations in different compartments
may provide additional parameters for tissue characterization.

While our study indicates that the two-compartment model
provides the best fit for the ICG pharmacokinetics, the three- or
four-compartment models may be advantageous for modeling
the pharmacokinetics of functionalized optical contrast agents

that actively accumulate or activate in diseased tissue [48]–[50].
In the near future, we plan to analyze the pharmacokinetics of
optical agents within the framework of EKF using data sets col-
lected from animals and human subjects.

APPENDIX

The cost function for the BIC is given by

(33)

where is the dimension of , which is related to the number
of compartments in the model, is the data length, and

is the likelihood function. The
likelihood function for the EKF is given by

(34)

where the matrix is defined as

(35)

and and are as defined in Section III-C. The
vector is defined as

(36)

where is the ICG concentration data collected from Fisher
rats at time , and is the 1-step ahead estimate
of the volume fractions and concentrations. The explicit form of
the likelihood function for BIC calculation is given by

(37)

where all the parameters and matrices are as defined in Sec-
tion III-C.
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