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ABSTRACT

We present a new image reconstruction method for distributed apertures operating in complex environments
with additive non-stationary noise. Our method is capable of exploiting information that we might have about:
multipath scattering in the environment; statistics of the objects to be imaged; statistics of the additive non-
stationary noise. The aperture elements are distributed spatially in an arbitrary fashion, and can be several
hundred wavelengths apart. Furthermore, our method facilitates multiple transmit apertures which operate
simultaneously, and is thus capable of handling a true multi-transmit-multi-receive scenario. We derive a set
of basis functions which is adapted to the given operating environment and sensor distribution. By selecting
an appropriate subset of these basis functions we obtain a sub-space reconstruction which is optimal in the
sense of obtaining the minimum-mean-square-error for the reconstructed image. Furthermore, as this subspace
determines which details will be visible in the reconstructed image, it provides a tool for evaluating the sensor
locations against the objects that we would like to see in the image. The implementation of our reconstruction
takes the form of a filter bank which is applied to the pulse-echo measurements. This processing can be performed
independently on the measurements obtained from each receiving element. Our approach is therefore well suited
for parallel implementation, and can be performed in a distributed manner in order to reduce the required
communication bandwidth between each receiver and the location where the results are merged into the final
image. We present numerical simulations which illustrate capabilities of our method.

Keywords: distributed aperture, multi-path scattering, sparse aperture, image reconstruction, pulse-echo
imaging

1. INTRODUCTION

Pulse-echo imaging covers a wide range of applications from ultrasound and micro-wave imaging, to sonar and
radar imaging, and is performed by transmitting a waveform, and recording the resulting scattering from the
object to be imaged. From these scattering measurements, we form an image of the object. The image is a
spatially resolved map of the object’s scattering strength.!

We focus our attention to extremely sparse arrays where the array elements can be located several hundred
wavelengths apart. Such an array is referred to as a distributed aperture.? An important issue for such apertures
is that the region of interest no longer is in the far-field of the array. This introduces range dependence in the
scattering measurements which cannot be ignored.®* By using a physics-based measurement model we directly
account for this range-dependence.

In our work we use wide-band transmit waveforms, and exploit multi-path scattering in order to image
extended objects using a distributed aperture. We derive an inversion technique which is optimal in the sense
that it yields the minimum-norm solution which attains the minimum LZ-error in the reconstructed image.
In doing so we allow for multiple transmitters and receivers to be activated simultaneously.>® Furthermore,
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Figure 1. Distributed aperture with two transmitting elements (black circles) and three receiving elements (white circles).
The transmitting elements Tx; and Txs are located at spatial positions z; and z2, respectively. The receiving elements
Rxi1, Rx2 and Rxs are located at positions x1, 2 and 3. Arrows indicate that scattering as a result of a waveform
transmitted from element Tx; will be measured on all receive elements; similarly for Txo.

we do not make additional assumptions about being able to separate the waveforms from each transmitter by
orthogonality.”?

In Devaney et al.!%!! a similar reconstruction method was presented under the assumption that the impulse
response from all pairs of transmitters and receivers could be obtained. We do not make this assumption,
and account for transmit waveform diversity by conducting our analysis in the continuous-time domain. Our
approach enables us to state the reconstruction algorithm explicitly in terms of processing of the time-domain
scattering measurements. Also in Yazici et al.'? the general approach to reconstruction is similar. However, by
employing the affine Fourier transform to perform the actual inversion, that work inherently relies on the free-
space propagation model, and deals with one transmitter and one receiver which are assumed to be co-located.
There are no such assumptions in our current work. In fact, the ability to exploit multi-path propagation is one
of the features of our work; our work generalizes the inversion technique presented in'? to distributed apertures
in a multi-path environment.

2. FORWARD MODEL
2.1 Distributed Apertures

We consider an array consisting of m transmitting elements and n receiving elements. The array elements are
arbitrarily distributed, and can be several hundred wavelengths apart. These spatially distributed array elements
constitute our aperture. In our development we allow for an arbitrary spatial distribution of the elements. To
reflect this spatial flexibility, we refer to the array as a distributed aperture.? An illustration of the distributed
nature of an array with two transmitting elements and three receiving elements is shown in Fig. 1.

In order to exploit the spatial diversity we want to allow for transmitting different waveforms from each array
element. Let s;(t) denote the waveform which emanates from the j*® element. The transmit waveforms are
arranged in a transmit vector s(t)

s(t) == [s1(t),...,sm(@®)]". (1)

Note that we use a bold-face italic font for vector quantities.
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Similarly, if the measured scattering at the i*" receive element is denoted m;(t), then the signal which is
collected by the array may be arranged in a measurement vector m(t)

m(t) = [mi(t),...,ma(t)]" . (2)

2.2 Channel Model

Any object with properties which deviate from a constant (homogeneous) background will produce scattering.
However, scattering from an object for which location and scattering strength is known does not contribute new
information. We therefore use the known objects to define a background medium. Scattering is defined in terms
of deviations from this background. Our ability to observe the additional objects depends on how much the
relevant physical properties deviate from the background. We denote this deviation by the reflectivity function

V().

For our current work we will assume that the propagating wave field u is described by the following scalar
wave equation

1
V2u — C—Qafu = Vo?u. (3)
Here c is the propagation speed in the background medium. This model gives a good description for acoustic

pressure waves of moderate amplitude, as well as electromagnetic wave propagation through a medium such dry
air, where polarization effects may be neglected.

Our model for the scattering is given in terms of the Green’s function g(x,y,t) for the background medium.
The Green’s function is the response measured at position & due to an impulse §(¢) transmitted from position
y, i.e., a solution of

Vg~ 50fg =50 (le — yl). (1)

We will now let the j** transmit element be located at position z7, and the i receive element be located at
position x* (see Fig. 1). Furthermore, we define the matrix G(y,t) with matrix elements

Gij(y,t) == /Q(Zjay,Tl)afg(yawut—T')d7/~ (5)

If we neglect multiple reflections involving the object to be imaged, we may express the measurement vector
defined in Eq. (2) as

m(t) = / G(y,t — 1)V (y)dy s(r)dr. (6)
Integration in Eq. (6) is understood to be element wise

m@=Z/QmeW@@%mw (7)
j=1

We refer to the mapping from transmit vector s(t) to measurement vector m(t) as the channel, and denote it
by H(V).

m(t) == H(V)s(t). (8)
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2.3 Problem Statement

The channel H(V) is a linear mapping from transmit vectors to measurement vectors. We now define H as the
linear mapping which takes the reflectivity function V' to the channel H(V'). The kernel of H is in this case G
from Eq. (5). Furthermore, if we identify H (V') with its kernel, which is a function of ¢ and 7, then H is defined
by

HV) = / Gyt — 1)V (y)dy. (9)

We will refer to ‘H as the channel mapping.

At an abstract level, we will perform imaging by inverting the mapping H
V=HTHV). (10)

By employing a set of transmit vectors {s*(¢)}, and recording the corresponding measurement vectors {m*(t)},
we will obtain the action of H(V) on the space spanned by these transmit vectors. Once the channel H(V) is
known, we will invert H using the Green’s function for the background medium. This can all be performed in
a Hilbert-space framework under mild conditions on the transmit waveforms and the reflectivity functions. We
obtain a unique minimum-norm solution for the inversion problem by way of a pseudo inverse.'?

3. IMAGING UNDER DETERMINISTIC CONDITIONS

First we will state our imaging algorithm for the case where there is no measurement noise.

Let the space of transmit vectors, S(0,7)™, be spanned by {s*(t)}. We assume that the waveforms are
smooth* and supported on the finite interval (0,7). Furthermore, we will assume that the reflectivity function
V' is square integrable and non-zero only inside a sphere of finite radius. If we denote the measurement resulting
from transmitting waveform s* by mF¥(t), we find that the adjoint of , denoted by H*, applied to the channel
H(V) may be computed as'*

[HH(V))(z) = > _(m*, Gusb), (11)

k

where the integral operator G, is defined as
Gys(t) = /G(y,t —7)s(7)dr. (12)

This is equivalent to transmitting orthogonal waveforms and matching (taking the inner-product between) the
measurement and templates

Gush (1) = / Gla,t — )8k (r)dr, (13)

and finally coherently adding up the results.

If we consider only finitely many transmit vectors, then we can show that H*H is compact.” Therefore, H*H
is characterized by its action on a discrete set of orthogonal eigenfunctions.

Let {(Ap,Up)} be the set of non-zero eigenvalues and associated eigenfunctions for H*H

MUp = HH(U,) = / S (G5Gy 8", 55U, (y)dy (14)
k

*Two times continuously differentiable is sufficient.
fNote that even if H(V) in this case has finite-dimensional range, H does not; the space of HS operators between
transmit vectors and measurements is infinite-dimensional.'*
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We define a set of operators U, which are related to H in the following manner:

U, = H(U,). (15)

7

From this we have obtained

HV) = (VU Aplhy, (16)

p

which is a singular-value decomposition (SVD) of the operator H.'* By combining Eqns. (11) and (16), we
arrive at our reconstruction formula

V(z) = (H*H) " HH(V)(x) (17)
1 - k k

:E—E m”,U,s")Up(x), 18

p V Ap k:1< e() (18)

where \,, U, and U,, are given by Eqns. (14) and (15).14

An algorithmic description of our reconstruction method is given below:

1. Select a set of orthonormal transmit vectors {s}.

2. From the Green’s function for the background medium we compute

K(z,y) =) (GaGysk, st)- (19)

k

@

Determine the eigenvalues and eigenfunctions (A, Up) of the integral operator with kernel K (x,y).

e

Determine the associated operators U, of H according to Eq. (15).
5. Employ transmit vectors s¥ and obtain the associated measurement vectors m*.

6. Match each measurement m* with U,s*, and reconstruct according to Eq. (17).

4. IMAGING UNDER UNCERTAINTY

In this section we will consider measurements m” () which are contaminated by additive noise n(t).
mF(t) = H(V)s"(t) + n(t). (20)

We use the second-order statistical information about the reflectivity function in order to design a reconstruction
method which is optimal for noise-contaminated measurements. Optimality is here defined in terms of mean
square error (MSE). In order for our analysis to hold, we make a couple of assumptions about the statistics of
the noise and the reflectivity function:

ASSUMPTION 1. The additive noise n(t) is assumed to be a zero-mean stochastic vector process with known
covariance function:

1. The cross-covariance between the noise in the measurements at elements i and j is

E[ni(tl)nj (tz)] = Ri(t1, )04 (21)
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2. The covariance function satisfies one of the following conditions:
a) non-stationary noise: [ R;(t,t)dt < oo
b) stationary noise: R;(t1,t2) = R;i(t2 — t1,0), and [ |R;(¢,0)|dt < cc.

ASSUMPTION 2. The reflectivity function is a realization of a zero-mean random field with continuous covariance
function

Ry (y1,92) = E|V (y)V(g2)|. (22)

Under Assumption 2, we can express the reflectivity function in terms of the Karhunen-Léve (KL) expansion!®

Viz)=> eVi(a). (23)

Here {V,} is a set of orthogonal functions, and ¢, are independent random variables.

Since H* is invertible on the range of H, we can without loss of generality assume that our linear reconstruction
method is of the form:

VB = BH* [H(V)], (24)

where B is a suitable linear operator.
We define the MSE of the reconstruction as

MSE(B) := /EUVB(Q;) - PV(a;)|2]da;, (25)
where P is the projection onto the range of H*:

PV(x) =Y (V,Up)Up(). (26)

p

We obtain our imaging method for the noisy case from the B which minimizes the MSE as defined in Eq. (25).
The resulting reconstruction is'4

~ 1 1 1 -1 1
V = MS? (SiMSE n 5) STEHF[H(V))], (27)

where H* applied to H(V') is computed by as in Eq. (11), but this time from noise-contaminated measurement
vectors, and the operators M, § and £ have coefficients

M)y = D EB[ler PV, )V T (28)
(S)ij = 0ij A (29)
()i = Y _(Rult;s*,Uis"). (30)

k

Here R, is a convolution operator where the kernel is a diagonal matrix with functions R;(t1,t2) from Eq. (21)
along the diagonal. We observe that Eq. (27) reduces to the result of Eq. (17) in the case when no additive noise
is present.
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Figure 2. Distributed array with two transmitting elements (circles labelled Tx; and Tx2), and ten receiving elements
(small squares labelled from Rxi to Rxi0). The elements are placed at equidistant points along an arc with radius 10},
where ) is the wavelength corresponding to the center frequency of the transmitters. The target is indicated as a square
with sides of 1.5\, while the region of interest is 5\ x 5\ around the target. The solid straight line indicates the location
of a reflective mirror in our simple multi-path scenario. A grey box frames the mirror image of the object, as well as the
mirror transmitters (labelled Tx] and Tx5) and mirror receivers (labelled from Rx) to Rx)g).

5. NUMERICAL SIMULATIONS

In order to demonstrate the performance of our reconstruction method, we conducted a set of numerical simula-
tions for two different scenarios. First we simulated scattering from an object in a free-space background. Then
we performed another simulation where we inserted a mirror surface behind the object to be imaged (see Fig. 2).

We used a distributed aperture with two transmit elements and 10 receive elements. The antenna elements
were equally spaced on a semi-circle with radius 10\. The object which we wanted to image was a square with
sides of 1.5A. We reconstructed this reflectivity in a region of 5\ x 5\ around the square. Figure 2 gives an
illustration of our simulated scenario.

In all experiments the two transmitters operated simultaneously: transmitter 1 emitted a linear up-chirp
sin(wo [t + at?]), while transmitter 2 simultaneously emitted a linear down-chirp sin(wg[t — at?]). Thus, there was
an inherent ambiguity in the reflected waveforms as to the source of the energy.

We performed numerical experiments to demonstrate the performance of our image reconstruction method
for the following cases: 1) free space, 2) multi-path environment, 3) measurements with colored noise.

5.1 Noise-free simulations

For the experiments 1) and 2) the measurements were free of noise, and the reflectivity function was deterministic.
We therefore employed the reconstruction formula from Eq.(17). In this case we reconstruct a projection of
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Figure 3. Image reconstructed using our method from Eq. (17). In this case we employed 2 transmitters and 10 receivers.
For the free-space case (left) the reconstruction error was -5.7dB. In the multipath case (right) we get a reconstruction
error of -11.2dB.

the reflectivity function onto the range of H*. It is of interest to see how well this approximates the true
reflectivity function when we have a distributed aperture. We use the following relative L? norm to quantify the
reconstruction error

(31)

Error := 10log (f [H"H(V)](z) - V(w)|2dw> .

[V (z)Pde

1) Free Space In the left panel of Fig. 3, we see a reconstruction for the free-space scenario using our
reconstruction method when we have 2 transmitters and 10 receivers distributed as indicated in Fig.2. The
reconstruction error as defined in Eq. (31) is here -5.7dB.

2) Multipath The right panel of Fig.3 shows reconstruction for our multipath scenario when we have 2
transmitters and 10 receivers distributed as indicated in Fig. 2. The reconstruction error is in this case -11.2dB.

5.2 Simulations with noise

The results for simulation case 3) were obtained using the reconstruction formula in Eq. (27). The overall simula-
tion setup is the same as for the deterministic case. However, here we add noise to our scattering measurements,
and employ a stochastic model for the reflectivity function.

In our experiment we considered a wide-band 1/w-type noise model.' The noise was generated by filtering
white noise in the frequency domain to obtain a power spectrum proportional to

lez. (32)
Furthermore, we considered a square object with unknown scattering strength c, i.e.,
V(x) = cE(1.5 x). (33)
Here = is 1 on the unit square, and the scattering strength ¢ is normally distributed with unit variance.
We define the signal-to-noise ratio (SNR) as follows
SR 1= sup | ELA) O 1)

where n(t) is the additive noise process. To determine this we estimated E[|H(V)s*(t)|?] by averaging over 50
realizations of the reflectivity function, and found its peak value. We then scaled the additive noise variance to
obtain the desired SNR.

In order to perform the inversion we needed to determine the operators M, S and £ as defined in Eqns. (28)-
(30) For this we used the fact that we already had computed the eigenfunctions U, of H*H in order to perform
our noise-free reconstructions.
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e The coefficients for the operator M, as defined in Eq. (28), were obtained by numerically projecting our
model for the reflectivity function onto the already-computed eigenfunctions U, of H*H. In particular we
projected our square object in Eq. (33) onto these eigenfunctions, and used E[|c|2} =1.

e The elements of the diagonal operator & were obtained from previous computations of the eigenvalues
associated with the eigenfunctions of H*H.

o To obtain &, we first computed U; s (t) by performing noise-free scattering simulations from the reflectivity

function U;. Furthermore, we computed R U;s,(t) by applying to each vector element of this simulated
scattering a filter with the impulse response ﬁ from Eq. (32). Finally, the element (£),; was obtained by
taking the inner product between this filtered scattering simulation and an un-filtered scattering simulation
from the reflectivity U;, and summing over all our transmit vectors. For a particular SNR, we multiplied

the whole operator by a constant which corresponded to the scaling applied to the additive noise.

We characterize the reconstruction quality in the presence of additive noise using a relative mean-square error
expressed in a decibel scale:

(35)

MSE(W) = 10log (fE[HH_lH(V)](SC) — PV($)|2]dsc> |

JE[V(z)]?ldz

This is clearly equivalent to using the MSE as defined in Eq. (25).

When computing the MSE according to Eq. (35), we need the projection PV of the reflectivity function onto
the range of H*. We obtained this from the reconstructions in experiments 1) and 2), i.e., reconstructions without
noise. The value for [E[|[[H™'H(V)](x) — PV (z)|*|dz was then estimated from 10 different reconstructions
using different noise realizations. Finally, we see that we can compute [ E[|V (z)[?] from Eq. (33) directly. This
gives us our estimated reconstruction error for the statistical reconstruction.

3) Simulated scattering with noise Figure 4 shows examples of reconstruction in the presence of additive
noise. The reconstruction is based on scattering from a unit square with unit scattering strength. The noise was
added so that the measurements had an SNR of 20. In the top left panel of Figure 4 we see a reconstruction
for our free-space scenario, while in the top right panel we have a reconstruction for our multi-path scenario.
In order to show the necessity of taking the additive noise into account, we have also included a deterministic
free-space reconstruction in the lower left panel of Figure 4. In the lower right panel of Figure 4 we see the MSE
as a function of SNR. Here, the solid line and dash-dot line denote statistical reconstruction in the free-space
case and the multi-path case, respectively. The MSE of the deterministic free-space reconstruction is shown as
dotted line. The MSE was estimated according to Eq. (35) by averaging over 10 realizations of the scattering
potential and the additive noise for each SNR. The MSE was then normalized relative to the free-space statistical
reconstruction.

6. DISCUSSION AND CONCLUDING REMARKS

We see that multipath improves the reconstruction when we apply our reconstruction method. In particular we
note that the vertical edges are much sharper when multipath is present. By using the method of images, we
can show that our multipath scenario may be viewed as a free-space scenario with additional transmitters and
receivers.!* Thus if we can exploit the multipath returns properly, these additional antenna elements provide
illumination of the object from new directions. If we employ a ray approximation to our propagating field, then
this phenomenon is explained by the fact that only edges perpendicular to the bisector between the incident ray
and the reflected ray are visible.!” A similar effect was also observed previous work.!!

The MSE that we have plotted in Figure 4 is measured relative to the noise-free reconstruction in each
case. Thus, the MSE of the multi-path reconstruction is judged against a much better reference than the free-
space reconstruction ( see Figure 3). As a result, the MSE of the multi-path does not correctly portray the
reconstruction improvement over the free-space reconstruction relative to the true object.
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Figure 4. Reconstructed images in the presence of additive noise. Top left: statistical reconstruction in free space with
SNR=20. Top right: statistical reconstruction in multi-path with SNR=20. Bottom left: deterministic reconstruction in
free space with SNR=20. Bottom right: MSE in the reconstructed images as a function of SNR.

The functions {U,} provide an orthogonal basis for the reconstruction. Furthermore, by virtue of being
eigenfunctions of H*H, they yield a representation of the reflectivity function where the terms associated with
large eigenvalues correspond to the most visible parts. In this sense, computing a reconstruction based on only
the terms corresponding to the largest eigenfunctions will yield a compressed representation of the image which
contain only the most significant features — significance being quantified by their L? norm. Additionally, by
orthogonality each additional term which is computed for our imaging algorithm will provide reconstruction of
the reflectivity function in a new subspace of L2(£2). In this sense our reconstruction is efficient.

If the template fields U,s* are computed off-line, the inversion is efficiently implemented as a set of inner-
products independently computed for each array element. This means that a significant part of the computation
can be performed in a decentralized fashion on each array element. Since the reconstructed reflectivity function
is expanded in terms of the basis functions, only the coefficients in this expansion need to be communicated from
each element. This combination of distributed processing and compressed information representation is desirable
in applications where the communication bandwidth from each aperture element is limited.

If the additive noise is white, then £ is a diagonal operator. Furthermore, if our distributed aperture is
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organized such that the basis functions {U,} that are used for reconstruction corresponds to the basis functions
{V,} for our reflectivity function model, then we see that the optimal reconstruction in the presence of noise is
obtained by Tikhonov regularization of the inversion formula given in Eq. (17).

Note that if the reflectivity function has non-zero mean, the MMSE reconstruction formula of Eq. (27) can be
obtained by using a minimum variance estimate criterion. In this case the MSE includes a bias term in addition
to the one given in Eq. (25).16

Acknowledgments

We are grateful to Air Force Office of Scientific Researcht (AFOSR) and the Defense Advanced Research Projects
Agency (DARPA) for supporting this work under the agreements FA9550-04-1-0223, FA9550-07-1-0363, FA9550-
06-1-0017 and FA8750-05-2-0285.

REFERENCES

[1] F. Natterer and F. Wbbeling, Mathematical Methods in Image Reconstruction, SIAM, USA, 2001.
[2] R. Adve, R. Schneibler, G. Genello, and P. Antonik, “Waveform-space-time adaptive processing for dis-
tributed aperture radars,” in Proc. 2005 IEEE Radar Conf., pp. 93-97, 2005.
[3] R. Adve, R. Schneibler, and R. McMillan, “Adaptive space/frequency processing for distributed apertures,”
in Proc. 2008 IEEE Radar Conf., pp. 160-164, 2003.
[4] R. Adve, “Sub-optimal adaptive processing for distributed aperture radars,” in Proc. 2nd Waveform Diver-
sity Workshop, pp. 160-164, (Verona, NY), 2003.
[5] E. Fishler, A. Haimovich, R. Blum, L. Cimini, D. Chizhik, and R. Valenzuela, “Spatial diversity in radars
- models and detection performance,” IEEE Trans. Sign. Processing 54(3), pp. 823-238, 2006.
[6] I. Bekkerman and J. Tabrikian, “Target detection and localization using MIMO radars and sonars,” IEEE
Tran. Signal Proc. 54(10), pp. 3873-3883, 2006.
[7] A. Fletcher and F. Robey, “Performance bounds for adaprive coherence of sparse array radar,” in Proc. of
11th. Conf. Adaptive Sensors Array Processing, Lexington (MA), March 2003.
[8] D. Rabideau, “Ubiquitous mimo digital array radar,” in Proc. 87th Asilomar Conf. Signals, Systems, Com-
puters, 2003.
[9] E. Bond, S. Hagness, and B. Veen, “Microwave imaging via space-time beamforming for early detection of
breast cancer,” IEEE Trans. Ant. Prop. 51(8), pp. 1690-1705, 2003.
[10] M. Dennison and A. Devaney, “Inverse scattering in inhomogeneous background media: II. multi-frequency
case and svd formulation,” Inverse Problems 20, pp. 13071324, 2004.
[11] A. Devaney and M. Dennison, “Inverse scattering in inhomogeneous background media,
lems 19, pp. 855-870, 2003.
[12] B. Yazic1 and G. Xie, “Wideband extended range-Doppler imaging and waveform design in the presence of
clutter and noise,” IEEE Trans. Inf. Theory 52(10), 2006.
[13] H. Engl, M. Hanke, and A. Neubauer, Regularization of inverse problems, Kluwer Academic Publishers,
Netherlands, 2000.
[14] T. Varslot, B. Yazici, and M. Cheney, “Wide-band pulse-echo imaging with distributed apertures in multi-
path environments,” Inverse Problems , 2008. (submitted).
[15] P. Todorovic, An introduction to stochastic processes and their applications, Statistics, Springer-Verlag, New
York, 1992.
[16] B. Yazici, M. Cheney, and C. E. Yarman, “Synthetic aperture inversion for an arbitrary flight trajectory in
the presence of noise and clutter,” Inverse Problems 22(5), pp. 1705-1729, 2006.
[17] C. E. Yarman, B. Yazici, and M. Cheney, “Bistatic synthetic aperture radar imaging with arbitrary trajec-
tories,” IFEE Transactions in Image Processing 17, pp. 84-93, January 2008.

? Inverse Prob-

fConsequently, the US Government is authorized to reproduce and distribute reprints for governmental purposes
notwithstanding any copyright notation thereon. The views and conclusions contained herein are those of the authors
and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied,
of the Air Force Research Laboratory or the US Government.

Proc. of SPIE Vol. 6970 69700J-11

Downloaded from SPIE Digital Library on 07 Jun 2010 to 128.113.26.88. Terms of Use: http://spiedl.org/terms



