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ABSTRACT

The inverse problem of fluorescence diffusse optical tomog-
raphy (FDOT) is often highly ill-posed, which needs regular-
ization techniques. In this paper, we propose a combined l1-
l2-norm regularization method to address the ill-posed FDOT
inverse problem. Compared with the traditional Tikhonov
regularization, the proposed method is able to effectively
remove the noise in the reconstructed image without much
over-smoothness. The performance of the proposed method
is demonstrated in 3D numerical simulation.

Index Terms— optical imaging, reconstruction

1. INTRODUCTION

The inverse problem of fluorescence diffusse optical tomog-
raphy (FDOT) requires reconstruction of 2D or 3D fluo-
rophore map inside the imaging domain using boundary
measurements obtained at the emission and excitation wave-
lengths [1]. However, the number of measurements available
is usually insufficient. Furthermore, the solution is not stable,
i.e., a small perturbation in the measurement data can result
in large deviations in the solution [1]. Thus, regularization
techniques are usually necessary.

In the FDOT, the fluorophore yield, which is propor-
tional to the fluorophore concentration, often has large value
in a small foreground region, and is close to zero in the
background [2]. The most widely used Tikhonov regulariza-
tion with a quadratic regularization function imposes heavy
penalty on large argument values, which often leads to over-
smoothing in the foreground region [3]. A regularization
function that increases less rapidly for large argument values
than quadratic function works better to preserve the fore-
ground region [2, 4]. However, such penalty function might
be insufficient in smoothing out large spikes of noise, which
is possible to exit in the reconstructed image due to the ill-
posedness of the forward matrix and the measurement noise.
In this work, we propose a new regularization function that
combines both the quadratic regularization and the l1-norm
regularization, which we refer to as the combined l2-l1-norm
regularization in the following discussion. The proposed
method is capable of preserving large argument values in the

foreground region while effectively removing noise in the
reconstructed image. We demonstrate the performance of the
proposed method by 3D numerical simulation.

2. FDOT IMAGING PROBLEM

The FDOT inverse problem involves reconstructing unknown
fluorophore yield, which is proportional to the fluorophore
concentration, from the boundary measurements. Given Ns

sources and Nd detectors, the measurement Γi,j of the jth
detector due to ith source is given as follows [1],

Γi,j =

∫
Ω

g∗j (r)ϕi(r)µ(r)dr, (1)

where Ω is the imaging domain, ϕi(r) is the excitation light
field due to the ith source, g∗j (r) is the Greens function of the
jth detector, and µ(r) is the fluorophore yield. We discretize
the domain into N voxels, and obtain the discretized form,

Γ = Aµ, (2)

where y ∈ RM (M = Ns ×Nd) is the measurement vector,
A ∈ RM×N is the vector-valued forward operator, and µ ∈
RN is the discretized fluorophore yield.

Regularization techniques are often applied to solve for µ,
which trades off the quadratic error of the measurement with
a regularization function R(µ),

µ̂ = arg minµ ∥y −Aµ∥2 + λR(µ), (3)

where λ is the regularization parameter. If R(µ) is continuous
and differentiable, (3) can be easily solved by gradient based
method, such as the nonlinear conjugate gradient method [5].

3. THE COMBINED L2-L1-NORM
REGULARIZATION

In this section, we propose a combined l2-l1-norm regulariza-
tion. Assume that the amplitude of µ in the foreground region
are approximately in a known range [α, β], which can be de-
termined from empirical values. The combined l2-l1-norm
regularization imposes small penalty when α ≤ µi ≤ β, and
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large penalty when µi /∈ [α, β]. The regularization function
R(µ) is the summation of the cost functions of each voxel,

R(µ) =
N∑
i=1

r(µk), (4)

where r(µk) is the cost function of the µk. r(µk) has the fol-
lowing properties: (i) r(µk) is continuous and differentiable,
∀µk ∈ R, (ii) r(µk) has large quadratic penalty when µk /∈
[α, β], (iii) r(µk) has l1-norm penalty when µk ∈ [α, β].
Based on the properties listed above, r(µk) is given by

r(µk) =


aµ2

k

2ϵ , |µk| ≤ ϵ;
a|µk| − aϵ

2 , ϵ ≤ |µk| ≤ ϵ′;
c2µ

2
k + c1|µk|+ c0, |µk| > ϵ′,

(5)

where ϵ and ϵ′ are two constants satisfying 0 < ϵ < α < ϵ′ <
β. a, c0, c1 and c2 are constant parameters chosen such that
R(µ) is continuous and differentiable,

a = (2λα2)/(2α− ϵ), (6)

c2 = (λβ2 − aβ +
aϵ

2
)/(β − ϵ′)2, (7)

c1 = a− 2ϵ′c2, (8)

c0 = c2ϵ
′2 − aϵ

2
. (9)

4. NUMERICAL SIMULATION RESULTS

Fig. 1. Phantom configuration.

In this section, we present 3D numerical simulation re-
sults. The simulated imaging domain is a 6× 6 × 6 cm3 cu-
bic region, with sources and detectors uniformly distributed,
as shown in Fig.1. The measurements are corrupted by i.i.d
Gaussian noise with 30dB signal to noise ration (SNR). The
fluorophore is concentrated in the center of radius 0.5cm.

Fig.2(a) shows the cross section of the original phan-
tom. Reconstruction results of the Tikhonov regularization
is shown in Fig.2(b) with severer over-smoothing. Fig.2(c)
shows the reconstruction result of the proposed combined
l1-l2-norm regularization. Fig.2(c) has much less over-
smoothness and clear foreground region.

The mean square error (MSE) between the reconstructed
fluorophore map and the original phantom is shown in Fig.3.
The combined l2-l1-norm regularization has a much lower
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(c) Combined l2-l1-
norm

Fig. 2. Cross section of the original phantom and the recon-
struction results.

MSE compared to the Tikhonov regularization at different
SNR levels. The MSE analysis matches visual results.

60 50 40 30 20
3

4

5

6

7

8

9

10
x 10

−7

SNR(dB)

MS
E

Tikhonov
l
1
−l

2
−norm

Fig. 3. MSE-SNR plot of the reconstruction results.

5. CONCLUSION

In this work, we propose a combine l1-l2-norm regulariza-
tion technique to address the ill-posed FDOT inverse problem.
Numerical results show that the proposed method is able to
preserve the fluorophore region, and effectively remove large
spike of noise without much over-smoothing.
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