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Abstract—We introduce a forward model for the cone-beam
X-ray Computed Tomography projection data measured in
native geometries as a Fourier Integral Operator and present
a corresponding filtered-backprojection type inversion formula.
Our model and inversion formula can accommodate arbitrary
source trajectories, arbitrary detector plane orientation, detector
surface geometries, and other system related parameters. When
the model parameters are chosen such that the forward model
is equivalent to the cone-beam transform with helical or circular
source trajectory, the inversion formula leads to the well-known
Feldkamp’s method with the one-dimensional filtering in the
tangential direction. In the final version of the manuscript we
will present validation of the inversion formula using the cone-
beam projection data generated using GE’s software package
CatSim.

I. INTRODUCTION

In practice, most of the existing cone-beam reconstruction
methods are designed for the circular and helical source
trajectories. They utilize a standard data acquisition geometry,
in which the detector plane is perpendicular to the central
ray, and parallel to the axial-axis. However, reconstruction
methods for more general source trajectories and detector
plane orientations are desirable in various applications [1]
[2] [3]. In this paper, we introduce a new analytic forward
model for the cone-beam projection data obtained in its native
geometries in the form of a Fourier Integral Operator (FIO).
The model reduces to the standard cone-beam transform when
the amplitude term of the FIO is set to a certain function. We,
next, introduce a filtered-backprojection (FBP) type inversion
method for the new forward model. The model and the
associated inversion method can accommodate arbitrary source
trajectories, detector surface geometry and orientation, and
other system related parameters, such as the physical detector
size and the focal spot size. When the source trajectory is
restricted to a helix and when the detector surface is planar
with the cone axis perpendicular to the detector plane, our in-
version formula reduces to the Feldkamp’s (FDK) formula for
the helical trajectory with one-dimensional tangential filtering.

Our approach has several advantages as compared to the
idealized X-ray transform and associated inversion methods:
1) The new forward model can provide a more realistic
representation of the cone-beam CT projection data than the
idealized X-ray transform. As a result, our inversion method
can provide a better reconstruction method than that of ap-
proximate or exact X-ray transform inversion methods. 2)
Our model and inversion method can accommodate arbitrary
imaging geometries including source trajectory, detector sur-
face geometries and orientations. 3) Our model and inversion

formula are both analytic and can be implemented computa-
tionally efficiently with the computational complexity of fast-
backprojection algorithms [4]. 4) The measurement noise and
a priori object statistics can be incorporated into our model
and reconstruction formula [5]. 5) The point spread function
of our reconstruction formula can be studied by microlocal
analysis.

The paper is organized as follows: In Section II, we intro-
duce the cone-beam transform for arbitrary source trajectories
and briefly describe the general FIO-based model for cone-
beam projection data. In Section III, we present our FBP-type
inversion formula. In Section IV, we show the equivalence
of our inversion formula with the FDK’s method for the
circular source trajectory and comment on the relationship
of our method to other methods. Section IV concludes our
discussion. In the final version of the manuscript, we will
present simulation results using the X-ray CT simulation
package CatSim developed by GE.

II. CONE-BEAM TRANSFORM AS A FOURIER INTEGRAL
OPERATOR IN ITS NATIVE GEOMETRY

We consider the imaging geometry shown in Fig.1. We

Fig. 1: Local coordinate system for the cone-beam projection
measurements for a planar detector geometry. Vectors
d̂1 and d̂2 are parallel to the u1 and u2 axis of the
detector plane, and the vector d̂3 is orthogonal to the
detector plane. d̂3 is the unit vector pointing from the
source location γ(s) to the point whose location is
(0, 0) on the detector plane.

assume a coordinate system where the x−axis is perpendicular
to the axial plane spanned by the unit vectors along x1- and
x2-axes shown in Fig.1. We assume that the detector plane is
perpendicular to the axial plane. Furthermore, we assume that
the horizontal axis of the detector plane remains parallel to
the tangent vector of the source trajectory; and the cone axis



is perpendicular to the detector plane. These assumptions are
all consistent with the practical X-ray CT systems.

Let γ(s) ∈ R3, s ∈ [s0, s1], be a smooth trajectory for the
X-ray source, and S2 be the unit sphere in R3. Let r̂ ∈ S2 be
the unit vector originating from the source position γ(s). We
define the local coordinate system shown in Fig.1 as follows:

d̂1 = Ĥγ̇(s)

d̂2 = [0, 0, 1]T (1)

d̂3 = d̂2 × d̂1

where H =




1 0 0
0 1 0
0 0 0


.

We assume that the detector array consists of Nr × Nc

detector units. We use the pair [u1, u2] to indicate the detector
position, which are signed distances along d̂1 and d̂2. We
assume that the axis of the cone when the source is at γ(s)
intersects the detector plane at the [u1, u2] = (0, 0) of the
detector plane. Let D be the distance between the source and
the detector plane. Given the source location and the distance
D, [u1, u2] can be determined by the rotation angle s.

The line equation of the X-ray, which goes through x and
projects onto [u1, u2] in the detector plane, can be defined as
the intersection of the following two planes:

u1 = D
(x− γ(s)) · d̂1

(x− γ(s)) · d̂3

(2)

u2 = D
(x− γ(s)) · d̂2

(x− γ(s)) · d̂3

. (3)

Thus, we write the cone-beam transform as follows:

d(u1, u2, s) =
∫

δ(u1 −D
(x− γ(s)) · d̂1

(x− γ(s)) · d̂3

)

δ(u2 −D
(x− γ(s)) · d̂2

(x− γ(s)) · d̂3

)

× D2|x− γ(s)|
((x− γ(s)) · d̂1)3

f(x)dx. (4)

To simplify our notation we define

ρ1(x, s) := D
(x− γ(s)) · d̂1

(x− γ(s)) · d̂3

ρ2(x, s) := D
(x− γ(s)) · d̂2

(x− γ(s)) · d̂3

ρ(x, s) := [ρ1(x, s), ρ2(x, s)]

and

u := [u1, u2]

A(x, s) :=
D2|x− γ(s)|

((x− γ(s)) · d̂1)3
.

We rewrite Eq. (4) as follows:

d(u, s) =
∫

δ(u− ρ(x, s))A(x, s)f(x)dx. (5)

Alternatively, we can express (5) as:

d(u, s) = F [f ](u, s)

:=
1

4π2

∫
eiω·(u−ρ(x,s))A(x, s)f(x)dωdx. (6)

Eq. (6) shows that the cone-beam transform F is an FIO
[6] with its phase term equal to

φ(ω,x,u, s) = ω · (u− ρ(x, s)) (7)

and its amplitude term equal to

A(x, s) =
D2|x− γ(s)|

((x− γ(s)) · d̂1)3
.

Since the critical points of the model in (7) are given by
the line passing through the source and the point [u1, u2] on
the detector plane, we define the general forward model for
the cone-beam projection data by the following model:

d(u, s) = F [f ](u, s)

=
1

4π2

∫
eiω·(u−ρ(x,s))A(ω,x,u, s)f(x)dωdx

(8)

where the amplitude factor A is a slowly decaying function
that depends on the underlying system parameters and geo-
metric correction factors. Note that the amplitude factor in (8)
depends not only on x and s, but also on ω and u.

III. A FBP-TYPE INVERSION OF THE CONE-BEAM
TRANSFORM

We form an image by means of a filtered-backprojection
operator as follows:

I(z) = K[d](z)

=
∫

e−iφ(ω,z,u,s)Q(ω, z, s)d(u, s)dωduds (9)

where I(z) is the reconstructed image, K is the filtered-
backprojection operator, and Q is the filter to be determined
below.

Substituting (6) into (9), we obtain

I(z) = KF [f ](z) =
∫

L(z,x)f(x)dx (10)

where

L(z,x) =
∫

ei(φ(ω,x,u,s)−φ(ω′,z,u,s))A(x, s)

Q(ω′, z, s)dωdω′duds. (11)

Applying the method of stationary phase and evaluating the
du integration above, we obtain

L(z,x) =
∫

eiω·(ρ(x,s)−ρ(z,s))A(x, s)Q(ω, z, s)dωds.

(12)

The kernel L of KF is the point spread function (PSF) of
the imaging operator K. L(z,x) represents the reconstructed
image at pixel z due to a point object located at x.

Let
ϕ(z,x,ω, s) = ω · (ρ(x, s)− ρ(z, s)) . (13)



The main contributions to L(z,x) come from the critical
points of the phase of KF , satisfying the following conditions:

∂ϕ

∂ω
= 0 ⇒ ρ(x, s) = ρ(z, s) (14)

∂ϕ

∂s
= 0 ⇒ ∂sρ(x, s) = ∂sρ(z, s). (15)

Thus, we recover the singularities of the object at the intersec-
tion of the locus points of the two three-dimensional manifolds
defined above.

Assuming that the only contribution to the pixel at z comes
from x, we approximate ϕ as follows:

ϕ(z,x,ω, s) ≈ (z− x) · ∇ϕ(z,x,ω, s)
= (z− x) · ∇ω · ρ(z, s)|z=x. (16)

Let

ξ = ∇ω · ρ(z, s)|z=x. (17)

We now make the following change of variables:

(ω, s) → ξ

and obtain

I(z) ≈
∫

Ωz

ei(z−x)·ξ | ∂(ω, s)
∂ξ

| A(z, s(ξ))

Q(ω(ξ), z, s(ξ))f(x)dξdx (18)

where |∂(ω,s)
∂ξ | is the determinant of the Jacobian that comes

from the change of variables in (17), and s(ξ) and ω(ξ)
represent s and ω in terms of ξ; and Ωz is the data collection
manifold defined as

Ωz = {ξ = ∇ω ·ρ(x, s)|x=z | |∂(ω, s)
∂ξ

| 6= 0 & A(ω, z) 6= 0}.
(19)

We determine the filter Q so that the kernel L of the PSF
is approximately a Dirac-delta function, i.e.,

L(x, z) ≈ δ(x− z).

We set

Q(ξ, z) =
χΩ

A(s(ξ), z)
| ∂ξ

∂(ω, s)
|, ξ ∈ Ωz (20)

where χΩz is a smooth cut-off function that prevents division
by zero.

With this choice of filtering, the inverse map K reconstructs
the visible singularities of the object not only at the right
location and orientation, but also at the right strength.

The ξ vector is given as follows:

ξ = ∇ω · ρ(x, s)|x=z

=
D

C2
3 (x, s)

ω ·
[

d̂1C3(x, s)− d̂3C1(x, s)
d̂2C3(x, s)− d̂3C2(x, s)

]
(21)

= D{ ω1

C3(x, s)
d̂1 +

ω2

C3(x, s)
d̂2

−[
ω1C1(x, s) + ω2C2(x, s)

C2
3 (x, s)

]d̂3}

where Ci(x, s) = (x − γ(s)) · d̂i, i = 1, 2, 3. Note that
C3(x, s) = 0 corresponds to the case when the cone angle is

90 degrees, which is an unrealistic setting for all practical pur-
poses. The vector ξ can be viewed as the Fourier component
that contributes to the reconstruction of the pixel at z when
the source is at γ(s). The vector ξ and the data collection
manifold Ωz determine the resolution as well as many of the
properties of the reconstructed image. Fig. 2 illustrates the ξ
vector.

Fig. 2: The vector ξ represents the Fourier component con-
tributing to the reconstruction of the object at x.

IV. INVERSION FORMULA FOR THE CIRCULAR SOURCE
TRAJECTORY

In this section, we discuss the equivalence of our inversion
method to the existing approximate methods [7] for the
circular source trajectory.

For the circular trajectory, γ(s) is given as follows:

γ(s) = [Rcos(s), Rsin(s), 0], s ∈ R3, (22)

where R denotes the radius of the circle. Substituting Eq. (22)
and its derivative into Eq. (1), we obtain




d̂1

d̂2

d̂3


 =



−sin(s) cos(s) 0

0 0 1
−cos(s) −sin(s) 0


 .

Thus, for the circular trajectory, the filter in Eq. (20) becomes

Q(ω, z, s) =
DR

C3(z, s)|z− γ(s)| |ω1|. (23)

Substituting Q into Eq. (9), we obtain the FBP-type inversion
formula for the circular source trajectory given as

I(z) =
∫

e
i(ω1D

(z−γ(s))·bd1
(z−γ(s))·bd3

+ω2D
(z−γ(s))·bd2
(z−γ(s))·bd3

)

DR

C2
3 (z, s)|z− γ(s)| |ω1|d̂12(ω1, ω2, s)dsdω1

where

d̂12(ω1, ω2, s) =
∫

d(u1, u2, s)e−i(ω1u1+ω2u2)du1du2 (24)

is the Fourier transform of d(u1, u2, s) with respect to u1,u2

variables.



We rewrite the original FDK’s formula using the local
coordinate system introduced above and obtain:

I(z) =
∫

ei(ω1u1+ω2u2)
RD2

√
D2 + u2

1 + u2
2[R + z · d̂3]2

d̂12(ω1, ω2, s)|ω1|dω1dω2ds (25)

where u1 and u2 indicate the projection location on the planar
detector plane of the reconstructed point z, which are given
as

u1(z) =
Dz · d̂1

R + z · d̂3

u2(z) =
Dz · d̂2

R + z · d̂3

.

We now compare the weighting factor and the one-
dimensional filter of the FDK’s formula to the filter in our
inversion formula. From the CT scanner geometry, we have

C3(x, s)
D

=
|x− γ(s)|√
D2 + u2

1 + u2
2

(26)

|x− γ(s)| = C3(x, s)
√

D2 + u2
1 + u2

2

D
(27)

C3(x, s) = R + z · d̂3. (28)

Inserting the above three relationships into our filter, we obtain
the familiar weighting factor and the one-dimensional filter in
the FDK’s formula:

Q(ω, z, s) =
D

C3(x, s)|x− γ(s)| |Rω1|

=
D2R

[R + z · d̂3]2
√

D2 + u2
1 + u2

2

|ω1|. (29)

V. SIMULATION STUDY OF THE INVERSION FORMULA

To validate our analytic derivation, we performed the re-
construction of the FORBILD-like thorax phantom using our
formula. The simulation results will be included in the final
manuscript.The number of views per rotation: 984; the number
of detector columns: 888; the detector size: 1 mm×1 mm; the
thickness of each slice in z- direction: 0.625 mm; the distance
from source to detector: 949 mm; and the distance from the
origin to the detector plane: 545 mm.

The reconstructed image size is 512×512, and the pixel size
in each slice is 0.25 mm×0.25 mm.

The reconstructed image is are shown in Fig. 3. The
visual comparison and the comparison of the cross section
of the reconstructed images show that t our inversion formula
produce the acceptable images.

Fig. 3: Left: original center slice. Right :the reconstructed
thorax phantom using our formula

VI. CONCLUSION

We present a new model for the cone-beam projection
data in its native geometries and an FBP-type analytic re-
construction method for the model. Our model and inver-
sion formula can accommodate arbitrary source trajectories,
arbitrary detector orientation, detector surface geometry and
other system related parameters. We showed the equivalency
of our inversion formula to the FDK’s formula for the circular
trajectory both analytically and numerically.

In the final version of the manuscript we will present valida-
tion of the inversion formula using the cone-beam projection
data generated using GE’s software package CatSim.
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