
IEEE Industrial Applications Society 
Annual Meeting 
New Orleans, October 5-9, 1997 

An Adaptive, On-line, Statistical Method for Detection of Broken Bars 
In Motors Using Stator Current and Torque Estimation 

Birsen Yazici, Gerald B. Kliman, William J. Premerlani, 
Rudolph A. Koegl, and Aiman Abdel-Malek 

General Electric Company 
Corporate Research and Development Center 

Niskayuna, NY 12309 
Phone: (51 8) 387-7247 Fax: (51 8) 387 - 5975 E-mail: yazici@crd.ge.com 

Abstract In this paper, we propose an adaptive 
statistical time-frequency method to detect broken 
bars using digital torque estimation. The key idea 
in the proposed method is to transform motor 
current into a time-frequency spectrum to capture 
the time variation of the frequency components 
and to analyze the spectrum statistically to 
distinguish fault conditions from the normal 
operating conditions of the motor. Since each 
motor has a distinct geometry, we adapt a 
supervised approach in which the algorithm is 
trained to recognize the normal operating 
conditions of the motor prior to actual fault 
detection. To estimate the broken bar frequencies, 
we utilize the digital torque estimator. 

1. INTRODUCTION 

In motor current based fault detection, there are two 
main issues: 

How to adapt the detection algorithm to the time 
varying normal operating conditions of the motor? 
How to estimate the fault frequencies in the 
absence of motor geometry information and 
variable speed? 

The prior methods reported in the literature differ mainly 
in the way they address these issues. They can be 
categorized into two classes: Although the early 
methods recognized the nonstationary nature of he 
motor current, these methods employed Fourier 
analysis compromising the accuracy of the detection. In 
[l], the broken bar frequencies are estimated using the 
axial leakage flux data. In [3], the frequencies of interest 
are estimated directly from the current spectrum. With 
the recent advancement of new signal processing 
techniques, methods adaptable to time varying normal 
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operating conditions have been proposed [4]-[5]. These 
methods utilize rule based expert systems and neural 
networks to achieve adaptive detection. However, these 
operations are performed in the Fourier transform 
domain which compromises the nonstationary nature of 
the data. 

In this paper, we propose a statistical, time-frequency 
method which utilizes torque estimation to detect 
broken bars. The method consists of four stages: In the 
preprocessing stage, analog current data is low pass 
filtered to prevent aliasing and digitized. Next, the time- 
frequency spectrum of the data is computed and fed 
into the training stage. In the training stage, broken bar 
frequencies are estimated and a window of frequency 
components around the estimated fault frequencies are 
selected to form a feature vector. Next, feature vectors 
are segmented into homogenous normal operating 
modes along the time axis in time-frequency space 
using the digital torque estimation. The segmented 
feature vectors are used to determine a mode 
representative and threshold. After all possible normal 
operating modes of the motor are monitored, the testing 
stage starts. In this stage, the motor current data is 
periodically acquired and is subjected to the 
preprocessing and feature extraction methods 
described in the training stage. The distance of the test 
feature vector to the representatives of each mode are 
computed and the resulting distances are compared 
with the respective thresholds. If any of the distances is 
larger than the threshold, the test measurement is 
tagged as a potential fault signal. In the post processing 
stage, the testing process is repeated for a number of 
measurements to increase the accuracy of the final 
decision. A three dimensional illustration of the method 
is shown in Figure 1. 
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The proposed method has the following advantages: 
The. method adapts itself to the varying operating 
conditions of the motor to be tested, thereby 
offering a more accurate detection of the fault than 
PI. 
By use of time-frequency spectrum in the analysis, 
difficult cases, such as coal crushers where speed 
varies instantly, may be efficiently handled. 
Unlike the prior art [2]-[3], the proposed method 
does not require axial flux leakage data or refined 
guesses to compute the broken bar frequencies. 
Instead, it utilizes the digital torque estimator [6]. 
The proposed method does not require a high 
resolution frequency spectrum. The statistical 
measure adapted at the testing stage takes into 
account the spread or the resolution of each 
frequency component. This may reduce the 
memory required to compute a high resolution 
frequency spectrum. 
For the detection of broken bars only very limited 
frequency ranges are required, typically within a few 
slip frequencies around first few harmonics. 
Consequently the required computational load is 
substantially reduced for frequency ranges set by 
the torque based estimator. 
Restriction of the frequency range and the 
knowledge of speed help exclude extraneous 
components. Thus reducing the false alarms when 
load oscillations and other interference phenomena 
are present. 
By first identifying and isolating the broken bar and 
bearing frequency components, they may be 
excluded from further analysis. Thus reducing the 
computational load and simplifying the analysis of 
rest of the frequency components when looking for 
other type of faults. 
Finally, the proposed framework is applicable to any 
motor fault which causes rotor asymmetries. 

II. TRAINING 

The first step in the training stage is the estimation of 
the broken bar frequencies in the current spectrum. In 
motor theory, it is well known that broken bar faults 
show up as side band frequencies of the first, fifth, 
seventh and higher order harmonics [1]-[4]-[7]. These 
frequencies are given by the following formula: 

fb& = f, [(;;)*SI, k - k=1,2,3 ,... 

where f ,  is the electrical supply frequency, s is per unit 
slip and p is the number of poles. Note that due to the 
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normal winding conditions only those frequencies for 
which 2k/p = 1,5,7,11,13, ... appears in the stator 
current with significant amplitude. 

From the name plate of the motor, one can determine 
the number of poles. However, the slip s changes with 
the mechanical speed of the motor which is not readily 
available. The relationship between the mechanical 
speed and the slip is given by the following equations: 

s=l--, f m  f,=- 2fS 
f W  P 

where fm is the mechanical speed, and f, is the 
synchronous speed. 

The digital torque estimator provides a simple solution 
for the estimation of the mechanical speed and the slip 
[4]-[8]. The technique is illustrated in Figure 2. The 
number of poles provides the means to estimate the 
synchronous speed from torque-speed curve. This 
estimate is given by point #1 in Figure 2. Also the rated 
torque and the rated speed of the motor can be 
obtained from the name plate as shown by point #2. A 
straight line connecting points 1 and 2 is a sufficient 
approximation to the motor torque-speed curve in the 
normal range of loads. The torque estimator finds the 
actual steady state motor torque within 2% error which 
is shown by point #3. The mechanical speed of the 
motor then can be estimated by 

where Test is the estimated torque, T,, is the rated 
torque, and f, is the rated speed. This is now sufficient 
to establish the slip frequency within 2% error. 

In the absence of torque estimator, the broken bar 
frequencies can be estimated as in [7] which are given 
by the following formula: 

Rotor asymmetry, resulting from rotor ellipticity, 
misalignment of the shaft with the cage, magnetic 
anisotropy, etc. show up at the same frequency 
components as the broken bars and must be 
distinguished from the broken bar frequencies. This can 
be achieved by examining the sidebands of the higher 
harmonics. An asymmetry results in low high frequency 



anisotropy, etc. show up at the same frequency 
components as the broken bars and must be 
distinguished from the broken bar frequencies. This can 
be achieved by examining the sidebands of the higher 
harmonics. An asymmetry results in low high frequency 
content. In contrast, localized effects, such as a broken 
bar, result in large high frequency content. 

After estimating the broken bar frequencies, a window 
of frequency components around the estimates is 
selected to form the broken bar feature vector. 
Typically, the window is chosen such that at least 0.25 
Hz on each side of the estimate are included into the 
feature vector. Explicitly, the broken bar feature vector 
Fb,(n) at time instant n can be written as 

(2.5a) 

n=l,5,7,11, ... (2.5b) 

where S is the magnitude of thf time-frequency 
transformation, i.e., S(f,n)=(F(f,n)l , and w is the 
length of the window around the estimates f & ,  
n=1,5,7,11, ... in Hz/bin. Note that for n=l,  the slip 
frequency components are on both sides of the supply 
frequency due to the side band oscillations, but for 
higher harmonics, they are only on the lower side of the 
supply frequency. 

To identify the different normal operating modes of a 
motor, we segment the current into loadwise 
homogenous segments using the digital torque 
estimator. The time instants at which significant load 
changes occur are recorded and the time-frequency 
spectrum in each loadwise constant segment is 
computed. The sample mean and the covariance matrix 
of the feature vectors in each constant operating mode 
are chosen as the mode representatives. Also, the 
Bhattacharyya distance [9] between the distinct 
operating modes are calculated and stored in the 
database to be used in the postprocessing stage. 

To determine a threshold for each mode, we first 
calculate an intra mode distance between the members 
of the mode and its representative using the 
Mahalanobis distance [l 1 I. Next, the sample mean and 
standard deviation of the intra mode distances are 
calculated and a unit standard deviation away from the 
mean distance is chosen as the mode threshold. Note 
that in the case of normal distribution of the intra mode 

distances, a is typically chosen to be 2 to provide a 
95% confidence interval. 

111. TESTING AND POSTPROCESSING 

After all the normal operating modes of the motor are 
learned, the algorithm switches to the testing stage and 
starts acquiring current data periodically. The data is 
subjected to the preprocessing and feature extraction 
operations discussed in the training stage. Next, the 
distance of the test feature to the representatives of 
each normal operating mode is calculated using the 
Mahalanobis distance. If the test feature is beyond the 
thresholds of all the normal operating modes, it is 
tagged as a potential fault signal. Otherwise, it is 
assigned to the mode for which its distance is minimum. 

In the postprocessing stage, we check if the potential 
fault features form a distinct mode in the feature space. 
As the potential fault features are detected, the mean 
and covariance matrix of the test features are 
computed. The distance of the fault representatives and 
the normal operating modes is calculated using the 
Bhattacharyya distance to determine if the fault features 
form a distinct mode. If the shortest distance is larger 
than the distances between the normal operating 
modes of the motor, the fault mode is declared distinct 
and a final alarm is triggered for broken bars. 

IV. EXPERIMENTAL RESULTS 

For broken bar detection experiments, the archived data 
from a 35 HP inside out motor which was generated for 
the EPRl Broken Bar Project - EPRl RP2331-1 was 
used [2]. The analog current data was low pass filtered 
at 800 Hz, and digitized at 32 samples per power cycle. 
However, the algorithm does not require frequencies 
larger than 300 Hz, and sampling frequency can be as 
low as 6 samples per power cycle. Each data file in the 
experiments contains 8 channels which includes 3 
phase currents, 3 phase voltages, 60 Hz notch filtered 
first phase current, and accelerometer data. Notch 
filtered data was collected in anticipation of improving 
the dynamic range of the A/D converter. 

For the training stage, a 35 HP inside out motor 
operating in three different load and operating 
conditions was used. The specifications of these data 
sets are tabulated in Table 1. Note that for the healthy 
modes non zero label is used, the label 0 is reserved for 
the fault modes. The time-frequency spectrum of the 
training data is shown in Figure 3. The spectrum was 
computed so that the frequency resolution would be at 
least 0.2 Hz/bin. This yielded 6 strips of frequency 
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spectra per data set. The broken bar feature vector was 
formed by a window of frequency components around 
the first, fifth and seventh harmonic sidebands as 
described in Section 11. Figure 4 illustrates the [2] 
representatives of each mode around the fifth harmonic. 

In the testing stage, seven different sets of data three of 
which were from a non defective motor and four from 
motors with varying degree of broken bars, load 
conditions, and rotating asymmetries were used. The 
specifics of these data sets are tabulated in Table 2. 
Out of 42 tests performed, all were correctly classified 
resulting in 100% accuracy. The results are tabulated in 
detain in Table 3. 
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V. CONCLUSIONS 161 

In this paper, we discussed an adaptive time-frequency 
method to detect broken bars. The method utilizes 
digital torque estimation to divide current into loadwise 
homogenous modes and to estimated broken bar 
frequencies. We showed that a window of frequency 
components around the estimated fault frequencies has 
to be monitored because the estimates, even in the 
case of exact knowledge of the motor geometry and the 
operating conditions, are never accurate. This approach 
also allows us to efficiently process frequency [IO] 
components which are spread due to low frequency 
resolution. 
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FIGURE 1. 
THREE DIMENSIONAL ILLUSTRATION OF THE FAULT DETECTION METHOD 
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FIGURE 2. 
TORQUE-SPEED CURVE FOR MECHANICAL SPEED ESTIMATION 
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FIGURE 3. 
TIME-FREQUENCY SPECTRUM OF THE NORMAL OPERATING MODES OF THE BROKEN BAR MOTOR. 
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"Test data and Representatives of the Modes 
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FIGURE 4. 
THE REPRESENTATIVES OF THE NORMAL OPERATING MODES OF 

THE BROKEN BAR MOTOR AROUND THE FIFTH HARMONIC AND 
A TEST FEATURE FROM THE MOTOR WITH BROKEN BARS. 
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