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ABSTRACT

In this paper, we present a stochastic deconvolution method for a
class of inverse problems that are naturally formulated as group
convebutions. Tixamples of such problems include Radon transform
inversion for tomography, radar and sonar imaging, as well as
channel cstimation in communications. Key components of our
approach are proup representation theoty and the concept of group
stationarity. We formulate 2 minimum mean square solution to the
deconvelution  problem in the presence of  nonstationary
measurement  noise. Qur  approach  incomporates a4 prori
information about the noise and the unknown signal into the
inversion problem, which leads to a natural regulatized solution.

L INTRODUCTION

“This work addresses a class of inverse problems that are naturally
formulated as group wmolutions. '1he concept of group convolution
arises naturally in an amazingly varied set of engineering scenarios.
‘These include ambiguity functions in radar and sonar, Radon
transform in tomographic image reconstruction, crror correcting
codes in communications, invadant template matching in pattcen
recognition, workspace estimation in robatics and texture analysis
of solids in mechanics, just to name a few [1}-[10]. Group
convolution operation can be viewed as a representation of the
input-output relationship of a lincar system, which has dynamics
invariant under the group composition law. As such, it is the
generalization of the classical convaolution integral associated with
the lincar time invariant systems, in which the underlying structure
18 the additive proup. Classical minimum  mcan  squarc
deconvolution techniques rely on the assumption of stationarity
and time invariance, and utilize the Fouricr transform to devdop
inverse filtering methods. Tn this work, we develop a stochastic
inverse filtering technique based on the minimum mean square
error crteria to solve the convolution integral cquation for a class
of locally compact groups of both  commutative and
noncommuuative type. This ¢lass of groups includes finite, compact
and alpebraic Fie groups, separable locally compact commutative
groups, and majerity of well-behaved Joeally compact groups. Key
components of our study are Pourier transforms on groups, and
the concept of group stationarity.

The partticular focus  of our  work  utdizes
noncommutative harmonic  analysis  over groups to  solve
convaolution integrals in a probabilistic setting. 1o the best of our
knowledge, there are limited number of studies in the literatace on
this specific topic. Tn [9] Naparst addressed the deconvolution over
the affine group in the context of wideband target density
estimation for sonar and radar applications. Tn (28] Chirikjian
developed a regularized solution for a specific convolution integral

0-7803-7663-3/03/$17.00 ©2003 IEEE

VI-577

equation over the Fuclidean motion group and demonstrated irs
application into the kinematic design of binary manipulators [5].
Both of these works address 2 specific problem in a deterministic
sctting. Our work addresses the deconvolution problem in a
probabilistic sctting for a broad range of topoelogical proups that
arise naturally in cngineering applications, Our minimum mean
square formulation also provides a natural regularization to the
mverse problem.

2. IMAGE RECONSTRUCTION PROBLEMS

In this section, we formulate radar and sonar mverse scattering
problem and Radon transform  inversion as  deconvelation
problems aver groups, Apart from the inverse problems in imaging
described here, group deconvolutions appear in varicty of other
engincering applications. For example, the ccho model described in
cquation {2.3a) can be utilized to model wide band wircless
communication channels, in which the reflectivity density function
is intcrpreted as the unknown communication channel. In [5] and
124], it was shown that the deconvolution problem over the
Fuclidean motion group arises in kinematic design of binary robot
manipulators and statistics of macromolecules. ‘T'he results that are

develaped in our study are directly applicable to these problems.

2.1 Radar and Sonat Image Reconstruction by Widcband and
Narrowband Processing

In radar and sonar imaging, the transmitter cmits  an
clectromagnetic signal. ‘The signal is reflected off a target and
deteeted by the transmitter/receiver as the echo signal. Assuming
negligible acecleration of the reflector, the wideband model of the
ccho from a poiat reflector is given as the time delayed and time-
scaled replica of the transmitted pulse [13)-[15]:

e(=Aef(s+1), (21)

where [ s the transmitted pulse, T is the time delay, and s is the
time scale or Doppler strerch. The teem Vi is needed if we
tequite, the energy of the echo signal is to be conscrved. It is given
as s={c—v)/{¢+1) where ¢ is the speed of the transmitted
signal propagating in 2 homogenous medinm and U s the radmal
velocity of the reflector. L'he nargowband model of the echo from a

point reflector is piven by
e(r)=flr—T)e™™ 22)

where f is the transmiited pulse, T is the time delay, and ® s
the frequency or Doppler shife.
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It is often desirable to smage a dense group of reflectors,
which may be several objects or a single object distributed in size.
This dense group of reflectors is then described by a reffecivity
density fanction. The received signal is modeled as a weighted average

[7]-[9]. For wideband signals, it is given as

()= [ [50 (J,T)fﬁ f[’ ‘T]ﬁ(n, @39

5 )8t
where Sy, (5,1) is the widcband reflectivity density function
associated with cach time delayed and time scaled version of the
transmitted signal. The narrowband model is given by

e ()= I TSN (0,1) f (+— 1) dTdm, (2.3b)

where S N(m,r) is the narrowband reflectivity density function
associated with cach time delayed and frequeney shifted version of
the transmutted signal.

The goal in radar and sonar imaging is to cstimate S, (5,7)
and S, (©,T) given the transmitted and the reccived signals,
T'ypically, the received echo in a radar or sonar system is very weak
due to dutter and system noise. Therefore, the detection at the
receiver side is performed by matched filtering, which amounts to
correlating the received echo with the transmitted pulse. When the
two echo models described in (2.3a) and (2.3b) are inserted into the
narrowband and widcband correlation reccivers, the resulting
outputs arc expressed as group convolution integrals. Tn the case of
wideband processing, it is the gffine gronp convolution, and in the
case of narrowband processing, it is the Heisenberg  group
convolation. We will demonstrate that the deconvolutdon
techniques described here provides 2 minimum mean square
estimate of the wideband and narrowband reflectivity density
functions.

2.2, Radon transform inversion for tomographic imaging

The Radon transform and its generalizations play an important role
in the tomographic image reconstruction problems in ficlds as
diverse as medical imaging, radar target shape estimation, and radio
astronomy. This problem is cquivalent to computing the inverse
Radon transform. Here, we show that Radon transform inversion
can be posed as a deconvolution problem over the Tuclidean
motion groups.

In X-ray computed tomography, an X-ray beam with known
energy is sent trough the object and the attenuated X-ray is
collected by an array of collimated detectors. The attenuation in the
final X-ray beam provides a means of determining the integral of
the mass density of the object along the path of the X-ray. In 2D,
the relationship between the mass density along the path and the
attenuation at angle @, and radius r, is given by the following
Radon transform:

p(r.0)= ]: Tf(x,j)ﬁ(r—xcosﬂ—ysine)dx@r . 2.4)

where 8 is the Dirac delta function. Similarly, in PR, SPRECT and
syathetic aperture radar (SAR), the line projections and the
attenuation coefficients are related by the Radon transform.

The Fuclidean motion group is the semi direct product of the
rotation group SO(N') and the additive group in 1 Redefining,
J(R,r)=F(r)8(R), where R is the two dimensional rotation
matrix, r= [x,J]T ,and £{Q,T)=8(¢-1), and ¢ is the vector in x
direction, it can be shown that the Radon transforms and its
generalizations can be written as an LEuclidean group convolution in
the following form:

pR)= [ k(gos ) (h)as,

AT(2)

= | &(RO",r-RO)F(0,1)d(2,1), 2=(R,r) (25)

1m{2)

2.he SE(2),

where J'E(Z) denotes the two dimensional Tuclidean motion
group, © denotes the group composition law and, 4(Q,T)
denotes the invariant measure on the Duclidean motion group. Qur
approach provides a minimum mean square solution to  this

problem in the presence of nonstationary measurement noisc.

3. THE CONCEPT OF CONVOLUTION AND
FOURIER ANALYSIS ON GROUPS

We shall indicate a group by G and its clements by g,4,.... ‘Lhe
group compositon law will ‘be written by goh,and wc shall usc e
for the identity element, for which ¢o g =gors= g for all elements
g of G. We shall indicate inverse clements by g7 so that
gleg=ygog ' =¢ forall clements g of G,

Tet LP (G,tfg) denote the Hilbert space of all complex
valued, square integrable functions on a group G, and let x and
S be two finite energy signals, then the convolution of x and f

are defmed as [19]:
(x* ) g)y= [ =) £ (h7 0 )b 3.1
¢

For a square' integrable function on arbitrary Tie group,
f(tf1 ° g) is called a translation in the same scnsc that (£ —1) is
a translation of a function defined on the real line. Note that in
general, the left and right translations are not equal.

From the perspective of group representation theory, Fourier
analysis deals with characterization of unitary represéntations as a
direct sum (integral) of irreducible unitary group representations.
This characterization is then utiized to define the Fourier
trans formation, which has the property of mapping convolution
integral to a multiplication in the transform domain. However, for
an arbitrary proup, such a characterization is far from unique.
Nonctheless, considerably satisfactory results can be obtained if
some restrictions are imposed on the group structure. Te was shown
that if the proup G 15 a separable, locally compact group of 'I'ype 1,
[20] unique characterizations of the unitary representations can be
obtained in terms of the irreducible unitary representations of the
group. Fortanately, most of the noncommutative groups of interest
in engineening applications, such as the Fudidean motion groups,
affine group, Heisenberg group fall into this category and admit
unique Fourier decomposition of functions.

Let U(g,A) be the A th irreducible unitary representation of
a scparable locally compact group of Type-I. ‘Then, the operator
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valued Fourier transform on G maps each f in 12 (G,dg) to the
family { i (l)} of bounded operators, where cach  f(R)
defined by

F(HR)=F(r)= ff (g A ), 3.2)

‘The collection of all A valuu. is denoted by G and is called the
dual of the group G. The collection of Foumer transforms
{j‘(?&.)} forall Ae G is called the speetrum of the function f .
An important property of the operator vajued Fourier
transform, reminiscent of the classical Fourier transform over the
reals, is that the group convolution becomes operator

multiplication on the Fourier side, more preciscly,

FUh* )M =F(LIRF (AR (3.3)

For locally compact commutative groups, all irreducible
representations of the group are one-dimensional. Hence, the
Fourter spectrum is scalar valued and appears similar to the classical

Fourter transform. The mversion formula, in this case, is given by

Fe)=[ FOXI (g.0)dh. 34
I
4. GROUP STATIONARY PROCESSES

These processes are nonstationary in the classical sense but exhibit
invariance under the right or left regular transformations of the
group. The author demonstrated in her carlier work that the special
cases of group stationary processes for the multiplicative and affine
group form suitable mathematical frameworks for modeling and
analysis of self-similar and multiscale processes {14}-[18).

Second order group stationarity is a weaker condition in
which, only the sccond order statistics of the random process is
requited to be invariant under the right or ieft regular
transformations of the group. Looscly speaking, second order
group stationary processes obey the following stracture [21]-[23]:

E[X (X (#)]=R(ge4"), ghcC @

where R is a positive definite function defined on the group

"T'he central fact in the analysis of group stationary processes is
the existence of spectral decomposition, which 1s facilitated by the
Fourier theory on groups. For compact groups, left pgroup
stationary processes admit the following spectral decomposition:

X(g)= Zfrarf(U(g,l)Z(l)) ’ (4.2a)

and
R(g)= Zz‘mfe U(_g,k)F(l)) with Zz‘race

where R() is the autocorrelation ﬁmctmn of the process,

(R))<eo (4.2b)

U(g, ) is the A th irreducible unitary representation of the group
G with dimension 4(A), Z(A) is a random matrix of dimension
d(l) and F(?\.) ts a bounded Hermitian positive definite operator
over G Tet

S(M)=FR)A)= [dR (g (g)).- (43b)

We shall refer to S as the spectral density function of a group
stationary process. This is a2 natural generalization of the spectral
density function defined for ordinary stationary processes.

5. WIENER FILTERING OVER GROUPS

Tn this section, we shall introduce a novel stochastic deconvolution
method over groups based on the Fourier theory of topological
groups. We shall pose the deconvolution problem within the
framework of minimum mean square error prediction, and develop
a Wicner filtering method to estimate unknown signals from noisy
measurements. While our results will be stated for the locally
compact groups of Type 1, special cases of finite, compact, and
commutative groups can be easily deduced from the main result.

et the forward model that relates the measurements y and
the unknown functon x arc given by the following convolution
integral:

(&)= fx(h)f (b7 o g)dr+n(g), G1)

where f: Gi) C is a known complex valued, square summable
function, # is an additive noise indexed by the group G, taking
values in the ficld of complex numbers C. Without loss of
generality, we assume that E[x(g)]=5[n(g)]=0. Then the
classical linear Wiener problem of recovering x from noisy
measurements ¥ can be posed as follows: Tind the linear filter
W : GXG— C such that the least squares error variance

(e.)=[E[e. ()] | (522
is minimized \;:hcrc
e, (g)= W (gh)pt)ar-x(g), (5.25)

g

and dh is the left Haar measure on the group G . Note that it is
implicit by the equation (5.2a) that the filter 7 is required to be
doubly squarc summable. Then, the solution to the above linear

least squares problem s provided by the followiag Wiencr-Hopt
type equation:
W (g.R,, (5,3 =R, (g.5). (5.3)
& N -
whete R, (s,8)=E[ y(5)(2)] a0d B, (2,6)=E[x(2)5()).

Alternatively,

(f*Rr)(g)ﬂR

where

W(p"og)ds, (5.43)

R (e}=R.(55)= B[ x(g)=()
R ()=R,(2.6)=E[ 5 gn(e

LV g,e):lV(g ,e)and f(‘g):f(‘gj‘ (5.4¢)

‘I'he following theorem states an explicit solution for the Wiener-

(5.4b)

Hopt cquation, which in turn lcads to the lincar least squares
recovery of the signal x .

Theorem : 1ot G be a separable locally compact group of ‘Lype-l,
and x(g) and ﬂ(g) , £ of G, be two zero mean left group
stationary processes, referred to as signal and noise, respectively.

VI-5719



Assume that the measurements obey the following convolution
integral and noise moded:

2(8)=[x(B)r (67 o g)ab+n(g)
B x()n(9)]=0, -

where the filter f beongs to L° (G,dg). ‘Then, the (thimufn

(5.54)

and

(5.5b)

linear least squares deconvolution filter 1F,, , minimizing (5.22) is
left group invariant and the estimate of the signal is piven as a
convolution integral

&(g)= [y (1), (57" o )b
G
‘The Fouricr transform of the optimal filter W7, is given as follows:
S - - ~ -1
W, (L= 5. 00 7 [ F RS ) () +5,M)] 654

where A€ G . Here, f is the Fourier transform of the convolution
filter f,and, f* denotes the adjoint of the operator f. 5, and
S, are operator valued spectral density funcdons of the signal and

(5.5¢)

noisc, respectively, The speetral density function of the least square
crrof berween the signal and its filtered estimare is given as

5, =(1-W, (A)](W)S. ()

where I denotes the identity operator.

Proof: See [25].

In [15], the author demonstrated the utlity of proposed
deconvolution method in designing a Wiener filter for sclf-similar
processes in which the underying group is the multiplicative group.
Detaled numerical studies showed that proposed method is
cffective in signal recovery embedded in self-similar noise.

(5.50)

6. CONCLUSIONS.

In this paper, we have shown how group representation theory can
be utilized to solve a class of inverse problems formulated as group
convoluttons. Classical deconvolution problem in the lincar time
invariant systems and signals framework is a special case of the
general deconvolution problem, in which the underdying structure
is the additive group. We broaden the cdlassical framework to
include wide range of groups of both commutative and
noncommutative type. ‘These include finite, compact, and a large
class of well-behaved locally compact groups that arise naturally in
engineering applications. We developed a minimum mean square
solution for the deconvolution problem using the group
representation theory and the concept of group stationarity. The
methodology described here can be implemented cfficiently using
the fast Fourer algorithms available for a varicty of groups [26]-
[27]. The research in this direction is on going and will be reported
in the future.
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