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ABSTRACT 
In this papcr, we prcscmt a stochastic dcconvolution mcthod for a 
class of invcrsc prr,hlemr that arc naturdly fomulatcd as p q  
ronwlutiom. Kanmplcs of such problcms includc Radon transform 
inversion for tcmography, radar and smar  imsging, 3 s  wcll as 
channcl cstimtion in communicatinns. Key componcnts of ow 
appmach BCC group reprcsmation thcor). and thc conccpt of group 
stntiooaritl.. Wc formulate 3 minimum mean squarc solution to thc 
deconvolution problem in thc prcscoce of nonstationaty 
measurmmt nokc. Our approach incorporates a priori 
information about thc noisc and thc unknown s i g n a l  into thc 
inversion pmblcm, which IC& t o n  nanml regulariicd snlutinn. 

1. INTRODUCTION 

s P class of invccsc pmblcms that arc nahlrally 
formulated as p Y ,  mnduhom 'Ihc cooccpt of group convolutiim 
arises naturally in an ammingly varied set o f  enginccting scenarios. 
'l'hesc include ambiguiq functions in ndar  and sonx, Radon 
transform in tomnpphic  imagc rcconstmction, crror carrccting 
codes in communications, iovahnt  tcmplatc matching in pattcm 
rccn&ion. workspacc estimation in robotics and tcxturc analysis 
nf solids in mechanics, just tn namc a fcw Ill-llOl. Croup 
convolution operation can hc vicwcd as a rcprcsentation of thc 
input-output relationship of a lincar systcm, which has dynamics 
invariant under thc group composition law. As such, it is  the 
p"xdiration o f  the classical cwwtilution intcprd associated with 
thc linwr timc invariant systcms, in which the underlying structure 
is the additivc group. Classical minimum m c m  squarc 
deconvolutim tcchniqucs rcly on the assumption of stadonarir). 
and time invariance, and utilize thc Pouricr transfnrm to dcvclop 
inverse filtcring mahodr. In this work. wue develop a stochastic 
invcrsc filtciing tcchniquc based on thc minimum mcm square 
crroc criteria to solvc thc c<mmhtinn intcgral cquation for B d n r r  
of  locally compact groups of both commutativc and 
noncommuativc t y c .  'lhis class of groups includes finitc. compact 
and algcbcbclic I .ic groups, separable locally compact commutativc 
goups, and mnicirir). of wcU-hchavcd locdly compact groups. Kcy 
comprmcnts of our study arc Pouricr mnsforms on youps, and 
the concept of group smtionarity. 

'I'hc particular focus of our work utilizes 
noncommuativc harmonic analpis o v a  groups to solvc 
convrhtion intcgds in a prohahilietic ectting. '1'0 thc best o f  OUT 
knowledge, there arc limitcd numbcr o f  studies in the litcrmxc on 
this specific topic. In r91 Naparst addressed thc dccnnvolution over 
thc affine group in thc contat  o f  widcbsnd target dcnsity 
cetimatinn for stmm and radar applications. I n  [2S] Chirikjian 
dcvcloped a rcplarizcd solution for a specific convdutinn intep-al 

equation over the I k c l i d n n  motion group m d  demonstrated its 
application into thc kinematic dcsipl of binary manipulators 151. 
Roth of  thcw works address n specific problem in a dctcrministic 
scning. Our  work nddrcsres the dcconimlutim problem in n 
probabilistic scning foc a broad mngc of topological groups that 
arisc naturally in unginecring applications. Our minimum mcm 
squnrc fomulntion i r o  provides n mtud rcgdnriantion t o  thc 
inverse problem. 

2. IMAGE RECONSTRUCTION PROBLEMS 

In this rcctim, wc hmula tc  rdar  and sonar invcrsc scnncring 
problem and Radon transform invccsion as decoovoluhon 
problems over p u p s .  Apart from the invcrsc problcms in imaging 
dcscribcd hcrc, g o u p  dcconvolutions appcar in vuicty of othcr 
cngineering applications. for  cramplc, the ccho modcl described in 
equation (2.33 can hc utilized to modcl wide band wirclcss 
communication channclr, in which thc reflectivity densiq function 
is iotcrprctcd as the unknown communication channcl. In 151 and 
1241, it was shown that thc decmvolution problcm ova  rhc 
Euclidean motion p u p  ariscs in kincmatic dcsign of binary robot 
manipulaam and statistics nf macromolcculcs. 'I'hc rcmlults that arc 
developed in our study arc dircctly appliczblc to thhcsc problems. 

2.1 Radar and Sonar Image Reconstruction by Wideband and 
Narrowband Processing 

In radar and sonar imaging. the transmincr cmits PO 

cicemmaplctic slgnal. 'Ihc signal is rcflcctcd of f  a tacpct and 
detcctcd by the tnnsmittcr/rcccivcr as the echo signal. Assuming 
ncgligiblc accclcntion of thc reflector, the wideband modcl of thc 
ccho from a point ceflcctor is givcn ns the timc dchycd and time- 
scalcd replica of thc hanrmitttcd pulse [lS]-[lS]: 

whcrc ,f is thc traosmittcd pulsc, 7 k thc timc dclay, and I is  thc 
time scalc or  Dopplcr strctch. 'lhc tccm is needcd if wc 
require, thc cncrgy of the echo s i p 1  i s  to be conscwcd. I t  i s  giwn 
a5 s=(t-u)/(i+u) whcre i is thc spocd nf thc transmittcd 
si& prcqmptiog in a hnmogcnous medium and U is thc l a d d  
vclocity of thc rcflcctor. The namwhand modcl of thc ccho fcom a 
point rcflectrir is given by 

e ( I ) = f ( / - T ) P  , (2-2) 

wherc f is thc hansmitted pulsc, T is the timc delay, 2nd W 
the frqucncy o c  Dopplcr shift. 
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It i s  often desirable to image P dense g o u p  of rcflcctors, 
which may bc S C V C C ~ ~  objects UT a single object disttibutcd in s i x  

This dcnsc group of rcflcctors is then described by a ~feciiig 
dtn+y/unrlron. The rcceivcd sipnal is modclcd as a weighted average 

whcrc J ,  (i,T) is the widoband ;cflcctivity dcnsity function 
associated with cach dmc dclaycd and timc scaled vcrsion of thc 
transmittcd sipal. 'lhu narrowband modcl is givcn by . . ~  

e, ( t )  = J j s, (W,T)/(/ - +"dTdW, (2.3h) 

where S,(W,T) is thc nacmwband rcflectivity dcnsity function 
associated with cnch timc delaycd and frequency shiftcd version of 
thc umsmittcd signal. 

l'hc goal in radar and sonar imaging is to cstimatc J, (JJ) 

and S,(o,T) givcn thc transmittcd and thc rcccivcd signals.  
'l'ypicnlly, thc rcccivcd cchr, io B radar o r  sonar system is wry weak 
due to clutter and system noisc. 'l'hcrcfore, thc dctcction at thc 
receivcr side is performed hy matchcd fdtctcring, which amounts to 

-- 

'l'hc Euclidcan motion group is the scmi direct product of the 
rowtion goup J O ( N )  and thc ndditivc group in W" . Rcdefiniog, 
j ( R , r ) = / ( r ) G $ R ) ,  whcre R is the two dimcosional rotation 
matrix, ? = [ x , y ]  ,and k(Q,r)=6(r-i),and ria thevec tor inx  
direction, it c m  he shown that thc Radon transforms and its 
generalizations can be writtcn as an 13uclidcan group coovolution in 
thc following form: 

p ( R , r ) =  5 k ( g o h ? ) j ( h ) d h ,  g , h s J E ( 2 )  
.?E@) 

= k(Ry-1 , r~RQ- '7) j (y , . r )d(Q,~) ,  g = ( R , r )  (2.5) 
.ti(?) 

whcrc JE(2) dcnotcs thc two dimcnsional Euclidcnn motitm 

group, 0 denotcs the g o u p  composition law and, d(Q,r)  
denotcs thc invariant mcasurc on thc Eudidcan motion group. Our 
approach providcs B minimum m a n  squarc solution to this 
pmhlcm in thc prcscncc o f  nonstationay mcasurcmcnt noisc. 

3. THE CONCEPT OF CONVOLUTION AND 
FOURIER ANALYSIS ON GROUPS 

- 
correlating thc rcccivcd ccho with thc tnnsmittcd pulsc. Whcn thc Wc shall indicate groUP G and elements g,h ,,., , .,he 
two ccho modcls dcscribed in (2.3a) and (2.3h) arc inrcrtcd into thc 
narrowband and widchand conclation rcccivccs, thc resulting fc,c the clcmcnt, for which e = ~ = fc,r 
outputs arc cnprcsscd as group convolution integrals. In thc caw of 

gr~'up composition will'be wrirrco and wc shall 

e of G ,  WL shall h,, so . -  widchand proccssing, it is thc @ne pq convolution, and in thc 
casc of narrowband proccssing, it is thc Heinnhg pup 

g-' 0 g = g 0 g-' = e for all clemcnts g of G 
Irt L2(G.dp) dcnotc thc Hilbert mace of all cim"r:x 

fU"Cti0"S. 

2.2. Radon transform inversion for tomographic imaging 

'l'hc Radon transform and its generalhations play an important rolc 
in the tomographic imsgc reconstruction probicms in fiulds as 

divcrsc as medical imaging, radar targct shapc cstimation, and radio 
astronomy. This problem is cquivalcnt to computing thc invcrsc 
Radon tnnsform. Here, we show that Radon transform inmrsion 
c m  he posed as a dcconvolutioo prohlcm over the Euclidcan 
motion groups. 

In X-ray cumputcd tomography, an X-ray heam with known 
energy is sent tcough the ohjcct and the nttcnuntcd X-ray is 
collected by an array of collimatcd detcctors. The attcnuation in the 
final X-ray bcam prnvidcs P m a n s  o f  detcmioing the integnl of 
thc mass dcnsity of the ohjcct along the path of thc X-ray. In 2D, 
thc relationship betwcen thc mass densit). along the path and the 
attenuation at angle 8, and radius r , is givcn by thc following 
Radon transform: 

p ( r , o ) =  j j / (x ,g )S ( r -xcase - j s ine )dx~ ,  (2.4) -- 
whcrc 6 i s  thc D i m  dcltn function. Similarly, in PEI', SPEC1 and 
synthetic apemm radar (SAR), the line projections and thc 
attenuation coefficients are d a t e d  h7 the Radon transform. 

For a squarc intcgrablc function on a rb i tny  l i e  poup, 
f(h- '  o 2 )  is called a translation in thc snmc scnsc that /(i -7) is 
a translation of n function dcfincd on the real line. Note that in 
general, the left and right translations arc not cqual. 

Prom the perspective of group reprcscntation thcory, Fouricr 
analysis dcds with characterhation o f  unitar). rcprcscntations as a 

direct sum (integral) of irreducihle unitary group rcprcscotatioos. 
This characterhation is then utilized to dcfine thc Fouricr 
transfurmation, which has the property of mapping convolution 
integral to a multiplication in thc transhim domain. However, for 
an arbitray goup,  such P charactctiratioo is far from unique. 
Noncthclcrr, considerably satisfactory msults c m  be obwincd if 
somc rcstrictioos arc imposed on the group strucmrc. I t  was shown 
that if  the group G is a separablc, locally compact group o f  'Type I, 
[ZO] uniquc characterizations of the unitary reprcsent&~ns c m  bc 
obtained in t m "  of thc irreducible unitaqr reprcsenwtiuns of thc 
group. Pormnately, most of the noncommumtivc groups of intcmt 
in engineering applications, such as the Euclidean motion groups, 
affine group, Heisenberg group fall into this category and admit 
uniquc Pouticr dccompositim of functions. 

I r t  U ( g , h )  hc the h th irrcducihlc unitary rcprcscntation of 
a separahlc locally compact p u p  of 'l'pc-I. 'lhcn, thc opcrator 
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valued Pouticr transfnm nn G maps each / in L'(G,dg) to thc 
family { j ( h ) }  of bounded opcrators, whcrc uach j ( h )  is 
defmed by 

~ ( / ) ( h ) = ~ ( h ) = J / ( g ~ ( g ~ I , ~ ) &  I (3.2) 

'l'he collection of all h vzIua';s dcnnted by G and is callcd thc 
dual of thc group G .  Thc collection of Pouricr transforms 
{ j ( h ) }  forall hc G is callcd thc spcctrum ofthc function j 

An important pnipcrty of the npcrator valucd Pouricr 
transform, rcminisccnt of thc classical Fouricr transform over the 
rcals, is that the group convolution bccomes npcrator 
multiplication on the Pouricr sidc, morc prcciscly, 

m */ , ) (h)  = m)(~)m) (~)  (3.3) 

Pur Incally compact commutativc groups, all irrcduciblc 
rcpresentations of the group am ondimcosiond.  Hcnce, thc 
Fourier spectrum is scalar valucd and appcnrs similar to thu classical 
I'ouricr transform. 'I'hc inversion formula, in this case, is givm by 

i ( d = j i ( h ) r & , h ) d h .  (3.4) 
r 

4. GROUP STATIONARY PROCESSES 

arc nonstationary in the classical S ~ S C  but exhibit 
r thc right o r  lcft rcgular trmsformntions of thc 

group. The author dcmoostratcd in hcr earlier work that thc spccial 
cascs of group stationary p~occsscs for thc multiplicativc m d  affine 
group form suitablc mathcmatical fnmcwnrks for modcling and 
analysis of self-similar and multiscalc processcs [141-[18]. 

Second order group sntionatiry is 2 weaker condition in 
which, only thc sccond ordcr statistics of the random proccss is 
required to be invariant undcr thc tight oc left rcgular 
transformations of  thc group. I rmse ly  speaking, sccond order 
group stationary processcs obey the following StmcNUTc [21]-[23): 

E [ X ( g ) X ( h ) ] = R ( g a h - ' ) ,  g , h ~  C (4.1) 

whcrc R i s  a positivc dcfinitc function dcfincd c m  the group 
'l'hc ccntrnl &ct in thc analysis of group stationary proccsscs is 

thc cxistcncc of spcctral dccompoaition, which is f d i t a t c d  by thc 
groups. l h r  compact groups, Icft group 

admit thc following spcctnl dccampositioo: 

x ( g )  = c f r ~ ~ e ( U ( g , h ) z ( h ) )  (4.22) 
and 
R ( 8 )  = c m c e  ( U ( g , h ) F (  h ) )  with (4.2b) 

whcrc R ( . )  is thc autocorrclatkm function of thc proccss, 
U ( g , h )  is thc h th irrcduciblc unitary rcprcscntation of thc group 
G with dimension d ( h ) ,  Z ( h )  is a random matrix ofdimension 
d ( h )  and P ( h )  i s  a bounded Hermitian positive definitc opccator 
ovcc G .  I r t  

Le e 
m m (  F( 1)) < - 

kct kt 

S(h)= W ) ( h ) =  J&WJ(d) (4.3b) 
c 

Wc shall rcfcr to S as thc qedmf dtmi4/.nrt.n of B group 
stationary prnccss. This is n natural gcncraliratioo of thc spcctral 
dcnsity function dcfined for ordinary stationary proccsses. 

5. WIENER FILTERING OVER GROUPS 

In this scction, wc shall innoducc a now1 stochastic dcconvolution 
mcthod over groups based on thc Pouricr thcory of topological 
groups. We shall pose the deconvnlutinn pcoblcm within the 
framework o f  minimum m a n  square error prediction, and develop 
a Wiener filtering mcthod to cstimatc unknown signals from noisy 
mensurcmcnts. Whilc OUC results will be stated for thc locally 
compact pr~ups of T p c  1, special cases of finite, compact, and 
commutativc groups c m  bc easily dcduced from the main result. 

I r t  the folward modcl that relates thc measurcmcnts y and 
the unknown function x arc $vcn by thc following convolution 

integral: 

c 
whcrc f : G + C is B known complex valued, square summable 
function, n is an additivc noise indcxed by the group G , taking 
valucs in the field of complcx numbers C .  Without loss of 
generality, wc nssumc thst E [ x ( g ) ]  = E [ n ( g ) ]  = O .  'l'hcn the 
classical linear Wicncr problcm of recovcring x from noisy 
muasuremcnts y can bc posed as follows: Piod thc linear fdtcr 
W : Gx G + C such that thc lcast squuarcs c m x  vatiancc 

is minimized whcrc 

and dh is thc lcft Haar mcasurc on the group G . Note that it is 
implicit by the equation (5.2a) that the fdtcr W is required to be 
doubly squarc summable. 'l'hcn, thc solution to the above linear 
Icast squares problcm is provided by thc following Wiencr-Hapi 
tp cquntion: 

(5.4%) 

(5.4b) 

(5.44 

'lhc following thcorcm states an cxplicit solutinn for the Wicncr- 
Hopf equation, which in turn lcads to thc lincar lcast squarcs 
rccovcry of thc signal x 

Theorem : I e t  G bo a suparablc locally compact group nf  'lypc-I, 
and x(g) and " ( g ) ,  8 o f  G ,  be two zcro mean left group 
stationary prnccsses, rcferrcd to as signal and noise, rcsprctivrly. 
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Assumc that thc mcasuccmcnts obcy thc fnllowing convolution 
intcgral and noisc modcl: 

whcrc the filtcr / bchngs to L’(G,&), ‘Then, thc optimum 
linear lcast squnrcs dcconvolutinn fltcr Wq , minimizing (5.2a) is 
left group invariant and thc estimate of the signal is given as B 

convoluuon integral 

’lhc Fourier transform of thc optimal filter Wap is given as follows: 

whcrc hs e .  Hcrc, is thc I’ouncr transform of thc convolution 
tiltcr f , and, 7 dcnotcs thc adjoint of thc opccator i. J”~ and 
S. are upcrator vducd spoctral density functions of thc signal and 
noisc, rcspcctivcly. ‘lhc spcctral dcosity function of thc lcnst square 
crmr bcwccn thc signal and its ftltltcrcd cstimatu is givcn as 

whcrc I dcnotcs thc idcndty operator. 
Pmq: See [25]. 
In [15], thc author dcmonstntcd thc utility of pmposcd 
dccmwlutinn mcthod in dcsiping a Wicncr fdtcr for sclf-similar 
pn~ccsscs in which thc underlying grnup is thc multiplicativc group. 
Dctailcd numcrical studies showcd that pmposcd mcthod is 
cffcctivc in signal rccovcry cmbcddcd in sclf-similar noisc. 

6. CONCLUSIONS 

In this paper, we havc shown how p’oup rcprcscntatim theory can 
bc udlhcd to salve a class of invcrse problems formulated as group 
convolutions. Classical dcconvolutioo problem in the linear timc 
invariant systcms and signals framework i s  a special casc of thc 
gcncral deconvolution problem, in which thc underlying structure 
is the additivc group. Wc broaden the classical framcwurk to 
include widc range of groups nf both commutative and 
noncommumrive type. Those include tinitc, cumpact, and a large 
class of well-behaved locally compact groups that arisc naturally in 
enginccring applications. Wc dcvcloprd a minimum mcm square 
solution for the deconvolution problem using thc group 
representation thcory and the conccpt of gmup stationaity. ’l’hc 
methodology described hurc can be implemented efficicntly using 
the fast Fourier algorithms available for a varicty of groups [26]- 
[’27]. The research in this dircction is on going and will bc rcpocted 
in thc future. 
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