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ABSTRACT the pyramid. Recently, a number of promising quan- 

Multiresolution image decompositions (e. g., wavelets), 
in conjunction with a variety of quantization schemes, 
have been shown to be very effective for image com- 
pression. Recently, several promising tree-structured 
quantization schemes that exploit the correlation across 
scales have been proposed. In this paper, we present 
an image compression algorithm based on a multires- 
olution Markov random field model used to model the 
correlations of wavelet coefficients across the scales. We 
also present experimental results obtained using the al- 
gorithm. 

1. INTRODUCTION 

The development of wavelet representations of images 
has led to efficient image processing and computer vi- 
sion algorithms. The discrete wavelet transform of an 
image provides a set of wavelet coefficients which rep- 
resent the image a t  multiple scales [l, 21. Fewer coef- 
ficients are required to  represent the image a t  coarse 
scales than at  finer scales. Thus, if the wavelet repre- 
sentation is viewed as a multi-level data structure, with 
the coarsest scale coefficients at the top level and the 
finest scale coefficients a t  the bottom level, then the 
structure can be viewed as a pyramid. Each node in 
the pyramid represents one wavelet coefficient. 

Wavelet representations have formed a basis for sev- 
eral image compression algorithms [3, 4, 5, 61. One 
of the key issues in the development of any wavelet 
based image compression algorithm is the quantization 
strategy. Typically, coefficients at different levels of the 
pyramid are assumed independent and quantized sep- 
arately [3, 71. However, this approach does not exploit 
correlations between coefficients a t  different levels of 

tizers, known as zerotree quantizers, exploiting correla- 
tions between different levels of the pyramid, have been 
proposed [4, 5, 81. The key idea in [5, 81 is to system- 
atically eliminate the coefficients which do not convey 
much information about the image by assigning zero 
to  all the wavelet coefficients at the finer scales corre- 
sponding to the same spatial location of a coefficient 
whose magnitude is below a given threshold. As a re- 
sult, only a single symbol is transmitted for all the finer 
scale coefficients. The motivation for using this quan- 
tization technique is the assumption that if the energy 
of a node corresponding to  a spatial region of the im- 
age is below a given threshold, then the energy of the 
coefficients a t  finer scales corresponding to  the same 
region are also expected to  be below the threshold. In 
[4] and [5], the elimination of insignificant subtrees is 
achieved with respect to  different criteria. In [4], the 
threshold is estimated at  every node with respect to  
the noise sensitivity of the human visual system. This 
approach reduces the bit rate but introduces distortion 
if the threshold estimate is not accurate. In [5], a pre- 
determined threshold is applied to  a coefficient and to 
all of its descendents. A single symbol is transmitted 
for the entire subtree if every coefficient in the subtree 
is below the threshold. 

In this paper, we propose an alternative approach 
for pyramid image compression using a new zerotree 
quantizer. The  proposed quantization scheme involves 
a Bayesian decision strategy for successive classifica- 
tions. A Markov random field progressing from coarse 
to  fine scales [9] is used to improve the prediction of the 
finer scale coefficients from the coarse scale coefficients. 

2. PROPOSED ALGORITHM 
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representation, which consists of three pyramids cor- 
responding to three different spatial orientations, has 
been obtained, the coefficients in each pyramid are 
quantized as described below. 

With the exception of the lowest frequency decom- 
position, every wavelet coefficient a t  a given scale can 
be related to the coefficient at the previous scale corre- 
sponding to the same spatial location and orientation. 
The coefficient at the coarse scale is known as the par- 
ent node. For a given parent, the coefficients of the 
region a t  the finer scale corresponding to  the same lo- 
cation and orientation are known as children. All the 
coefficients a t  all finer scales of the same location and 
orientation are known as descendents. Zerotree quan- 
tizers assign zero to  an entire subtree if the subtree is 
insignificant. In this paper, insignificance is determined 
using a Bayesian decision scheme. 

In order to quantize the coefficients, we would like 
to classify the individual coefficients into two classes: 
class 0 and class 1. Following the terminology of [5], a 
subtree is said to  be a zero tree if the entire subtree is 
assigned to class 0. The  coefficient from which the zero 
tree emerges is said to  be a zero root. A coefficient of 
class 0 which does not belong to  a zero tree is said to  
be an isolated zero. A class 1 coefficient is said to be 
an isolated one, or a significant coefficient. 

Following [5], we assume that  the magnitude of the 
wavelet coefficients a t  successive scales corresponding 
to the same spatial location and orientation are cor- 
related. In this paper the correlation is modeled by 
a multiscale Markov random field model progressing 
from coarse to fine scale [9]. Let the random field Y be 
the pyramid of the absolute value of the wavelet coeffi- 
cients and the random field X be the unobserved class 
labels of the coefficients. At each scale m, the label 
field and the observed field are denoted by X(”) and 
Y(m), respectively. Following [9], it is assumed that 
the distribution of any random variable in X given the 
values of X at all coarser scales is only dependent on 
the random variable at its parent node. The random 
variable Xim), s E S(m), where S(m) is the index set 
on which X(”) is defined, can take values from ( 0 , l ) .  
The dependence of the observed pyramid on its label 
pyramid is specified through fylx(yI+), the conditional 
probability density function of Y given X .  The condi- 
tional distribution of the random variable in Y a t  each 
scale, given its label, is assumed to  be Gaussian. The  
conditional mean and variance of the random variables 
in Y from class i ,  i = 0 , l  are denoted pi and a:, re- 
spectively. The  conditional mean pi is chosen to  be 
the quantization level of the coefficients which belong 
to  class i .  The prior knowledge about the classes is 
modeled by the probability mass function p x ( z ) .  The 

transition probability function to model the probabil- 
ity that Xim) is from class i ,  given that  its parent is 
from class j, is chosen as 

px;m)lx~y+o(ilj)  = ema(i  - j) + (1 - em)  (1) 

where 8s is the index of the parent node of Xim) and 
the parameter dm is the probability that  the labeling 
will remain the same from scale m + 1 to scale m. I t  is 
chosen to  be an increasing function of resolution. 

We would like to  assign each pyramid node to  one of 
the four categories: zero root, isolated zero, descendent 
of zero root, or isolated one. Nodes which are assigned 
to  the categories zero root, isolated zero, or descendent 
of zero root make up class 0, and the nodes assigned to 
the category isolated one make up class 1. Beginning at  
the coarsest scale, each node in the pyramid is assigned 
to  one of the four categories as follows: The likelihood 
that  node s a t  scale m is a zero root is given by the 
function 

jp;m),x;m)lxiy+1) (ti:”, 2:”lli.) = 

jpjm) 1 Tim) ,x;;+l (tis” I 2:” 7 2 )px!m) IxL;+l ) (25” 12) 

(2) 
evaluated with all of the values in 2:” equal to  zero, 
where Yjm) and Xim) are the subtrees in Y and X I  
respectively, rooted a t  scale m, node s, and 2 is either 
one or zero, depending on the classification of the par- 
ent node of node s. The first term on the right-hand 
side of Equation 2 represents the conditional proba- 
bility density function of Yj” given the classification 
label subtree X;.!” and the second term represents the 
probability mass function of the label subtree Xim) 
given that the parent of node s has been assigned to  
class i. Equation 2 is evaluated with all values in 2:” 
equal to  zero using the models for Y and X described 
above, and the resulting value is compared to  a pre- 
determined threshold value. If the likelihood of a zero 
root is greater than the threshold, then node s is clas- 
sified as a zero root, and all of its descendents are clas- 
sified as descendents of zero roots. Otherwise, node s 
is classified as an isolated node. To determine if an iso- 
lated node belongs to  class 0 or class 1, the likelihood 
function 

f y p ) , X ; m ) l X i ; + ’ )  (YS” I + S ” l 4  = 

fyjm)lX!m),Xi;+1) (Y!” 2)Px!-)Ixiy+1) (+:“12> 

(3) 
is maximized over zSm) = 0,1 ,  L e . ,  the MAP estimate 
of Xim) with observed value Y,’” given the class as- 
signment of the parent of node s is used to decide be- 
tween isolated zero and isolated one. After each node in 
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the pyramid has been classified as a zero root, isolated 
zero, isolated one, or descendent of a zero root, the 
wavelet coefficients are quantized using the node classi- 
fications. Coefficients from class 0, including zero roots, 
isolated zeros, and zero root descendents are quantized 
to zero. Coefficients from class 1 are quantized to ei- 
ther p1 or -p1 depending on the sign of the coefficient. 
After the first round of assignments, the algorithm is 
repeated to  split both class 0 and class 1 into two new 
finer classes. The process is continued until a target bit 
rate or desired coded image quality is obtained. Exper- 
imental results are presented in the next section. 

3. EXPERIMENTAL RESULTS 

The compression algorithm described in the previous 
section was applied to the image shown in the upper left 
of Figure 1. Also shown in Figure 1 are the encoded im- 
ages obtained for three different data rates. The image 
in the upper left of the figure is the result from assigning 
all pyramid nodes at  the top level of each of the three 
pyramids to  the category zero root. Thus, all wavelet 
coefficients except for the low-frequency wavelet coef- 
ficients at the top level of the pyramid are quantized 
to a value of zero. The low-frequency wavelet coeffi- 
cients at  the top level are quantized to 8 bits. The 
data rate for this image is 0.219 bits/pixel. The im- 
age in the lower left of Figure 1 shows the result after 
one iteration of the compression algorithm described 
above. The data rate for this image is 0.548 bits/pixel. 
Finally, the image in the upper right shows the result 
after two iterations of the compression algorithm. The 
data rate for this image is 1.409 bits/pixel. It should 
be noted that for zerotree quantizers, significant reduc- 
tion in data rates can be achieved by entropy coding 
the quantized pyramid coefficients [5]. 

4. CONCLUSION 

We have presented a new wavelet-based zerotree quan- 
tizer which uses a multiscale Markov random field model 
to  model the correlations across scales of the wavelet 
pyramids. We feel this approach is promising, partic- 
ularly with respect to progressive transmission of still 
images. 

A postscript version of this paper is available via 
anonymous ftp to skynet. ecn .purdue. edu (Internet 
address 128.46.154.48) in the directory 
/pub/dist/delp/icip94-coding. 
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Figure 1: Upper left: Original image; Upper right: Image encoded at  0.219 bits/pixel, with all pyramid nodes 
at  top level assigned to  zero root; Lower left: Image encoded a t  0.548 bits/pixel, after 1 iteration of compression 
algorithm; Lower right: Image encoded at  1.409 bits/pixel, after 2 iterations of compression algorithm. 
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