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A E STRACT 
In our previous work, we proposed two classes of self- 
similar models for l/f processes which we referred to as 
scale stationary and pself similar models. We introduced a 
new mathematical framework and several new concepts, 
such as periodicity, autocorrelation, and spectral density 
function to analyze scale stationary and p-self similar 
processes. In particular, we introduced a family of finite 
parameter scale stationary models, similar in spirit to 
ARMA models by which any scale stationary processes can 
be approximated. In this work, we utilized the framework 
of scale stationary processes and introduced novel methods 
of l/f signal modeling and parameter estimation 
techniques. These include a sampling theorem, a 
mathematically consistent estimator for the selfsimilarity 
parameter, an unbiased estimator for the scale 
autocorrelation function and a maximum likelihood 
estimator for scale stationary autoregressive models. 
Results from our study suggest that scale stationary 
proesses provide a powerful framework for practical l/f 
signal processing problems. 

I. INTRODUCTION 

In many signal processing problems, observations are 
assumed to be stationary because it immediately provides a 
set of mathematical tools and concepts, such as spectral 
density, autocorrelation function, efficient parameter 
estimation methods etc.,, by which one can approach to the 
problem. However there is a broad range of physical 
phenomena which do not exhibit statistical invariance with 
respect to time shifts. An important class of such physical 
phenomena is known ,as l/f or fractal processes [11,[41. 
Unlike the ordinary ARMA models, these processes exhibit 
statistical invariance with respect to time scales and long 
term correlations. Despite its wide spread occurrence, l/f 
signal processing have received little attention in signal 
processing literature. This has been partly due to the 
mathematical intractability of the proposed fractal models. 
In [2] and [3], we proposed a class of mathematically 
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simple, intuitive and practical self similar processes and an 
alternative mathematical framework to model and analyze 
l/f phenomena. The foundations of the proposed class is 
based on the extensions of the basic concepts of classical 
time series analysis, in particular on the notion of 
stationarity with respect to time scales. We referred to these 
processes as scale stationary and p-self similar processes. We 
introduced a class of finite parameter self similar processes, 
similar in spirit to ARMA models, by which an arbitrary 
self similar process can be approximated. We introduced 
new tools and concepts, such as  periodicity, 
autocorrelation, and spectral density function for scale 
stationary processes by which practical signal processing 
schemes can be developed. 

In this paper, we utilize the mathematical framework 
of scale stationary processes and develop efficient signal 
modeling and parameter estimation methods for l/f 
processes. The proposed signal modeling and parameter 
estimation methods involve a sampling theorem for scale 
stationary processes, estimation of the self similarity 
parameter, the autocorrelation function, and first order self 
similar autoregressive model parameters. 

11. WIDE SENSE SCALE STATIONARY AND P-SELF 
SIMILAR PROCESSES 

In this section, we shall briefly review the properties of 
p-self similar processes and give examples of practical 
interest. For a more complete discussion of the topic, we 
refer the reader to [21,[31. 
Definition 2.2 : A random process { X ( t ) , t  > 0) is called wide 
sense p-self similar with parameter H if it satisfies the 
following conditions: 
i )  E [ X ( t ) ]  = l -"E[X(n t ) ]  f , l  > 0 .  
ii) 
i i i)  
For If'= 0, we &er p-seif similar processes as wide msc 
scale stationary processes. Unless otherwise stated for the 
rest of the paper, we shall use the terms pself similarity 
and scale stationarity in the second order sense. Before 
pursuing further, we want to point out that there is an 
isometry relationship between p-self similar and scale 
stationary processes. Given any p-self similar process, 



{ X ( t ) , t > O } ,  with parameter N # O ,  there is a scale 
stationary process, { X ( t ) , t  > 0).  such that 

X ( t ) = t H R ( t ) ,  t >o.  (2.1) 

Thus { X ( t ) , t  >O} is appropriately referred to as the 
generating scale stationary process, and f H  as the trend term of 
a p-self similar process { X ( t ) , t  > o}. I t  immediately follows 
from Definition 2.1 iii) that for H = 0 

E [  X ( t ) X ( A t ) ]  = R(X), t,h > 0 (2.2) 

where R is called the S-uutocorrelation function of a scale 
stationary process. For H # 0, (2.2) becomes 

E[ X ( t ) X ( A f ) ]  = t whHR(X), t ,  X > 0 (2.3) 

where R is the S-autocorrelation of the underlying 
generating process and kHR(h) is referred to as the basic 
autocorrelation function of a p-self similar process. Both S- 
autocorrelation and basic autocorrelation functions have 
properties similar to the ordinary shift based 
autocorrelation function. 
Example 1 :  The first example is the well-known fractional 
Brownian motion [41. The basic autocorrelation function of 
fBm, { B, ( t ) ,  t > 0} , is given by 

where H is a parameter between 0 and 1 and 0' is a 
function of H. The S-autocorrelation function of the 
generating process, { B, ( t  ), t > 0) , of fSm is given by 

E[ d, (t)i, (U)] = (I' (cosh(H In h)-(sinh(l/Zln k)l"], h > 0. 

Example 2: An important class of p-self similar processes is 
defined by the generalized EulerCauchy system. These 
processes are called self-similar autoregressive (SSAR) 
processes. Symbolically, an Nth order SSAR process with 
parameter H, {y ( t ) , t>O} ,  can be represented by the 
following time varying, scale invariant ordinary differential 
equation: 

d 
dt dt 

aNtN $y(t)+ ...+ a $ - y ( t ) + a , y ( t )  = p o t H x ( f ) ,  t > 0 (2.5a) 

where {x( t ) , t  >O} can be interpreted as a scale stationary 
white noise process. The basic autocorrelation function of 
an Nth order SSAR process is given by 

It was shown in [2] that under some regularity conditions, 
any p-self similar process can be approximated in some 
sense by a finite order SSAR process. 

111. SAMPLING THEOREM FOR SCALE STATIONARY 
PROCESSES 

In practical applications, often times the continuous 
time data is not available. Therefore, it is important to 
develop sampling methods by which the statistical 
structure of the continuous data can be recovered from its 
discrete samples. For the so called band limited shift 
stationary processes, it is well known that the continuous 
process can be recovered from its discrete samples recorded 
at equally spaced intervals. In this section, we develop a 
similar sampling scheme for scale stationary processes. This 
result enables us to fit continuous time scale stationary 
models to discrete observations. 
Theorem 3,l: Let { X ( t ) , t  >O} be a scale stationary process 
satisfylng 

jh-p'R( h)dX = 0 for some 101 > R, then 
r l  

where sinc(r) = sin(x)/x, so =ew, and the limit in (3.lb) is 
in the mean s uare sense. 
Proof : ls lb  
The condition of the theorem can be interpreted as band 
limitedness for scale stationary processes. The formula (3.1) 
states that any band limited scale stationary process is 
completely determined by its sampled values, X ( T $ ) ,  at 
exponentially spaced sampling intervals (Ts;,n = O,*I, ...}. 
As in the case of shift stationary processes, not all scale 
stationary processes are band limited. Nevertheless, many 
practical situations correspond to an effective band 
limitedness, since low pass filtering is a common procedure 
for signal conditioning. 

IV. PARAMETER ESTIMATION 

There are three major results on which we base our 
parameter estimation method: i) the Equation (2.1) which 
states that self-similar processes are trended scale 
stationary processes, ii> the exponential sampling scheme 
and the interpolation formula, and iii) the concept of S 
autocorrelation function. In our framework, self-similarity 
parameter controls nothing but the trend of the process, 
while the generating process fQrmS the stochastic part. 
Hence the idea is to first remove the trend term using (2.1), 
and next to analyze the underlying stochastic process using 
the concept of Sautocorrelation function. 
Least Squares Estimation of the Self Similarity Parameter 

Let { X ( t ) , t  > 0) be a wide sense pself similar process, 
and let ( X ( t ) , t  > 0) be its generating process with mean p. 
Define 

2842 



Z(t) = “(t) ,  t > 0. (4.la) 
P 

Thus, (X(t),t >O} is scale stationary with unit mean. By 
Equation (2.1) 

loglX(t)l= Hbgt+loglP(+log(~(t)l,  f > 0. (4.lb) 

To simplify the notation, let us rewrite (4.lb) in vector form. 

Y ( t )  = eTz(t)+ ioglj?(t)l, t > o (4.1~) 

where Y ( t ) =  loglX(t)(, Z’(t)=[log(t),l], 8’ =[H,log(~l]. 
and y = loglp.(. Now assume that N observations starting 
from time T at equadly spaced intervals of length A are 
available. Define y(k)= Y(T+M), z ( k ) =  Z(T+kA), for 
k = 0, ..., N- 1. Then, the linear least squares estimate of the 
parameter 8 is given by 

(4.2) 

Theorem 4.2 : Let ( X ( t ) , t  > 0 )  be the generating process of a 
p-self similar process with mean )I. Assume that the initial 
observation time T is known. Then H is an unbiased 

H. f is unbiased est‘ ate of y only if 

f are consistent in the mean squa e sense. 
loglpI. Moreover if Eroglf(t)l) ]= p < -, 

Proof : see 151. cl 
An alternative approach is to sample the data at 
exponentially spaced intervals at {TS:,~= O,I, ..., N-I}. 

We synthesize 100 realizations of the fBm and the first 
order SSAR process using the Gaussian number generator, 
the Sautocorrelation function and (2.1). Two sets of 
experiments with various noise levels and parameter 
values are performed. In the first set, the data is 
synthesized at uniform intervals with A = 1.5, and in the 
second set at exponentially varying intervals with so = 1.5. 
The results are tabulated in Table I and I1 for each model. 
The method gives satisfactory results even for noisy 
observations. In general, exponential sampling approach 
appears to give betteir results than the uniform sampling 
approach. 

Estimation of the S-Autocorrelation Function 
Given the estimates H and we form the following 

We assume that the Iisuiting process (4.3) obeys a scale 
stationary parametric model and estimate its S- 
autocorrelation function. We propose three estimates for 
the Sautocorrelation function. The first estimate is based 
on exponential sampling, the second one is based on 
continuous time observations, and the last one is derived 
from the continuous time estimate, and based on uniform 
sampling. 

1 N-I-a 

X(Ts; )X( T@), n = 0 ,..., N - 1 .(4.4a) 

Assuming that the process is band limited in scale, we can 
employ the interpolation formula, (3.la), to obtain a 
continuous time o the E utocorrelation function. 
R, (k) = R, (l)sinc(L(k)7+ 

available from time TI to T,. Consider the following 
estimate: 

To implement (4.51, the integral must be replaced by a 
sum through an appropriate approximation. In our 
numerical study, we use the following discrete 
approximation to (4.5): 

1 
R 3 ( k ) =  In( T J k )  - ln(T,) . . _. 

where 1x1  stands for the largest integer smaller or equal to 
x .  Note that k has to satisfy k(T, + kA) = TI + nA for some 
integer 0 I n I LTJT, 1. This limits the range of h on which 
the autocorrelation function can be estimated. One way to 
extend the range is to interpolate the observations using the 
Equation (3.lb) at the desired points. 

It is easy to check that all three estimates are unbiased. 
To check the practical value of the proposed estimators, we 
estimated the Eautocorrelation functi?n of the generating 
process of fBm. First, we computed R, at exponentially 
spaced points based o n a  single realization of the model. 
Next, we interpolated RI using the Equation (4.4b). The 
result is illustrated in Figure 2. 

Estimation of the First Order SS-AR Model Parameters 
In this section, we shall study estimating the 

parameters of the first order SSAR model. We begin by 
deriving the likelihood functions. 

Let X N x l  vector of samples of the generating 
process of the first order SS-AR taken at instances 
T+A(i-1), i = l ,  ..., N ,  T>O. Observe that the probability 
density function of X is given by 

. .  
where 8 denotes the parameters [02 v] for the first order 
SS-AR model. lZ(Q)l denotes the determinant of the 
autocorrelation matrix Z(0). The entries Cij, i ,  j =  1, ..., N 
of Z(0) are given by 

(4.8) 

where h, = (T + A( i - 1))/( T + A( j - 1)). The equivalent log- 
likelihood function can be expressed as 
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where Z(e) = &(H). The maximum likelihood estimate 
8 of Q is given by O=Ar&maxt(Q). By taking the 
derivative of the likelihood function with respect to cs2, 
setting it to zero and verifying that the second derivative is 
negative at the value of the estimate, we obtain the 
following estimate of o2 : 

(4.11) 

Inserting (4.11) into (4.9) yields the following equivalent 
likelihood function which has to be maximized over the 
parameter H :  

1 
N b2 =-XTE-'(H)X. 

i (H)  = --log(X'?( N H ) X ) -  ~log lE(  1 H)l  (4.12) 
2 

We performed a large number of experiments to 
demonstrate the basic functionality and the viability of the 
maximum likelihood estimator. A part of the results is 
tabulated in Table 111. Estimation results from 30 trials are 
averaged to obtain estimate statistics. The length of the 
observations is chosen to be 64. We concluded that the 
empirical results agree with the theoretical properties of the 
maximum likelihood estimator. However, the 
computational complexity of covariance matrix inversion 
prohibits its use for long data records. 

TrueH 1-1 
[ 0.3 I[ 0.2991 1 O.oo00 I 3.9446 [ 0.0345 1 

EstH VarH Est IMI VarIMI 
-0.2916 0.0192 9.4168 05417 

0.5 11 0.5008 I 0.0002 I 3.6975 1 0.2084- 
0.9 U 0.9019 I 0.0001 1 4.3451 I 0.0555 

Table I 
Estimates of the self-similarity parameter of fBm using 

exponential sampling. M = -4, SNR = IOdB. 

True v 
0.2 

Est v Var v I Est (J' Var csa 

0.1850 0.0030 I 0.9986 0.0328 

Maximum likelihood estimates of the 1st order SS-AR 
model. True value of (J* is equal to 1. 

V. CONCLUSION 

In this paper, we introduced a signal modeling and 
parameter estimation method for 1/f phenomena in the 
mathematical framework of scale stationary and p-self 
similar processes. We developed a sampling scheme for 
scale stationary processes, and outlined estimation 
techniques for the self similarity parameter and I 
autocorrelation function. The experimental results show 
that proposed l/f signal modeling methods are very 
powerful. 
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Figure 2 

The data length is 128, exponential sampling density is so = 1.5 and the initial observation time T is 1. 
Sautocon-elation function estimate R, of the fBm process with N = 0.7. 
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