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The matrix elements of the unitary irreducible representations of the Euclidean motion group are

closely related to the Bessel and Gegenbauer functions. These special functions also arise in the

singular functions of the singular value decomposition (SVD) of the Radon transform. In this paper,

our objective is to study the Radon transform using harmonic analysis over the Euclidean motion

group and explain the origin of the special functions present in the SVD of the Radon transform

from the perspective of group representation theory. Starting with a convolution representation of

the Radon transform over the Euclidean motion group, we derive a method of inversion for the Radon

transform using harmonic analysis over the Euclidean motion group. We show that this inversion

formula leads to an alternative derivation of the SVD of the Radon transform. This derivation reveals

the origin of the special functions present in the SVD of the Radon transform. The derivation of the

SVD of the Radon transform is a special case of a general result developed in this paper. This result

shows that an integral transform with a convolution kernel is decomposable if the matrix elements

of the irreducible unitary representations of the underlying group is separable.
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1 Introduction

Since the seminal work of Radon in 1917 [28], the Radon transform has become

a major area of research in both pure and applied mathematics (see [6, 8, 11–

17,23,25,30] and references therein). The importance of the Radon transform

for today’s imaging technologies is another motivation for investigating the

properties of the Radon transform [9,10,18,19,24,27].

In this paper we present a new derivation of the singular value decomposition

(SVD) of the Radon transform using harmonic analysis over the Euclidean

motion group, M(N). The SVD of the Radon transform has been studied

in [5, 20, 21]. However, the origin of the specific special functions that arise in

the SVD of the Radon transform was not discussed. Our derivation explains

the presence of the special functions in the SVD of the Radon transform by

using the relationship between the irreducible unitary representations of the

Euclidean motion group and special functions.

It is known that the Euclidean motion group provides the natural symme-

tries of the Radon transform since the Radon transform is a mapping between

the two homogeneous spaces of the Euclidean motion group [14, 17]. Starting

with a convolution representation of the Radon transform over the Euclidean

motion group, we diagonalize the Radon transform in the Euclidean motion

group Fourier (M(N)-Fourier) domain and obtain the spherical harmonic de-

composition of the projection slice theorem. After showing that an integral
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transform with a convolution kernel is separable if the matrix elements of the

unitary representations of the underlying group are separable, we derive the

singular functions of the inverse Radon transform, which leads to the SVD

of the Radon transform. It is the separability of the matrix elements of the

irreducible unitary representations of the Euclidean motion group that gives

rise to the SVD of the Radon transform and the special functions present in

this decomposition.

The rest of the paper is organized as follows: Section 2 provides a gen-

eral overview of harmonic analysis over groups. Section 3 introduces harmonic

analysis over the Euclidean motion group and related special functions. Sec-

tion 4 introduces the Radon transform and spherical harmonic decomposition

of the projection slice theorem by using Fourier analysis over M(N). Section

5 presents the main results of the paper. Finally, Section 6 concludes our dis-

cussion. Appendices A and B provide the computation of the M(N)-Fourier

coefficients of the projections and the convolution kernel of the Radon trans-

form.

2 Harmonic Analysis over Groups

Harmonic analysis over groups is directly related to the decomposition of uni-

tary representations of a group as a direct sum of its irreducible unitary rep-

resentations. This decomposition enables spectral or Fourier decomposition of

functions defined over the group. Fourier transform over groups has the im-

portant property of mapping convolution into multiplication in the Fourier
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transform domain.

Representation of a group G over a vector space V is a homomorphism

T : g → T (g) of G into the linear transformations of V , GL(V ). It follows

from this definition that,

T (g1)T (g2) = T (g1g2), T (g)−1 = T (g−1),

T (e) = I, g1, g2 ∈ G,

where e ∈ G is the identity element and I is the identity transformation in

GL(V ).

Given an orthonormal basis {ei} of V , for each T (g), we can associate the

matrix (tij(g)), 1 ≤ i, j ≤ n given by

T (g)ej =
n∑

i=1

tij(g)ei,

where n is the dimension of the vector space V . The matrix (tij(g)) is called

matrix representation for the representation T (g) with respect to the basis

{ei}. The n2 continuous functionals {tij(g)} also defines the n−dimensional

representation of the group G. If V is an infinite-dimensional vector space,

then (tij(g)) is an infinite matrix with elements given by

tij(g) = (ei, T (g)ej), 1 ≤ i, j < ∞.

By the homomorphism property of T (g) the matrices (tij(g)), g ∈ G satisfies
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the usual matrix multiplication rule, i.e.

tij(g1g2) =
∑

k

tik(g1)tkj(g2).

If T (g) and Q(g) are two representations of a group G over the spaces V

and W , respectively, then T (g) and Q(g) are said to be equivalent if there is

an invertible linear mapping between V and W such that

Q(g) = AT (g)A−1.

Equivalent representations have the same matrix representations, i.e.

Q(g)Aek = AT (g)ek = A
∑

j

tjk(g)ej =
∑

j

tjk(g)Aej

and form an equivalence class. Therefore, it is sufficient to find one represen-

tation T (g) in each equivalence class.

A representation T (g) of a group G in an inner-product space V is called

unitary if it preserves the inner-product over V , i.e.

(T (g)x, T (g)y) = (x,y).

A measure d(g) on the group G is called left-invariant if for any measurable

subset H of G, and for any g ∈ G,

∫
H

d(h) =
∫

gH
d(gh),
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and right-invariant if

∫
H

d(h) =
∫

Hg
d(hg).

A measure d(g) on the group G is called invariant if it is both left- and right-

invariant. A group having an invariant measure is called a unimodular group.

Otherwise it is called a non-unimodular group. For any given representation

T (g) of the group G on the inner-product space V , one can define a new

inner-product, (. , . )M , on V

(x,y)M =
∫

G
(T (g)x, T (g)y) d(g),

such that T (g) becomes a unitary representation over V with respect to this

new inner-product (. , . )M , where, d(g) being the invariant measure over G.

Therefore, without loss of generality, given any representation, we may assume

that it is unitary, and denote it by U(g).

A subspace V (0) of V is called invariant if for any x ∈ V (0), U(g)x ∈ V (0),

for all g ∈ G. The null-subspace and the whole space V are the trivial invariant

subspaces. A representation is called irreducible if the only invariant subspaces

are the trivial ones. Otherwise it is called reducible. Decomposing V as a

direct sum of mutually orthogonal invariant subspaces {V (λ)} such that U(g)

is irreducible on each V (λ),

V =
∑

λ

⊕V (λ),
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enables decomposition of U(g) as an orthogonal direct sum

U(g) =
∑

λ

⊕U (λ)(g),

where U (λ)(g) is the restriction of U(g) to the subspace V (λ). A representation

is called completely reducible if it is the direct sum of irreducible representa-

tions.

Let G be a unimodular, separable locally compact group of Type I [7, 22].

Then, the Fourier transform of f ∈ L2(G) is defined as,

F{f}(λ) = f̂(λ) =
∫

G
d(g)f(g)U (λ)(g−1)

and the inverse Fourier transform is given by

F−1{f̂}(g) = f(g) =
∫
bG

Tr
{

f̂(λ)U (λ)(g)
}

d(λ),

where Ĝ is the collection of all {λ} values and is called the dual of G [31]. Using

the matrix representations, the matrix elements of the Fourier transform and

the corresponding inverse Fourier transform are given by

f̂ij(λ) =
∫

G
f(g)u(λ)

ij (g−1)d(g),

f(g) =
∫
bG

∑
i,j

f̂ij(λ)u(λ)
ji (g)d(λ).

In the next section, we will look into the case where G is the group of motions

of the N−dimensional Euclidean space.
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3 Harmonic Analysis over the Euclidean Motion Group

In this section, we will provide a review of the irreducible representations

and the Fourier transform of the Euclidean motion group and some related

properties. A more detailed discussion on these topics can be found in [31,32].

3.1 Euclidean Motion Group

The isometries of RN that preserve orientation form a group called the Eu-

clidean motion group or motion group of N -dimensions, denoted by M(N).

The elements of M(N) are formed by tuples (Rθ, r), where r ∈ RN is the trans-

lation component, and Rθ ∈ SO(N) is the rotation component parameterized

by θ. For N = 2, θ can be parameterized as an element of the unit circle. For

N = 3, θ can be parameterized by, for example, axis-angle description of the

rotation, Euler angles, Caley-Klein parameters or any other parameterization

for three dimensional rotation.

The group operation of M(N) is given by

(Rθ, r)(Rφ,x) = (RθRφ, Rθx + r). (1)

This defines M(N) as the semi-direct product of the additive group RN and

the rotation group SO(N). The columns of Rθ ∈ SO(N) forms an orthonormal

basis for RN , meaning that each column is an element of N − 1 dimensional

sphere, SN−1. Consequently, rows of Rθ also forms an orthonormal basis.

The identity element of the group is given by (I,0), I being the identity ro-

tation, and the inverse element of g = (Rθ, r) is given by g−1 = (R−1
θ ,−R−1

θ r).
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Alternatively, the elements of M(N), can be represented as (N +1)×(N +1)

dimensional matrices of the form

A(g) =

Rθ r

0T 1

 . (2)

Then, the group operation becomes the usual matrix multiplication. The iden-

tity element is the identity matrix and the inverse of each element can be

obtained by matrix inversion.

3.2 Irreducible Unitary Representations of M(N)

Irreducible, unitary representations U (λ)(g), λ > 0, of M(N) on L2(SN−1) is

given by

(U (λ)(g)F )(s) = e−iλ(r·s)F (R−1
θ s), F ∈ L2(SN−1), (3)

where g = (θ, r) is an element of M(N), s is a point on the unit sphere SN−1,

and ( · ) is the standard inner product over RN [32].

Since the spherical harmonics form an orthonormal basis for L2(SN−1), ma-

trix elements for the unitary representation U (λ)(g) of M(N) is expressed by

u(λ)
mn(g) = (Sm, U (λ)(g)Sn) =

∫
SN−1

Sm(s)e−iλ(r·s)Sn(R−1
θ s)d(s), (4)

where m and n are multi-indices for the spherical harmonics, with the first ele-

ment denoting the degree of the spherical harmonics, and d(s) is the invariant

normalized measure on SN−1.

The matrix elements of U (λ)(g) satisfy the following properties:
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1 Adjoint property:

(u(λ)
mn(g−1)) = (u(λ)

mn(g))−1 = (u(λ)
nm(g)) (5)

2 Homomorphism property:

u(λ)
mn(g1g2) =

∑
k

u
(λ)
mk(g1)u

(λ)
kn (g2) (6)

3 Orthogonality property:

∫
G

u
(λ)
mk(g)u(µ)

ls (g)d(g) = δµλδmlδks, (7)

and {u(λ)
mn(g)} form a complete orthonormal system in L2(M(N), d(g)).

3.3 Associated Spherical and Zonal Spherical Functions

Let Sl denote the space of spherical harmonics of degree l over SN−1. {Sl}∞l=0

are orthogonal and span L2(SN−1). A basis for Sl is given by

Ξm(s) = Al
m

N−3∏
j=0

r
mj−mj+1

n−j C
N−j−2

2
+mj+1

mj−mj+1

(
sN−j

rN−j

)
(s1 + is2)mN−2 ,

where Cν
n(r) is the Gegenbauer polynomial with associated weight function

given by (1 − r2)ν−1/2 for ν > 1/2, m = (m0,m1, . . . ,±mN−2) such that l =

m0 ≥ m1 ≥ . . . ≥ mN−2, rN−j =
(∑N−j

k=1 s2
k

)1/2
, and Al

m is the normalizing

factor such that

∫
SN−1

|Ξm(s)|2 d(s) = 1.

If l = 0, m = (0, . . . , 0) = 0. Then, Ξ0(s) is equal to 1, and invariant under
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the rotations. For h1, h2 ∈ SO(n − 1) × 0 and g = (Rθ, r) ∈ M(N), the

functions u
(λ)
m0(g) are invariant under right rotations,

u
(λ)
m0(gh2) = u

(λ)
m0(g) = u

(λ)
m0((I, r)),

and the functions u
(λ)
00 (g) are invariant under left and right rotations,

u
(λ)
00 (h1gh2) = u

(λ)
00 (g) = u

(λ)
00 ((I, |r|en)).

The matrix elements {u(λ)
m0(g)}m depend only on the translation component

of g and are called the associated spherical functions of the representation

U (λ)(g). The matrix element u
(λ)
00 (g) depends only on the radius of the transla-

tion component and is called the zonal spherical function of the representation

U (λ)(g).

3.3.1 Zonal Spherical Functions. The zonal spherical functions are given

by

u
(λ)
00 (g) = (Ξ0, U (λ)(g)Ξ0) =

∫
SN−1

e−iλ|r|sN d(s) (8)

=
Γ(N

2 )
√

π Γ(N−1
2 )

∫ π

0
e−iλ|r| cos(ϕ) sinN−2(ϕ)dϕ. (9)

This integral representation can be rewritten in terms of Bessel functions by

u
(λ)
00 (g) = Γ

(
N

2

) JN−2
2

(λ|r|)(
λ|r|
2

)N−2
2

. (10)
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Equating (8) and (10), one obtains the identity

∫ 1

−1
eixt(1− t2)

n−1
2 dt =

√
π Γ(n+1

2 )Jn/2(x)
(x/2)n/2

. (11)

We will use identity (11) in the derivation of the identity (17), which is a key

property towards the derivation of the SVD of the Radon transform.

3.3.2 Associated Spherical Functions. The associated spherical functions

are given by

u
(λ)
m0(g) = (Ξm, U (λ)(g)Ξ0) =

∫
SN−1

e−iλ(r·s)Ξm(s)d(s). (12)

For r = ren, r ∈ R, (12) is nonzero if and only if m = (l, 0, . . . , 0) and takes

the form

u
(λ)
m0(g) =

Γ(N
2 )

√
π Γ(N−1

2 )

√
l! Γ(N − 2)(2l + N − 2)

Γ(N + l − 2)(N − 2)

×
∫ 1

−1
e−iλrxC

N−2
2

l (x)(1− x2)
n−3

2 dx (13)

=
Γ(N/2)

2l
√

π Γ(l + N−1
2 )

√
Γ(N + l − 2)(2l + N − 2)

l! Γ(N − 1)

×(−iλr)l

∫ 1

−1
e−iλrx(1− x2)l+ n−3

2 dx. (14)

Using the equality (11), (14) becomes

u
(λ)
m0(g) = i−lΓ

(
N

2

)√
Γ(N + l − 2)(2l + N − 2)

l! Γ(N − 1)

Jl+ N−2
2

(λr)(
λr
2

)n−2
2

. (15)
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Equating (13) and (15), one obtains the identity

∫ 1

−1
eiλrC

N−2
2

l (r)(1− r2)
N−3

2 dr =
il
√

π Γ
(

N−1
2

)
Γ(N + l − 2)

l! Γ(N − 2)

Jl+ N−2
2

(λ)

(λ/2)
N−2

2

.

(16)

By the orthogonality relationship of the Gegenbauer polynomials,

eiλr = Γ
(

N − 2
2

) ∞∑
l=0

il
(

l +
N − 2

2

) Jl+ N−2
2

(λ)

(λ/2)
N−2

2

C
N−2

2
l (r).

More generally, it can be verified that (see 9.3.8 equation (8) in [34])

eiλr = Γ (ν) (λ/2)−ν
∞∑
l=0

il (l + ν) Jl+ν(λ)Cν
l (r), −1 < x < 1, ν > −1/2.

(17)

The associated spherical functions and the zonal spherical functions of the

irreducible unitary representation of the group M(N) are closely related to

the Gegenbauer polynomials and Bessel functions. By the orthogonality of

Gegenbauer polynomials and Bessel functions, (17) provides a decomposition

of eiλr. This property plays an important role in the derivation of the SVD of

the Radon transform.

Further properties involving Bessel function and Gegenbauer polynomials

can be derived through the properties of the unitary representations, which is

beyond the scope of our study. For an extensive study on the group represen-

tations and their relationship with the special functions, we refer the reader

to [32–35].
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3.4 Fourier Transform over M(N)

Let f ∈ L2(M(N)), then its Fourier transform is defined as

F(f)(λ) = f̂(λ) =
∫

M(N)
d(g) f(g)U (λ)(g−1), λ > 0 (18)

and the inverse Fourier transform is given by

F−1(f̂)(g) = f(g) =
∫ ∞

0
Tr
(
f̂(λ)U (λ)(g)

)
λN−1dλ. (19)

Using the matrix elements of the unitary representation, the matrix elements

of the Fourier and the inverse Fourier transforms over M(N) can be expressed

as

f̂mn(λ) =
∫

M(N)
f(g)u(λ)

mn(g−1) d(g), (20)

f(g) =
∫ ∞

0

∑
m,n

f̂mn(λ)u(λ)
nm(g)λN−1dλ. (21)

Properties of M(N)-Fourier transform

Fourier transform over M(N) satisfies the following properties:

1 Plancherel Equality:

∫
M(N)

f1(g)f2(g) d(g) =
∫∞
0 Tr

(
f̂2

†
(λ)f̂1(λ)

)
λN−1dλ. (22)

For f1 = f2 = f ,

∫
M(N)

|f(g)|2 d(g) =
∫ ∞

0

∥∥∥f̂(λ)
∥∥∥2

2
λN−1dλ, (23)



M(N)-Representations and SVD of the Radon Transform 15

This property is analogous to the Parsevals equality of the standard Fourier

transform.

2 Convolution Property:

F(f1 ∗ f2)(λ) = F(f2)(λ)F(f1)(λ). (24)

Equivalently,

F(f1 ∗ f2)mn(λ) =
∑

q

F(f2)mq(λ)F(f1)qn(λ) . (25)

Note that since M(N) is not commutative, F(f1)(λ)F(f2)(λ) is not nec-

essarily equal to F(f2)(λ)F(f1)(λ).

3 Adjoint Property:

F (f∗) (λ) = [F(f)(λ)]† , (26)

where f∗(g) = f(g−1) and U † denotes the adjoint of the operator U . Equiv-

alently,

f̂∗mn(λ) = f̂nm(λ). (27)

3.5 M(N)-Fourier Transform over the Homogeneous Space RN

Any function f ∈ L2(RN ) can be treated as a rotation invariant function over

M(N), by f(g) = f(Rθ, r) = f(r). This extension is not only well-defined, but

also treats f as an L2(M(N)) function, since SO(N) is a compact subgroup

of M(N), and the measure on RN is invariant under the action of M(N). The
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matrix coefficients of M(N)-Fourier transform of f is given by

f̂mn(λ) =
∫

M(N)
f(g)u(λ)

mn(g−1)d(g)

= δm

∫
RN

f(r)
∫

SN−1

eiλr·sSn(s)d(s)dr (28)

= δmf̃n(−λ), (29)

where f̃n(λ) is the spherical harmonic decomposition of the standard Fourier

transform of f . Observe from (28) that taking Fourier transform of f is equiv-

alent to taking an N−dimensional standard Fourier transform followed by

spherical harmonic decomposition. This decomposes f in terms of the associ-

ated spherical functions {un0(g)} in L2(RN ), i.e.

∫
RN

f(r)
∫

SN−1

eiλr·sSn(s)d(s)dr = (f, u
(λ)
n0 (g)),

where (f1, f2) =
∫

RN f1(r)f2(r)dr is the inner-product over L2(RN ). The in-

verse M(N)-Fourier transform then becomes,

f(g) =
∫ ∞

0

∑
m,n

f̂mn(λ)u(λ)
nm(g)λN−1dλ

=
∫ ∞

0

∑
n

f̃n(−λ)u(λ)
n0 (g)λN−1dλ.

It is straightforward to show that u
(λ)
m0(g) = u

(λ)
0m(g), when u

(λ)
m0(g) is calculated

with respect to Ξm [32].
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3.6 Distributions and M(N)-Fourier Transform

Let S(M(N)) denote the space of rapidly decreasing functions on M(N). The

M(N)-Fourier transform can be extended to S(M(N)), and is injective [31,32].

Let S ′(M(N)) denote the space of linear functionals over S(M(N)). S ′(M(N))

is called the space of tempered distributions over M(N). Let u ∈ S ′(M(N))

and ϕ ∈ S(M(N)). The value u(ϕ) is denoted by 〈u, ϕ〉 or
∫
M(N) u(g)ϕ(g)d(g).

Let ϕ ∈ S(M(N)) and u ∈ S ′(M(N)). The M(N)-Fourier transform û of u

is defined by

〈û, ϕ̂〉 = 〈u, ϕ〉. (30)

Let u and v be two distributions, at least one of which has compact support.

Then the convolution of u and v is a distribution that can be computed using

either of the following equations

〈u ∗M(N) v, ϕ〉 = 〈u(h), 〈v(g), ϕ(hg)〉〉 (31)

= 〈v(g), 〈u(h), ϕ(hg)〉〉. (32)

If either of u or v is a tempered distribution, and the other is compactly

supported, then u∗M(N)v is a tempered distribution. Without loss of generality,

assume that u is compactly supported and v ∈ S ′(M(N)). Then û can be

computed using (30) by

û = 〈u(g), u(λ)
mn(g−1)〉. (33)

Using (31) and (33), the M(N)-Fourier transform of the convolution u∗M(N) v
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is obtained to be

FM(N)(u ∗M(N) v)mn(λ) =
∑

k

v̂mk(λ)ûkn(λ). (34)

For the rest of the paper we will use the integral representations for distri-

butions.

4 Spherical Harmonic Decomposition of the Radon Transform and

M(N)

4.1 Radon Transform

The Radon transform of a compactly supported function over RN is defined

as [17,28]

Rf(ϑ, t) =
∫

RN

f(x)δ(x · ϑ− t)dx, (35)

where ϑ ∈ SN−1, t ∈ R and δ is the generalized Dirac delta distribution.

Without loss of generality, we assume that the support of f is within the unit

ball.

Let f̃(ξ) be the N−dimensional standard Fourier transform of a real valued

function f ∈ L2(RN ),

f̃(ξ) =
∫

RN

f(x)e−ix·ξdx,

and R̃f(ϑ, σ) be the 1−dimensional standard Fourier transform of Rf(ϑ, t)
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with respect to t,

R̃f(ϑ, σ) =
∫

R
Rf(ϑ, t)e−itσdt.

The Fourier slice theorem states that f̃(σϑ) = R̃f(ϑ, σ) for σ ∈ R, ϑ ∈

SN−1 [17]. Let f̃l(σ) and R̃f l(σ) denote the spherical harmonic decomposition

of the Fourier transforms of the function f and its projections Rf . Then, by

the Fourier slice theorem, one can show that f̃l(σ) = R̃f l(σ). This relationship

leads to the spherical harmonic decomposition of Radon transform in terms

of f [2, 4]. In the following section, we will derive this relationship from a

convolution type representation of the Radon transform over M(N).

4.2 Radon Transform as a Convolution over M(N)

In [26], Radon transform over R2 was recognized as a cross-correlation over

M(2). The cross-correlation representation was restated and generalized as a

convolution over M(N) in Chapter 13 of [3]. The convolution representation of

the Radon transform over M(N) is an alternative representation of the Radon

transform for the double fibration (see Section 2.2 of [17]) using distributions.

We also adapt a convolution formulation similar to the one introduced in [3],

and derive the SVD of the Radon transform from the convolution representa-

tion using the Fourier analysis over M(N).

In order to express the Radon transform as a convolution over M(N), let

us revisit the convolution over M(N). Let f1 and f2 be real valued functions
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over M(N). Then, convolution of f1 and f∗2 over M(N) is given by

(f1 ∗M(N) f∗2 )(g) =
∫

M(N)
f1(h)f2(g−1h) d(h)

=
∫

SO(N)

∫
RN

f1(Rφ,x)f2(RφR−1
θ , R−1

θ x−R−1
θ r) d(φ)dx, (36)

where g = (Rθ, r) and h = (Rφ,x).

Let δ(Rφ) denote the distribution over SO(N) defined as follows

∫
SO(N)

δ(Rφ)ϕ(Rφ)d(Rφ) = ϕ(I), (37)

where I is the identity rotation. Then, setting fδ(Rφ,x) = f(x)δ(Rφ) and

Λ(Rφ,x) = δ(x · e1), we can write the Radon transform of f by

Rf(ϑ, t) = (fδ ∗M(N) Λ∗)(g), (38)

where ϑ = Rθe1 ∈ SN−1, the first column of Rθ, and t = (R−1
θ r) · e1.

Using an equivalent formulation,

(f1 ∗M(N) f∗2 )(g) =
∫

M(N)
f1(RθRφ, Rθx + r)f2(φ,x) d(h). (39)

In this case, the Radon transform of f is given by,

Rf(ϑ, r1) = (Λ ∗M(N) f∗)(g), (40)

where Λ(Rφ,x) = δ(x · e1), f(Rφ,x) = f(x), and ϑ = −R−1
θ e1.

The formulation in (40) leads to a simpler algorithm for the inversion be-

cause, unlike the formulation in (38), the projection data can be used without
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any preprocessing. The formulation in (40) and (38) carries the tomographic

inversion problem over to M(N). Now, we wish to determine f given Rf and

Λ over M(N).

Equation (40) should be understood in the distribution sense where Rf is a

tempered distribution given by the convolution of the tempered distribution

Λ and the compactly supported distribution f over M(N).

4.3 Spherical Harmonic Decomposition of the Radon Transform

M(N)-Fourier transform maps the convolution into multiplication in the trans-

form domain. Hence, taking M(N)-Fourier transform of both sides of (40) gives

the relationship between the M(N)-Fourier coefficients of Rf and f as

R̂f(λ) = f̂(λ)†Λ̂(λ), (41)

or in matrix form

R̂fmn(λ) =
∑

q f̂qm(λ)Λ̂qn(λ). (42)

Since f ∈ L2(RN ), M(N)-Fourier coefficients of f are non-zero if and only if

q = 0, Equation (42) becomes

R̂fmn(λ) = f̂0m(λ)Λ̂0n(λ). (43)



22 C. E. Yarman & B. Yazıcı

From (43), f̂0m(λ) is independent of the choice of n. Therefore, as long as

Λ̂0n(λ) is not equal to zero, M(N)-Fourier coefficients of f are computed as

f̂0m(λ) =
R̂fmn(λ)

Λ̂0n(λ)
. (44)

The M(N)-Fourier coefficients, R̂fmn(λ) and Λ̂0n(λ) are (see Sections A and

B) given by

R̂fmn(λ) = C1
Sn(e1) + Sn(−e1)

λN−1

∫
SN−1

R̃f(ϑ, λ)Sm(ϑ)d(ϑ), (45)

Λ̂mn(λ) = δmC1
Sn(e1) + Sn(−e1)

λN−1
. (46)

Note that, whenever Λ̂0n(λ) is zero, so is R̂fmn(λ). Substituting (45) and (46)

in the right hand side of (44), the M(N)-Fourier coefficients of f becomes

f̂0m(λ) =
∫
SN−1 R̃f(ϑ, λ)Sm(ϑ)d(ϑ). (47)

Using the M(N)-Fourier transform over RN , and the property of the standard

Fourier transform under conjugation, one obtains

f̃m(−λ) =
∫
SN−1 R̃f(ϑ,−λ)Sm(ϑ)d(ϑ).

This is nothing but the spherical harmonic decomposition of the Radon trans-

form

f̃m(λ) = R̃fm(λ). (48)

Equation (48) shows that M(N)-Fourier analysis of the Radon transform im-

plicitly combines the spherical harmonic decomposition and the Fourier slice
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theorem.

While the harmonic analysis over M(N) provides a framework to analyze

the Radon transform, the relationship between the representations of M(N)

and the special functions provides a natural approach in understanding the

presence of the special functions in the SVD of the Radon transform.

5 Inversion of the Radon Transform

Equation (47) provides an inversion formula for the Radon transform based on

the M(N)-Fourier transform. This inversion method facilitates the definition

of the inverse Radon transform, R−1, as an integral operator over M(N).

In the following sections we will first derive the sufficient conditions for the

separability of the convolution kernels. This will be followed by the decompo-

sition of the kernel of R−1, leading to the SVD of the Radon transform.

5.1 Linear Integral Operators over Groups

Let G be a unimodular, separable locally compact group of Type I, and A be

a linear integral operator acting on the functions defined over a homogeneous

space Z of G with kernel K̃A(g, h):

Af(h) =
∫
Z K̃A(g, h)f(g)d(g), (49)
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where h is an element of another homogeneous space H of G. If K̃A(g, h) can

be decomposed as

K̃A(g, h) =
∑

i

ciai(g)bi(h), (50)

where {ci} are constants and {ai(g)} and {bi(h)} are linearly independent

normalized functions, then we shall call K̃A(g, h) a separable kernel. For linear

integral operators with separable kernels, (49) becomes

Af(h) =
∑

i

cibi(h)
∫

Z
ai(g)f(g)d(g). (51)

If {ai(g)} and {bi(h)} are orthonormal and complete with respect to some

weight functions wa(g) and wb(h),

Aajwa(h) =
∑

i

cibi(h)
∫

Z
ai(g)aj(g)wa(g)d(g)

=
∑

i

cibi(h)δij = cjbj(h), (52)

where

ci =
∫

M(N)
Aajwa(h)bj(h)wb(h)d(h),

then {aiwa, bi, ci} becomes the singular value decomposition of A. Further-

more, if A is invertible, the SVD of A−1 is given by {bi, aiwa, c
−1
i }.

Let K̃A(g, h) = KA(g−1h), and KA has a Fourier transform over G. Then
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we can write KA as

KA(g−1h) =
∫ ∞

0
Tr
[[∫

H
KA(g−1h0)U (λ)(h−1

0 )d(h0)
]

U (λ)(h)
]

d(λ)

=
∫ ∞

0
Tr
[
K̂A(λ)U (λ)(g−1)U (λ)(h)

]
d(λ)

=
∑

m,n,k

∫ ∞

0
K̂Amk(λ)u(λ)

kn (g−1h)d(λ)

=
∑

m,n,k,l

∫ ∞

0
K̂Amk(λ)u(λ)

lk (g)u(λ)
ln (h)(dλ). (53)

(53) implies that if u
(λ)
mn(g) is separable in λ and g, then KA is separable. Let

u
(λ)
mn(g) =

∑
p u

(1)
mnp(λ) u

(2)
mnp(g). Then,

KA(g−1h) =
∑

m,n,k,l,p,q

(∫ ∞

0
K̂Amk(λ)u(1)

lkp(λ)u(1)
lnq(λ)

)
u

(2)
lkp(g)u(2)

lnq(h). (54)

Furthermore, if u
(2)
lkp(g) and u

(2)
lnq(h) are orthogonal and complete over Z and

H, respectively, (54) leads to the SVD of A.

This is indeed the case for the unitary representations of M(N), and can

be seen by substituting the identity (17) into the matrix elements u
(λ)
mn(g) of

the unitary representations given in (4). In the next section, we will derive the

singular functions arising in the SVD of the inverse Radon transform by using

the identity (17).
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5.2 Inverse Radon Transform as a Linear Integral Operator

By (47) the M(N)-Fourier coefficients of f are given by

f̂0m(λ) =
∫

SN−1

R̃f(ϑ,−λ)Sm(ϑ)d(ϑ)

=
∫

SN−1

∫
R
Rf(ϑ, r)eirλdrSm(ϑ)d(ϑ). (55)

Using the inverse M(N)-Fourier transform, f can be obtained as

f(h) =
∫ ∞

0

∫
SN−1

∫
R
Rf(ϑ, r1)eir1λdrSm(ϑ)d(ϑ)u(λ)

m0(h)λN−1dλ, (56)

where h = (Rφ,x). Since u
(λ)
m0(h) is equal to u

(λ)
m0(h), f does not depend on the

rotation component of h. Hence, Equation (56) is an exact inversion formula

for the Radon transform.

Furthermore, Equation (56) defines the inverse Radon transform as an inte-

gral operator with the following kernel:

KR−1(g, h) =
∫ ∞

0
eir1λSm(ϑ)u(λ)

m0(h)λN−1dλ, (57)

where g = (ϑ, r1) ∈ SN−1 ×Z. Now, our objective is to decompose the kernel

KR−1(g, h) as in Equation (50). To do so, we first decompose eiλr1 by using

the equality (17), i.e.

eiλr1 = Γ (ν) (λ/2)−ν
∞∑

k=0

ik (k + ν) Jk+ν(λ)Cν
k (r1), −1 < x < 1, ν > −1/2.

(58)

Secondly, we compute the associated spherical functions u
(λ)
m0(h). u

(λ)
m0(h) is
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given by

u
(λ)
m0(h) =

∫
SN−1

Sm(ω)e−iλ(x·ω)d(ω) =
∫

SN−1

Sm(ω)e−iλ|x|( x

|x| ·ω)
d(ω), (59)

showing that u
(λ)
m0(h) is independent of the rotation component of h. Therefore,

we will use h and x interchangeably. Furthermore, by Funk-Hecke theorem [29],

u
(λ)
m0(x) = cN,l

[∫ 1

−1
e−iλ|x|tC

(N−2)/2
l (t)(1− t2)(N−3)/2dt

]
Sm

(
x

|x|

)
, (60)

where l is the first component of the multi-index m representing the degree of

the spherical harmonics. Using the identity (11), u
(λ)
m0(x) becomes

u
(λ)
m0(x) = cN,l

(−i)lπ Γ(N + l − 2)
2(N−4)/2l! Γ(N−2

2 )

Jl+(N−2)/2(λ |x|)
(λ |x|)(N−2)/2

Sm

(
x

|x|

)
. (61)

Note that (15) is a special case for u
(λ)
m0(g), where Sm = Ξm.

Substituting (61) and (58) in (57) and collecting all the constants under a

single expression C1(N, k, l, ν), and reorganizing the terms, KR−1(g, h) can be

expressed as

KR−1(g,x) =
∑
k,m

C1(N, k, l, ν)Cν
k (r1)Sm(ϑ) (62)

× |x|1−N/2

(∫ ∞

0
λ−νJk+ν(λ)

Jl+(N−2)/2(λ |x|)
λ(N−2)/2

λN−1dλ

)
Sm

(
x

|x|

)
.

(63)

From (62), we obtain the first set of functions, {akm}, of the kernel:

akm(g) = Cν
k (r1)Sm(ϑ). (64)
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The integral inside the brackets in (63) when constants are neglected, gives

the second set of functions, {bkm}, of the kernel: (See equation (3.6) in [20])

bkm(x) = (1− |x|2)ν−N/2Qν,N
k,l (|x|)Sm

(
x

|x|

)
, (65)

where

Qν,N
k,l (|x|) = |x|lP (ν−N/2,l+N/2−1)

(k−l)/2 (2|x|2 − 1).

Using {akm} and {bkm}, KR−1(g,x) is rewritten as

KR−1(g, h) =
∑
k,m

c(N, k, l, ν)akm(g)bkm

(
|x|, x

|x|

)
, (66)

where

c(N, k, l, ν) = C1(N, k, l, ν)

×

[∫ ∞

0
|x|
(∫ ∞

0
λ−νJk+ν(λ)

Jl+(N−2)/2(λ |x|)
λ(N−2)/2

λN−1dλ

)2

d|x|

]1/2

. (67)

An explicit computation of c(N, k, l, ν) is given in [20].

5.3 Singular Value Decomposition of the Radon Transform

By Equation (51),

f(x) =
∑
m,k

c(N, k, l, ν)bkm(x)
∫

SN−1×R
akm(g)Rf(g)d(g).

{akm} are orthogonal with respect to the weight function wa,ν(r1) = (1 −

r2
1)

ν−1/2; and {bkm} are orthogonal with respect to the weight function
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wb,ν(|x|) = (1−|x|2)ν−N/2; and both basis are complete. Both the orthogonal-

ity and completeness are direct consequence of the Gegenbauer polynomials,

Jacobi polynomials and spherical harmonics (see [1, 20,32]).

Therefore, the SVD of the inverse Radon transform is given by

{akmwa,ν , bkm, c(N, k, l, ν)}. Hence, the SVD of the Radon transform is

{bkm, akmwa,ν , c(N, k, l, ν)−1}.

6 Conclusions

We presented a new derivation of the SVD of the Radon transform using

harmonic analysis over the Euclidean motion group. We showed that the sep-

arability of the unitary representations of the underlying group leads to the

decomposition of the integral transforms with convolution kernels. In our case,

the decomposition of the matrix elements of the unitary representation of the

Euclidean motion group is the key that leads to the SVD of the Radon trans-

form. The separability of the unitary representations also gives rise to the

special functions present in the SVD of the Radon transform. The decom-

position method presented here can be generalized to the weighted Radon

transform. This leads to the SVD of the weighted Radon transform [36].
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Appendix A: Computation of R̂fmn(λ)

Let Sn(s) and Sm(s) be any two nth and mth order spherical harmonics. Then,

the M(N) Fourier transform of the projections is computed as

R̂fmn(λ) =
∫

M(N)
Rf(ϑ, r1)

∫
SN−1

Sn(s)eiλ(r·s)Sm(R−1
θ s)d(s)d(g)

=
∫

SO(N)

∫
RN

Rf(ϑ, r1)
∫

SN−1

Sn(s)eiλ(r·s)Sm(R−1
θ s)d(s)drd(θ)

= (2π)N−1

∫
SO(N)

∫
SN−1

R̃f(ϑ,−λs1)δ(λs2)Sn(s)Sm(R−1
θ s)d(s)d(θ)

where s2 = (s2, . . . , sN ), and ‖s2‖ = 1− s2
1 =⇒ s1 = ±1 when s2 = 0

=
C1

λN−1

(∫
SO(N)

R̃f(ϑ,−λ)Sn(e1)Sm(R−1
θ e1)d(θ)

+
∫

SO(N)
R̃f(ϑ, λ)Sn(−e1)Sm(−R−1

θ e1)d(θ)

)

where C1 = (2πN−1)/
∣∣SN−1

∣∣
=

C1

λN−1

(∫
SO(N)

R̃f(ϑ,−λ)Sn(e1)Sm(−ϑ)d(θ)

+
∫

SO(N)
R̃f(ϑ, λ)Sn(−e1)Sm(ϑ)d(θ)

)

= C1
Sn(e1) + Sn(−e1)

λN−1

∫
SO(N)

R̃f(ϑ, λ)Sm(ϑ)d(θ)

= C1
Sn(e1) + Sn(−e1)

λN−1

∫
SO(N−1)

d(θ)
∫

SN−1

R̃f(ϑ, λ)Sm(ϑ)d(ϑ)

= C1
Sn(e1) + Sn(−e1)

λN−1

∫
SN−1

R̃f(ϑ, λ)Sm(ϑ)d(ϑ)
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Appendix B: Computation of Λ̂0n(λ)

Similar to R̂fmn(λ), we compute Λ̂mn(λ),

Λ̂mn(λ) =
∫

M(N)
δ(r1)

∫
SN−1

Sn(s)eiλ(r·s)Sm(R−1
θ s)d(s)d(g)

=
∫

SO(N)

∫
RN

δ(r1)
∫

SN−1

Sn(s)eiλ(r·s)Sm(R−1
θ s)d(s)drd(θ)

= δm(2π)N−1

∫
SN−1

δ(λs2)Sn(s)d(s)

= δmC1
Sn(e1) + Sn(−e1)

λN−1
.
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