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Abstract
In diffuse optical tomography (DOT), the discretization error in the numerical
solutions of the forward and inverse problems results in error in the
reconstructed optical images. In this first part of our work, we analyse the error
in the reconstructed optical absorption images, resulting from the discretization
of the forward and inverse problems. Our analysis identifies several factors
which influence the extent to which the discretization impacts on the accuracy of
the reconstructed images. For example, the mutual dependence of the forward
and inverse problems, the number of sources and detectors, their configuration
and their orientation with respect to optical absorptive heterogeneities, and the
formulation of the inverse problem. As a result, our error analysis shows that
the discretization of one problem cannot be considered independent of the other
problem. While our analysis focuses specifically on the discretization error in
DOT, the approach can be extended to quantify other error sources in DOT and
other inverse parameter estimation problems.

1. Introduction

Imaging in diffuse optical tomography (DOT) comprises two interdependent stages which
seek solutions to the forward and inverse problems. The forward problem is associated with
describing the near-infrared (NIR) light propagation, while the objective of the inverse problem
is to estimate the unknown optical parameters from boundary measurements [2].

There are a variety of factors that affect the accuracy of the DOT imaging, such as
model mismatch (due to the light propagation model and/or linearization of the inverse
problem), measurement noise, discretization, numerical algorithm efficiency and inverse
problem formulation. In this two-part study, we focus on the effect of discretization of the
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forward and inverse problems. In the first part of our work, we present an error analysis to show
the effect of discretization on the accuracy of the reconstructed optical absorption images. We
identify the factors specific to the imaging problem, which determine the extent to which the
discretization impacts on the accuracy of the reconstructed optical absorption images. In the
following, first, we use the error analysis to develop novel adaptive discretization algorithms
for the forward and inverse problems to reduce the error in the reconstructed optical images
resulting from discretization. Next, we present numerical experiments that support the main
results of part I and demonstrate the effectiveness of the developed adaptive mesh generation
algorithms.

There has been extensive research on the estimation of discretization error in the solutions
of partial differential equations (PDEs) [1, 5–7, 21, 22]. In contrast, relatively little has been
published in the area of parameter estimation problems governed by PDEs. See for example
[8] for an a posteriori error estimate for the Lagrangian in the inverse scattering problem
for the time-dependent acoustic wave equation and [19] for a posteriori error estimates for
distributed elliptic optimal control problems. In the area of DOT, it was numerically shown
that the approximation errors resulting from the discretization of the forward problem can lead
to significant errors in the reconstructed optical images [3]. However, an analysis regarding
the error in the reconstructed optical images resulting from discretization has not been reported
so far.

In this work, we model the forward problem by the frequency-domain diffusion equation.
For the inverse problem, we focus on the estimation of the absorption coefficient. We consider
the linear integral equation resulting from the iterative linearization of the inverse problem
based on Born approximation and use zeroth-order Tikhonov regularization to address the
illposedness of the resulting integral equation. We use finite elements with first-order Lagrange
basis functions to discretize the forward and inverse problems and analyse the effect of the
discretization of each problem on the reconstructed optical absorption image. Our analysis
describes the dependence of the image quality on the optical image properties, the configuration
of the source and detectors, the orientation of the source and detectors with respect to absorptive
heterogeneities, and on the regularization parameter in addition to the discretization error in the
solution of each problem. In our analysis, we first consider the impact of the inverse problem
discretization when there is no discretization error in the solution of the forward problem, and
provide a bound for the resulting error in the reconstructed optical image. Next, we analyse
the effect of the forward problem discretization on the accuracy of the reconstructed image
without discretizing the inverse problem, and obtain another bound for the resulting error in
the reconstructed optical image. We see that each error bound comprises the discretization
error in the corresponding problem solution, scaled spatially by the solutions of both problems.
This is a direct consequence of the fact that the inverse problem solution depends on the model
defined by the forward problem. As a result, the error analysis yields specific error estimates
which are different than the conventional discretization error estimates (see equations (3.8)–
(3.9) and (4.14)) which only take into account the smoothness and support of the function of
interest, and the finite-dimensional space of approximating functions [9]. We further discuss
the use of other basis functions and methods in the discretization of the forward and inverse
problems and explain how the error bounds can be modified accordingly. Finally, we extend
our analysis to show the effect of noise on the accuracy of the reconstructed optical images.
Our analysis shows that the presence of noise results in error terms in addition to the error
in the reconstructed optical images induced by the discretization of the forward and inverse
problems.

This work not only provides an insight into the error in reconstructed optical absorption
images resulting from discretization, but also motivates the development of novel adaptive
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mesh generation algorithms to address this error [14]. In addition, the analysis presented in
this work provides a means to identify and analyse the error in the reconstructed optical images
resulting from the linearization of the Lippmann–Schwinger-type equations [10] using Born
approximation [15]. Furthermore, the error analysis introduced in this paper is not limited
to DOT, and can easily be extended for use in similar inverse parameter estimation problems
such as electrical impedance tomography, bioluminescence tomography, optical fluorescence
tomography, microwave imaging etc, in all of which the inverse problem can be interpreted
in terms of a linear integral equation, whose kernel is the solution of a PDE that models the
forward problem.

The outline of this paper is as follows: section 2 defines the forward and inverse problems.
In section 3, we discuss the discretization of the forward and inverse problems. In section 4,
we present two theorems that summarize the impact of discretization on the accuracy of the
reconstructed optical images, which is followed by section 5. The appendices include results
regarding the boundedness and compactness of the linear integral operator used to define the
inverse problem, and the proof for the convergence of the inverse problem discretization.

2. Forward and inverse problems

In this section, we describe the model for NIR light propagation and define the forward and
inverse DOT problems. Table 1 provides a list of the notation and table 2 provides the definition
of function spaces and norms used throughout the paper. We note that we use calligraphic
letters to denote the operators, e.g. Aa, I,K etc.

2.1. Forward problem

We use the following boundary value problem to model the NIR light propagation in a bounded
domain � ⊂ R

3 with Lipschitz boundary ∂� [2, 9]:

−∇ · D(x)∇gj (x) +
(
µa(x) +

iω

c

)
gj (x) = Qj(x) x ∈ �, (2.1)

gj (x) + 2aD(x)
∂gj

∂n
(x) = 0 x ∈ ∂�, (2.2)

where gj (x) is the photon density at x,Qj is the point source located at xj
s , j = 1, . . . , Ns ,

where Ns is the number of sources, D(x) is the diffusion coefficient and µa(x) is the absorption
coefficient at x, i = √−1, ω is the modulation frequency of the source, c is the speed of the
light, a = (1 + R)/(1 − R) where R is a parameter governing the internal reflection at the
boundary ∂�, and ∂ · /∂n denotes the directional derivative along the unit normal vector on
the boundary. Note that we assume the diffusion coefficient is isotropic. For the general
anisotropic material, see [17].

The adjoint problem [2] associated with (2.1)–(2.2) is given by the following boundary
value problem:

−∇ · D(x)∇g∗
i (x) +

(
µa(x) − iω

c

)
g∗

i (x) = 0 x ∈ �, (2.3)

g∗
i (x) + 2aD(x)

∂g∗
i

∂n
(x) = Q∗

i (x) x ∈ ∂�, (2.4)

where Q∗
i is the adjoint source located at xi

d , i = 1, . . . , Nd , where Nd is the number of
detectors. We note that we approximate the point source Qj in (2.1) and the adjoint source
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Table 1. Definition of variables functions, and operators.

Notation Explanation

� Bounded domain in R
3 with Lipschitz boundary

∂� Lipschitz boundary of �

x Position vector in � ∪ ∂�

gj (x) Solution of the diffusion equation at x for the j th

point source located at xj
s

g∗
i (x) Solution of the adjoint problem at x for the ith

adjoint source located at xi
d

Gj (x) Finite-element approximation of gj at x
G∗

i (x) Finite-element approximation of g∗
i at x

ej (x) The discretization error at x in the finite-element
approximation of gj

e∗
i (x) The discretization error at x in the finite-element

approximation of g∗
i

α(x) Small perturbation over the background µa at x
�i,j Differential measurement at the ith detector

due to the j th source
Aa The matrix-valued operator mapping α ∈ L∞(�) to C

Nd×Ns

A∗
a The adjoint of Aa mapping from C

Nd×Ns to L1(�)

Hi,j (x) The kernel in Aa at x for the ith detector and the jth source
H ∗

i,j (x) The kernel in A∗
a at x for the ith detector and the jth source

γ (x) A∗
a� at x

λ The regularization parameter
αλ(x) Solution of the regularized inverse problem at x
αλ

n(x) Solution of the discretized regularized inverse problem
with exact kernel at x

α̃λ(x) Solution of the regularized inverse problem
with degenerate kernel at x

α̃λ
n(x) Solution of the discretized regularized inverse problem

with degenerate kernel at x

Table 2. Definition of function spaces and norms.

Notation Explanation

f The complex conjugate of the function f

C(�) Space of continuous complex-valued functions on �

Ck(�) Space of complex-valued k-times continuously differentiable functions on �

L∞(�) L∞(�) = {f |ess sup� |f (x)| < ∞}
Lp(�) Lp(�) = {f |(∫

�
|f (x)|p dx)1/p < ∞}, p ∈ [1,∞)

Dz
wf zth weak derivative of f

Hp(�) Hp(�) = {f |(∑|z|�p ‖Dz
wf ‖2

0)
1/2 < ∞}, p ∈ [1,∞)

‖f ‖0 The L2(�) norm of f

‖f ‖p The Hp(�) norm of f

‖f ‖∞ The L∞(�) norm of f

‖f ‖Lp(�) The Lp(�) norm of f

‖f ‖0,m The L2 norm of f over the mth finite element �m

‖f ‖p,m The Hp norm of f over the mth finite element �m

Q∗
i in (2.4) by Gaussian functions with sufficiently low variance, whose centres are located at

xj
s and xi

d , respectively.
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In this work, we consider the finite-element approximations of the solutions of the forward
problem. Hence, before we discretize the forward problem (see section 3.2), we consider the
variational formulations of (2.1)–(2.2) and (2.3)–(2.4) by multiplying (2.1) by a test function
φ ∈ H 1(�) and integrating over � [9]:∫

�

[
∇φ · D∇gj + φ

(
µa +

iω

c

)
gj − φQj

]
dx +

1

2a

∫
∂�

φgj dl = 0, (2.5)

where the boundary integral term results from the boundary condition (2.2).
Equivalently, we can express (2.5) by defining the sesquilinear form b(φ, gj ) [16]:

b(φ, gj ) := A(φ, gj ) +

〈
φ,

1

2a
gj

〉
= (φ,Qj ), (2.6)

where

A(φ, gj ) :=
∫

�

[
∇φ · D∇gj +

(
µa +

iω

c

)
φgj

]
dx,

(φ,Qj ) :=
∫

�

φQj dx,〈
φ,

1

2a
gj

〉
:= 1

2a

∫
∂�

φgj dl.

Similarly, the variational problem for (2.3)–(2.4) can be formulated by defining the sesquilinear
form b∗(φ, g∗

i ):

b∗(φ, g∗
i ) := A(φ, g∗

i ) +

〈
φ,

1

2a
g∗

i

〉
=

〈
φ,

1

2a
Q∗

i

〉
, (2.7)

where in A(φ, g∗
i ), ω is replaced by −ω.

The sesquilinear forms b(φ, gj ), b
∗(φ, g∗

i ) are continuous and positive definite for
bounded D and µa [16]. As a result, the variational problems (2.6) and (2.7) have unique
solutions, which follows from the Lax–Milgram lemma [9]. The solutions gj and g∗

i of the
variational problems (2.6) and (2.7) belong to H 1(�), which results from the H 1-boundedness
of the Gaussian function that approximates the point source Qj and the adjoint source Q∗

i

[16]. Assuming D,µa ∈ C1(�) and noting that Qj,Q
∗
i ∈ H 1(�); the solutions gj , g

∗
i satisfy

gj , g
∗
i ∈ H 2

loc(�) (in [12, chapter 6.3, theorem 2]). This last condition implies (in [12, chapter
5.6, theorem 6])

gj , g
∗
i ∈ C(�). (2.8)

2.2. Inverse problem

In this work, we focus on the estimation of the absorption coefficient; therefore, we assume
D(x) is known for all x ∈ � ∪ ∂�. To address the nonlinear nature of the inverse DOT
problem, we consider an iterative algorithm based on repetitive linearization of the inverse
problem using first-order Born approximation [2]. As a result, at each linearization step,
the following linear integral equation relates the differential optical measurements to a small
perturbation α on the absorption coefficient µa:

�i,j = −
∫

�

g∗
i (x)gj (x)α(x) dx (2.9)

:=
∫

�

Hi,j (x)α(x) dx

:= (Aaα)i,j , (2.10)



1120 M Guven et al

where Hi,j = −g∗
i gj is the kernel in the (i, j)th entry of the matrix-valued operator

Aa : L∞(�) → C
Nd×Ns , gj is the solution of (2.6), g∗

i is the solution of (2.7), and �i,j

is the (i, j)th entry in the vector � ∈ C
Nd×Ns , which represents the differential measurement

at the ith detector due to the j th source. Note that approximating Q∗
i in (2.4) by a Gaussian

function centred at xi
d implies that �i,j corresponds to the scattered optical field evaluated

at xi
d , after filtering it by that Gaussian function. Thus, the Gaussian approximation of the

adjoint source models the finite size of the detectors. Similarly, approximating Qj in (2.1) by
a Gaussian function models the finite beam of the source.

The linear operator Aa : L∞(�) → C
Nd×Ns defined by (2.9) is compact and bounded by

(see appendices A and B)

‖Aa‖L∞(�)→l1 � NdNs max
i

‖g∗
i ‖0 max

j
‖gj‖0. (2.11)

For the given solution space L∞(�) for α, the compactness of the linear operatorAa implies the
illposedness of (2.9). Hence, we regularize (2.9) with a zeroth-order Tikhonov regularization.
This yields the following equation which defines our inverse problem at each linearization
step:

γ := A∗
a� = (A∗

aAa + λI)αλ (2.12)

:= Kαλ, (2.13)

where λ > 0 and αλ is an approximation to α. In this representation, I is the identity operator
and A∗

a : C
Nd×Ns → L1(�) is the adjoint of Aa , defined by

(A∗
aβ)(x) =

Nd,Ns∑
i,j

H ∗
i,j (x)βi,j =

Nd,Ns∑
i,j

−g∗
i (x)gj (x)βi,j , (2.14)

for all β ∈ C
Nd×Ns , where H ∗

i,j := −g∗
i gj is the (i, j)th kernel in the adjoint operator A∗

a . Let
A := A∗

aAa , then A : L∞(�) → L1(�) is defined as follows:

(Aα)(x) =
Nd,Ns∑

i,j

H ∗
i,j (x)

∫
�

Hi,j (x́)α(x́) dx́

:=
∫

�

κ(x, x́)α(x́) dx́, (2.15)

where κ(x, x́) stands for the kernel of the integral operator A and is given by

κ(x, x́) =
Nd,Ns∑

i,j

H ∗
i,j (x)Hi,j (x́). (2.16)

Having defined the adjoint operator A∗
a , we note that the operator A : L∞(�) → L1(�)

is compact and that the operator K : L∞(�) → L1(�) is bounded by ‖K‖ � ‖Aa‖2 + λ. We
assume that the solution αλ ∈ L∞(�) also satisfies αλ ∈ H 1(�). For the rest of the paper, we
will denote L∞(�) and L1(�) by X and Y, respectively.

3. Discretization of the inverse and forward problems

In this section, we outline the discretization of the inverse and forward problems.
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3.1. Inverse problem discretization

In practice, we seek a finite-dimensional approximation to the solution of the inverse problem
(2.13) at each linearization step. Therefore, we discretize (2.13) by projecting it onto a
finite-dimensional subspace.

Let Xn ⊂ X and Yn ⊂ Y denote a sequence of finite-dimensional subspaces of
dimension n = 1, 2, . . . , spanned by first-order Lagrange basis functions {L1, . . . , Ln}, and
{xp}, p = 1, . . . , n, be the set of collocation points on �. Then, the collocation method
approximates the solution of (2.13) by an element αλ

n ∈ Xn which satisfies(
Kαλ

n

)
(xp) = γ (xp), p = 1, . . . , n, (3.1)

where we express αλ
n on a set {�m} of finite elements, m = 1, . . . , N� such that

⋃N�

m �m = �

as follows:

αλ
n(x) =

n∑
k=1

akLk(x). (3.2)

Note that in (3.2), ap = αλ
n(xp), p = 1, . . . , n. Then, (3.1) can explicitly be written as

λap +
n∑

k=1

ak

∫
�

κ(xp, x́)Lk(x́) dx́ = γ (xp), p = 1, . . . , n. (3.3)

Equivalently, the collocation method can be interpreted as a projection with the interpolation
operator Pn : Y → Yn defined by [18]

Pnf (x) :=
n∑

p=1

f (xp)Lp(x), x ∈ �, (3.4)

for all f ∈ Y . Then, (3.1) is equivalent to

PnKαλ
n = Pnγ. (3.5)

3.2. Forward problem discretization

In this section, we consider the finite-element discretizations of (2.6) and (2.7), and use
their solutions to approximate Hi,j and H ∗

i,j . As a result, we obtain finite-dimensional
approximations to K and γ .

Let Lk denote the kth first-order Lagrange basis function. Replacing φ and gj in (2.6)

with their finite-dimensional counterparts �(x) = ∑Nj

k=1 pkLk(x),Gj (x) = ∑Nj

k=1 ckLk(x),
and replacing φ and g∗

i in (2.7) with �(x) = ∑Ni

k=1 pkLk(x),G∗
i (x) = ∑Ni

k=1 dkLk(x) yields
the matrix equations:

Scj = qj , (3.6)

S∗di = q∗
i , (3.7)

for cj := [
c1, c2, . . . , cNj

]T
and di := [

d1, d2, . . . , dNi

]T
. Here S and S∗ are the finite-element

matrices and qj and q∗
i are the load vectors resulting from the finite-element discretization

of (2.6) and (2.7). Note that for each source (detector), the dimension of the finite-element
solution Gj (G∗

i ) can be different; therefore, Nj (Ni) may vary.
The H 1(�) boundedness of the solutions gj and g∗

i implies that the discretization errors
ej and e∗

i in Gj and G∗
i are bounded. Let

{
�

j
m

}
denote the set of linear elements used to
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discretize (2.6) for m = 1, . . . , N
j

�, such that
⋃N

j

�

m �
j
m = � for all j = 1, . . . , Ns . Similarly,

let
{
�i

n

}
denote the set of linear elements used to discretize (2.7) for n = 1, . . . , N∗i

� , such

that
⋃N∗i

�

n �i
n = � for all i = 1, . . . , Nd . Then, a bound for ej and e∗

i on each finite element
can be found by using the discretization error estimates (in [9, theorem 4.4.4]):

‖ej‖0,mj � C‖gj‖1,mj hj
m, (3.8)

‖e∗
i ‖0,ni � C‖g∗

i ‖1,ni hi
n, (3.9)

where C is a positive constant, ‖·‖0,mj (‖·‖0,ni ) and ‖·‖1,mj (‖·‖1,ni ) are respectively the L2

and H 1 norms on �
j
m

(
�i

n

)
, and h

j
m

(
hi

n

)
is the diameter of the smallest ball containing the

finite element �
j
m

(
�i

n

)
in the solution Gj (G∗

i ).

3.3. Discretization of the inverse problem with operator approximations

Substituting the finite-element approximations Gj and G∗
i in (2.15) and (2.14), and using the

resulting finite-dimensional operator approximations in (3.5), we obtain the following linear
system in terms of α̃λ

n which approximates αλ:

PnK̃α̃λ
n = Pnγ̃ . (3.10)

In (3.10), the operator K̃ : X → Y is the finite-dimensional approximation of K in (2.13) and
PnK̃ : Xn → Yn. Similarly,

γ̃ := Ã∗
a�, (3.11)

where Ã∗
a is the approximation to the adjoint operator A∗

a , obtained by substituting Gj and G∗
i

in (2.14).

4. Discretization-based error analysis

As a result of the discretization of the forward and inverse problems, the reconstructed image
α̃λ

n in (3.10) is an approximation to the actual image αλ. Thus, the accuracy of the reconstructed
image depends on the error incurred by the discretization of the forward and inverse problems.

In this section, we analyse the effect of the discretization of the forward and inverse
problems on the accuracy of DOT imaging. The analysis is carried out based on the inverse
problem at each linearization defined by (2.13) and the associated kernel κ(x, x́).

In this work, we follow an approach which allows us to separately analyse the effect of
the discretization of each problem on the accuracy of the reconstructed optical image. In
this respect, we first consider the impact of projection (i.e. inverse problem discretization)
by the collocation method when the associated kernel κ(x, x́) in (2.13) is exact. Next, we
explore the case in which the kernel is replaced by its finite-dimensional approximation (i.e.
degenerate kernel) and analyse the effect of the forward problem discretization on the accuracy
of the reconstructed image without projecting (2.13).

Our analysis reveals that even if the kernel is exact, the accuracy of the solution
approximation αλ

n in (3.5) resulting from the inverse problem discretization depends on the
kernel κ(x, x́) of the integral operator. Likewise, the error in the reconstructed optical image
due to the discretization of the forward problem is a function of the inverse problem solution.
These results suggest that the discretization of the inverse and forward problems cannot be
considered independent of each other.
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4.1. Case 1. The kernel κ(x, x́) is exact

In this section, we show the effect of projection on the optical imaging accuracy. In the
analysis, we assume that the kernel κ(x, x́) is exact. We first prove the convergence of the
projection method for the operator K, and then analyse the effect of projection on the imaging
accuracy.

Clearly, the inverse operator K−1 : Y → X exists since K is positive definite for λ > 0.
Furthermore, by the compactness of A and Riesz theorem, the inverse operator K−1 is bounded
by

‖K−1‖Y→X � 1

λ
. (4.1)

Lemma. Projection by the collocation method for the operator K : X → Y converges.
Specifically, the sequence of finite-dimensional operators PnK : Xn → Yn is invertible for
sufficiently large n, and (PnK)−1PnKαλ → αλ, n → ∞. Furthermore,

‖(PnK)−1PnK‖X→Xn
� CM

‖K‖X→Y

λ
(4.2)

for some CM > 0 independent of n.

Proof. See appendix C. �

Based on the lemma, the following theorem provides an upper bound for the L1(�) norm of
the error between the solution αλ of (2.13) and the solution αλ

n of (3.5).

Theorem 1. Let {�m} denote a set of linear finite elements used in the discretization of the
inverse problem (2.13) for m = 1, . . . , N�, such that

⋃N�

m �m = �, and hm be the diameter
of the smallest ball that contains the mth element. Then,

∥∥αλ − αλ
n

∥∥
L1(�)

� C
√

V�‖I − Tn‖Y→Xn

N�∑
m=1

‖αλ‖1,mhm

+
C

λ
‖Tn‖Y→Xn

max
i,j

‖g∗
i gj‖L1(�)

N�∑
m=1

Nd,Ns∑
i,j

‖g∗
i gj‖0,m‖αλ‖1,mhm, (4.3)

where C is a positive constant, V� is the volume of � and Tn : Y → Xn is a uniformly bounded
operator given by Tn = (

I + 1
λ
PnA

)−1Pn.

Proof.

αλ − αλ
n = [I − (PnK)−1PnK]αλ

= [I − (PnK)−1PnK](αλ − ψ) (4.4)

since [I − (PnK)−1PnK]ψ = 0, where ψ ∈ Xn is the interpolant of αλ [9]. Using (C.2),

[I − (PnK)−1PnK] = I −
(
I +

1

λ
PnA

)−1 1

λ
PnK

= I − Tn

1

λ
K, (4.5)

where Tn := (
I + 1

λ
PnA

)−1Pn is a uniformly bounded operator (see appendix C). We use K
defined by (2.13) and (4.5) in (4.4) to obtain

αλ − αλ
n = (I − Tn)(α

λ − ψ) − Tn

λ
A(αλ − ψ). (4.6)
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Then, we use the definition of A in (4.6) and find

αλ − αλ
n = (I − Tn)(α

λ − ψ) − Tn

λ

∫
�

κ(·, x́)(αλ − ψ)(x́) dx́. (4.7)

This leads to

‖αλ − αλ
n‖L1(�) � ‖I − Tn‖Y→Xn

‖αλ − ψ‖L1(�)

+
1

λ
‖Tn‖Y→Xn

∥∥∥∥
∫

�

κ(·, x́)(αλ − ψ)(x́) dx́

∥∥∥∥
L1(�)

� ‖I − Tn‖Y→Xn
‖αλ − ψ‖L1(�)

+
1

λ
‖Tn‖Y→Xn

∫
�

dx
∫

�

|κ(x, x́)(αλ − ψ)(x́)| dx́, (4.8)

The second term in (4.8) can be rewritten as

1

λ
‖Tn‖Y→Xn

∫
�

dx
∫

�

|κ(x, x́)(αλ − ψ)(x́)| dx́

= 1

λ
‖Tn‖Y→Xn

∫
�

dx

(
N�∑
m=1

∫
�m

|κ(x, x́)(αλ − ψ)(x́)| dx́

)
. (4.9)

Let eα be the interpolation error:

eα := αλ − ψ. (4.10)

Then, using (2.16),

N�∑
m=1

∫
�m

|κ(x, x́)eα(x́)| dx́ =
N�∑
m=1

∫
�m

∣∣∣∣∣∣
Nd,Ns∑

i,j

g∗
i (x)gj (x)g∗

i (x́)gj (x́)eα(x́)

∣∣∣∣∣∣ dx́ (4.11)

�
N�∑
m=1

Nd,Ns∑
i,j

|g∗
i (x)gj (x)|

∫
�m

|g∗
i (x́)gj (x́)||eα(x́)| dx́

�
N�∑
m=1

Nd,Ns∑
i,j

|g∗
i (x)gj (x)|‖g∗

i gj‖0,m‖eα‖0,m, (4.12)

where (4.12) follows from the Schwarz’ inequality. Note that g∗
i gj ∈ L2(�) by considering

(2.8) holds up to the boundary ∂� (see [11, theorem 2.1]).
We now use (4.9) and (4.12) to obtain

1

λ
‖Tn‖Y→Xn

∫
�

dx
(∫

�

|κ(x, x́)(αλ − ψ)(x́)| dx́
)

� 1

λ
‖Tn‖Y→Xn

∫
�

dx
N�∑

m=1

Nd,Ns∑
i,j

|g∗
i (x)gj (x)|‖g∗

i gj‖0,m‖eα‖0,m. (4.13)

Using the bound (4.13) in (4.8) and substituting the interpolation error bound [9]

‖eα‖0,m � C‖αλ‖1,mhm, (4.14)
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and noting ‖eα‖L1(�) �
√

V�

∑N�

m=1 ‖eα‖0,m, we obtain

‖αλ − αλ
n‖L1(�) � C

√
V�‖I − Tn‖Y→Xn

N�∑
m=1

‖αλ‖1,mhm

+
C

λ
‖Tn‖Y→Xn

N�∑
m=1

Nd,Ns∑
i,j

‖g∗
i gj‖L1(�)‖g∗

i gj‖0,m‖αλ‖1,mhm.

� C
√

V�‖I − Tn‖Y→Xn

N�∑
m=1

‖αλ‖1,mhm

+
C

λ
‖Tn‖Y→Xn

max
i,j

‖g∗
i gj‖L1(�)

N�∑
m=1

Nd,Ns∑
i,j

‖g∗
i gj‖0,m‖αλ‖1,mhm. (4.15)

�

Remark 1.

(i) Theorem 1 shows the spatial dependence of the inverse problem discretization on the
forward problem solution.

(ii) The first term in (4.15) suggests that the mesh of the inverse problem be refined where
‖αλ‖1 is large.

(iii) The second term in (4.15) shows that the term ‖αλ‖1,m is scaled spatially by ‖g∗
i gj‖0,m.

Thus, the effect of the interpolation error eα (see equation (4.10)) in the inverse problem
solution is scaled spatially by the solution of the forward problem. As a result, the
orientation of the sources and detectors with respect to the support of the optical
heterogeneity determines the extent of the bound on

∥∥αλ − αλ
n

∥∥
L1(�)

.

(iv) The regularization parameter affects the bound on
∥∥αλ − αλ

n

∥∥
L1(�)

.

(v) Increasing the number of sources and detectors increases the bound on
∥∥αλ − αλ

n

∥∥
L1(�)

.

Remark 2.

(i) Note that the conventional interpolation error estimate given in (4.14) depends only on
the smoothness and support of αλ, and the finite-dimensional space of approximating
functions [9]. On the other hand, the error estimate (4.3) in theorem 1 shows that the
accuracy of the reconstructed image αλ

n depends on the orientation of the absorptive
heterogeneity with respect to the sources and detectors, as well as on the bound (4.14) on
the interpolation error.

(ii) An error bound similar to (4.3) follows if one uses the Galerkin method [18] instead of
the collocation method for projection.

(iii) The interpolation error bound (4.14) can be modified based on the choice of the basis
function in (3.2) and the smoothness of the solution αλ (theorem 4.4.4. in [9]). For
instance, if αλ ∈ H 2(�) and quadratic Lagrange basis functions are used, then (4.14) can
be replaced by

‖eα‖0,m � C‖αλ‖2,mh2
m,

for some C > 0.
(iv) An error bound similar to (4.3) can be derived for the error that occurs as a result of

the discretization of the inverse problem in electrical impedance tomography, optical
fluorescence tomography, bioluminescence tomography and microwave imaging. Note
that in all these imaging modalities, the forward problem is modelled by a PDE and the
inverse problem can be interpreted in terms of a linear integral equation, whose kernel is
related to the solution of this PDE.
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(v) Let γ δ be the perturbed right-hand side γ of (3.5) due to the presence of noise, such that
‖γ δ − γ ‖L1(�) � δ. Then, an additional term is introduced to the error bound in (4.3) due
to this perturbation:

∥∥αλ − αλ
n

∥∥
L1(�)

� C
√

V�‖I − Tn‖Y→Xn

N�∑
m=1

‖αλ‖1,mhm

+
C

λ
‖Tn‖Y→Xn

max
i,j

‖g∗
i gj‖L1(�)

N�∑
m=1

Nd,Ns∑
i,j

‖g∗
i gj‖0,m‖αλ‖1,mhm

+
CM

λ
δ, (4.16)

where CM > 0 is the constant in (4.2) with the use of first-order Lagrange basis functions
(see appendix C). The additional term CMδ/λ indicates that the choice of basis functions
may be critical in the presence of noise.

4.2. Case 2. The kernel is degenerate

In this section, we first derive approximate upper bounds for the approximation errors ‖K̃−K‖
and ‖γ̃ − γ ‖, which result from the discretization of the forward problem. Then, we show the
effect of these approximation errors on the accuracy of the reconstructed optical image. For
notational convenience, we will drop the subscripts on the norms ‖·‖ where necessary.

The operator K : X → Y is bounded with a bounded inverse K−1 : Y → X. By the
finite-element approximation of the associated kernel, the sequence of bounded linear finite-
dimensional operators K̃ is norm convergent ‖K̃−K‖ → 0;Nj,Ni → ∞, for j = 1, . . . , Ns

and i = 1, . . . , Nd , and

‖K̃−1‖Y→X < 1/λ, (4.17)

which can be obtained analogous to (4.1).
In the following, we derive an explicit approximation to the error ‖K̃−K‖ in terms of the

associated kernel and the discretization error in the kernel approximation. The result is then
used to compute the error in the reconstructed optical image due to ‖K̃ − K‖.

By definition,

‖(Aa − Ãa)α‖l1 =
Nd,Ns∑

i,j

∣∣∣∣
∫

�

(g∗
i (x)gj (x) − G∗

i (x)Gj (x))α(x) dx

∣∣∣∣ , (4.18)

where G∗
i , Gj are the finite-element approximations to g∗

i and gj , respectively. We can expand
g∗

i gj − G∗
i Gj as

g∗
i gj − G∗

i Gj = e∗
i ej + Gje

∗
i + G∗

i ej , (4.19)

where e∗
i := g∗

i −G∗
i and ej := gj −Gj . Replacing G∗

i and Gj respectively with g∗
i − e∗

i and
gj − ej , we get

g∗
i gj − G∗

i Gj = gje
∗
i + g∗

i ej − e∗
i ej

≈ gje
∗
i + g∗

i ej , (4.20)

where we neglect the term e∗
i ej .

We can express K − K̃ as

K − K̃ = A∗
aAa − Ã∗

aÃa. (4.21)
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Following a similar approach as above,

A∗
aAa − Ã∗

aÃa = (A∗
a − Ã∗

a)(Aa − Ãa) + Ã∗
a(Aa − Ãa) + (A∗

a − Ã∗
a)Ãa. (4.22)

As a result, the following condition holds

‖K̃ − K‖ � ‖(A∗
a − Ã∗

a)(Aa − Ãa)‖ + ‖Ã∗
a(Aa − Ãa) + (A∗

a − Ã∗
a)Ãa‖. (4.23)

Since Ãa = −(Aa − Ãa) + Aa , (4.23) can be rewritten as

‖K̃ − K‖ = ‖A∗
aAa − Ã∗

aÃa‖
� ‖(A∗

a − Ã∗
a)(Aa − Ãa)‖ + 2‖A∗

a(Aa − Ãa)‖
≈ 2‖A∗

a(Aa − Ãa)‖, (4.24)

where we neglect the term ‖(A∗
a − Ã∗

a)(Aa − Ãa)‖.
Similarly, ‖γ̃ − γ ‖ can be interpreted as

‖γ̃ − γ ‖L1(�) =
∫

�

∣∣∣∣∣∣
Nd,Ns∑

i,j

(g∗
i (x)gj (x) − G∗

i (x)Gj (x))�i,j

∣∣∣∣∣∣ dx

≈
∫

�

∣∣∣∣∣∣
Nd,Ns∑

i,j

(e∗
i (x)gj (x) + g∗

i (x)ej (x))�i,j

∣∣∣∣∣∣ dx, (4.25)

where the error in �i,j due to discretization is neglected and the last approximation is derived
similar to (4.20).

We now analyse the effect of the forward problem discretization on the accuracy of the
reconstructed optical image. Let α̃λ be the solution of

K̃α̃λ = γ̃ , (4.26)

where K̃ and γ̃ are the finite-dimensional approximations to K and γ , respectively. Then,
by theorem 10.1 in [18], the error in the solution α̃λ with respect to the actual solution αλ is
bounded by

‖αλ − α̃λ‖ � 1

λ
{‖(K̃ − K)αλ‖ + ‖γ̃ − γ ‖}. (4.27)

In the next theorem, we will expand the terms in (4.27) to show explicitly the effect of
the forward problem discretization on the accuracy of the inverse problem solution.

Theorem 2. Let
{
�

j
m

}
denote the set of linear elements used to discretize (2.6) for

m = 1, . . . , N
j

�, such that
⋃N

j

�

m �
j
m = � and h

j
m be the diameter of the smallest ball that

contains the element �
j
m in the solution Gj , for all j = 1, . . . , Ns . Similarly, let

{
�i

n

}
denote

the set of linear elements used to discretize (2.7) for n = 1, . . . , N∗i
� , such that

⋃N∗i
�

n �i
n = �

and hi
n be the diameter of the smallest ball that contains the element �i

n in the solution G∗
i ,

for all i = 1, . . . , Nd . Then, a bound for the error between the solution αλ of (2.13) and the
solution α̃λ of (4.26) due to the approximations K̃ and γ̃ is given by

‖αλ − α̃λ‖L1(�) � C

λ
max
i,j

‖g∗
i gj‖L1(�)


 Nd∑

i=1

N∗i
� ,Ns∑
n,j

(
2‖gjα

λ‖0,ni + ‖α‖∞‖gj‖0,ni

) ‖g∗
i ‖1,ni hi

n

+
Ns∑

j=1

N
j

�,Nd∑
m,i

(2‖g∗
i α

λ‖0,mj + ‖α‖∞‖g∗
i ‖0,mj )‖gj‖1,mj hj

m


 , (4.28)

where C is a positive constant.
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Proof. Using (4.24), (4.18) and (4.20), we can write

‖(K̃ − K)αλ‖L1(�) ≈ 2‖A∗
a(Aa − Ãa)α

λ‖L1(�)

≈ 2

∥∥∥∥∥∥
Nd,Ns∑

i,j

g∗
i (·)gj (·)

∫
�

(gj (x́)e∗
i (x́) + g∗

i (x́)ej (x́))αλ(x́) dx́

∥∥∥∥∥∥
L1(�)

� 2 max
i,j

‖g∗
i gj‖L1(�)

Nd ,Ns∑
i,j

∫
�

|(gj (x́)e∗
i (x́) + g∗

i (x́)ej (x́))αλ(x́)| dx́. (4.29)

An upper bound for the integral in (4.29) can be obtained as follows:∫
�

|(gj (x́)e∗
i (x́) + g∗

i (x́)ej (x́))αλ(x́)| dx́

�
N∗i

�∑
n=1

‖e∗
i ‖0,ni ‖gjα

λ‖0,ni +
N

j

�∑
m=1

‖ej‖0,mj ‖g∗
i α

λ‖0,mj . (4.30)

Note that gjα
λ ∈ L2(�) since |gjα

λ| � |gj |‖αλ‖∞. Similarly, g∗
i α

λ ∈ L2(�) since
|g∗

i α
λ| � |g∗

i |‖αλ‖∞. Using (4.30) in (4.29),

‖(K̃ − K)αλ‖L1(�) � 2 max
i,j

‖g∗
i gj‖L1(�)

×

 Nd∑

i=1

N∗i
� ,Ns∑
n,j

‖e∗
i ‖0,ni ‖gjα

λ‖0,ni +
Ns∑

j=1

N
j

�,Nd∑
m,i

‖ej‖0,mj ‖g∗
i α

λ‖0,mj


 .

(4.31)

To compute an upper bound for ‖γ̃ − γ ‖ using (4.25), we first write

∫
�

∣∣∣∣∣∣
Nd,Ns∑

i,j

(e∗
i (x)gj (x) + g∗

i (x)ej (x))�i,j

∣∣∣∣∣∣ dx

� max
i,j

|�i,j |
∫

�

Nd,Ns∑
i,j

|e∗
i (x)gj (x) + g∗

i (x)ej (x)| dx

� max
i,j

|�i,j |

 Nd∑

i=1

N∗i
� ,Ns∑
n,j

‖e∗
i ‖0,ni ‖gj‖0,ni +

Ns∑
i=j

N
j

�,Nd∑
m,i

‖g∗
i ‖0,mj ‖ej‖0,mj


 . (4.32)

Noting (2.9),

max
i,j

|�i,j | � max
i,j

‖g∗
i gj‖L1(�)‖α‖∞, (4.33)

which leads to

max
i,j

|�i,j |

 Nd∑

i=1

N∗i
� ,Ns∑
n,j

‖e∗
i ‖0,ni ‖gj‖0,ni +

Ns∑
i=j

N
j

�,Nd∑
m,i

‖g∗
i ‖0,mj ‖ej‖0,mj




� max
i,j

‖g∗
i gj‖L1(�)‖α‖∞


 Nd∑

i=1

N∗i
� ,Ns∑
n,j

‖e∗
i ‖0,ni ‖gj‖0,ni +

Ns∑
i=j

N
j

�,Nd∑
m,i

‖g∗
i ‖0,mj ‖ej‖0,mj


 .

(4.34)



Effect of discretization error and adaptive mesh generation in diffuse optical tomography: I 1129

We now use (4.31), (4.34), the corresponding discretization error estimates (3.8)–(3.9), and
(4.27) to obtain (4.28). �
Remark 3.
(i) Theorem 2 suggests the use of meshes designed individually for the solutions Gj, j =

1, . . . , Ns and G∗
i , i = 1, . . . , Nd .

(ii) Theorem 2 states explicitly the effect of the forward problem discretization on the accuracy
of the inverse problem solution. In this context, theorem 2 suggests a discretization scheme
for the forward problem, where the discretization criterion is based on the inverse problem
solution accuracy, rather than the accuracy of the forward problem solution.

(iii) For each source, when solving for Gj, h
j
m has to be kept small where (2‖g∗

i α
λ‖0,mj +

‖α‖∞‖g∗
i ‖0,mj )‖gj‖1,mj is large. Note that ‖gj‖1,mj will be large on the elements close

to the j th source.
(iv) For each detector, when solving for G∗

i , h
i
n has to be kept small where (2‖gjα

λ‖0,ni +
‖α‖∞‖gj‖0,ni )‖g∗

i ‖1,ni is large. Note that ‖g∗
i ‖1,ni will be large on the elements close to

the ith detector.
(v) |gj | and |g∗

i | are higher close to the sources and detectors, respectively. Therefore, h
j
m

has to be small around the j th source and around all detectors, where αλ is nonzero.
Likewise, hi

n has to be small around the ith detector and around all sources, where αλ is
nonzero.

(vi) If αλ is nonzero on the whole domain �, then the error may become higher depending on
the magnitude of |gj | and |g∗

i |.
(vii) The regularization parameter affects the bound on ‖αλ − α̃λ‖L1(�).

(viii) Increasing the number of sources and detectors increases the bound on ‖αλ − α̃λ‖L1(�).

Remark 4.
(i) Note that the finite-element discretization error estimates (3.8)–(3.9) depend on only the

smoothness and support of gj and g∗
i , and the finite dimensional space of approximating

functions [9]. However, the error estimate (4.28) in theorem 2 shows that the accuracy
of the reconstructed image α̃λ depends on the orientation of the absorptive heterogeneity
with respect to the sources and detectors, as well as on the finite-element discretization
error estimates (3.8)–(3.9). In this respect, the estimate (4.28) in theorem 2 shows that
reducing the discretization error in the solutions Gj and G∗

i of the forward problem may
not ensure the accuracy of the reconstructed absorption image (see [14]).

(ii) In case a different discretization approach such as finite difference [20] or finite
volume [13] is used to solve the forward problem, theorem 2 can be modified in a
straightforward manner by replacing the discretization error estimates (3.8) and (3.9)
with the corresponding error estimates specific to the method of choice [13, 20].

(iii) Let γ̃ δ be the perturbed right-hand side γ̃ of (4.26) due to the presence of noise, such that
‖γ̃ δ − γ̃ ‖L1(�) � δ̃. Then, an additional term is introduced to the bound in (4.28) due to
this perturbation:

‖αλ − α̃λ‖L1(�) � C

λ
max
i,j

‖g∗
i gj‖L1(�)

×

 Nd∑

i=1

N∗i
� ,Ns∑
n,j

(2‖gjα
λ‖0,ni + ‖α‖∞‖gj‖0,ni )‖g∗

i ‖1,ni hi
n

+
Ns∑

j=1

N
j

�,Nd∑
m,i

(2‖g∗
i α

λ‖0,mj + ‖α‖∞‖g∗
i ‖0,mj )‖gj‖1,mj hj

m


 +

δ̃

λ
. (4.35)
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Clearly, the additional term δ̃/λ due to the presence of noise in (4.35) is independent of
the discretization of the forward problem.

(iv) Theorem 2 provides a general framework to analyse the error in reconstructed optical
images resulting from the perturbations in the kernel of the linear integral equation (2.16).
In general, a perturbation in the kernel of the linear integral equation (2.16) can occur
due to errors resulting from the numerical integration of (2.6)–(2.7), the approximation of
the boundary ∂�, the inaccurate approximation of the source Qj and/or the background
optical properties. Furthermore, the analysis framework in theorem 2 can be used to
analyse the effect of linearization of the Lippmann–Schwinger-type equations [10] using
Born approximation on the accuracy of the reconstructed optical images [15].

(v) A bound similar to (4.28) can be derived for the error that occurs as a result of
the discretization of the forward problem in electrical impedance tomography, optical
fluorescence tomography, bioluminescence tomography and microwave imaging.

4.3. Iterative Born approximation

In this section, we explore the error in the inverse problem solution within an iterative
linearization approach.

The error analysis presented in this paper covers the error which results from the
discretization of the forward and inverse problems. If α is sufficiently low, then one iteration
suffices to solve the inverse problem and the error analysis discussed above applies. When
iterative linearization is considered to address the nonlinearity of the inverse problem, we can
make use of the error analysis at each linearized step as follows: let αλ

(t) and α̃λ
n(t) be the

actual solution of the regularized inverse problem (2.13) and the solution of (3.10) at the t th
linearization step, respectively. At the end of the (r − 1)th linearization step, the absorption
coefficient estimate at x is given by µ̂(r−1)

a (x) = µ(0)
a (x) +

∑r−1
t=1 α̃λ

n(t)(x), where α̃λ
n(t) has an

error due to discretization with respect to the actual solution αλ
(t), and µ(0)

a is the initial guess for
the background absorption coefficient. In the next linearization, an error on the new solution
update µ̂(r)

a will be introduced due to

(i) projection (inverse problem discretization),

(ii) the error (K̃ − K)(r−1) in the operator (K̃)(r−1) and the error (γ̃ − γ )(r−1) in (γ̃ )(r−1)

resulting from the forward problem discretization, and

(iii) the error in the (r − 1)th update µ̂(r−1)
a , resulting from the discretization of the forward

and inverse problems. Note that µ̂(r−1)
a appears as a coefficient in the boundary value

problems (2.1)–(2.2) and (2.3)–(2.4). An error in this coefficient implies perturbation in
the solutions of (2.1)–(2.2) and (2.3)–(2.4). As a result, Gj and G∗

i will have error terms
in addition to the discretization error.

As a result, the error in µ̂(r)
a at the rth iteration is bounded by

∥∥µa − µ̂(r)
a

∥∥ =
∥∥∥∥∥

r∑
t=1

αλ
(t) − α̃λ

n(t)

∥∥∥∥∥ �
r∑

t=1

∥∥αλ
(t) − α̃λ

n(t)

∥∥, (4.36)

assuming that the initial guess µ(0)
a for the background absorption is approximated accurately

while solving the boundary value problems (2.1)–(2.2) and (2.3)–(2.4) at the first iteration,
that is µ(0)

a (x) − ∑n
k=1 µ(0)

a (xk)Lk(x) → 0, for all x ∈ �.
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5. Conclusion

In this work, we presented an error analysis to show the relationship between the error in
the reconstructed optical absorption images and the discretization of the forward and inverse
problems. We summarized the implications of the error analysis in two theorems which provide
an insight into the impact of forward and inverse problem discretizations on the accuracy of
the reconstructed optical absorption images. These theorems show that the error in the
reconstructed optical image due to the discretization of each problem is bounded by roughly
the multiplication of the discretization error in the corresponding solution and the solution of
the other problem. In particular, theorem 2 shows that solving the diffusion equation and the
associated adjoint problem accurately may not ensure small values for ‖K̃−K‖ and ‖γ − γ̃ ‖,
which may lead to large errors in the reconstructed optical images, depending on the value
of the regularization parameter. Similarly, relatively large discretization error in the solution
of the forward problem may have relatively low impact on the accuracy of the reconstructed
optical images, depending on the source–detector configuration, and orientation with respect
to the optical heterogeneities. We have also shown that the error estimates can be extended to
include the effect of noise on the overall error in the reconstructed images.

The error analysis presented in this work motivates the development of novel adaptive
discretization schemes based on the error estimates in theorems 1 and 2. In the sequel of this
work, we propose two novel adaptive discretization algorithms for the forward and inverse
problems [14], and justify the validity of theorems 1 and 2.

The error analysis can be extended to show the effect of the discretization error on the
accuracy of the simultaneous reconstruction of scattering and absorption coefficients, which
will be the focus of our future work. Finally, we note that the error analysis introduced in
this paper is not limited to DOT, and can easily be adapted for similar inverse parameter
estimation problems such as electrical impedance tomography, bioluminescence tomography,
optical fluorescence tomography, microwave imaging etc.
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Appendix A. Boundedness of Aa

‖Aaα‖l1 =
Nd,Ns∑

i,j

∣∣∣∣
∫

�

Hi,j (x)α(x) dx

∣∣∣∣ . (A.1)

We can write the following inequality:

‖Aaα‖l1 �
Nd,Ns∑

i,j

∫
�

|Hi,j (x)α(x)| dx �


Nd,Ns∑

i,j

∫
�

|Hi,j (x)| dx


 ‖α‖∞. (A.2)
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Using Schwarz’ inequality, we can write an upper bound for the summation as follows:
Nd,Ns∑

i,j

∫
�

|Hi,j (x)| dx =
Nd,Ns∑

i,j

‖g∗
i gj‖L1(�)

�
Nd,Ns∑

i,j

‖g∗
i ‖0‖gj‖0

� NdNs max
i

‖g∗
i ‖0 max

j
‖gj‖0, (A.3)

which leads to

‖Aaα‖l1 � NdNs max
i

‖g∗
i ‖0 max

j
‖gj‖0‖α‖∞.

Therefore an upper bound for the norm of Aa is given by

‖Aa‖L∞(�)→l1 � NdNs max
i

‖g∗
i ‖0 max

j
‖gj‖0. (A.4)

The boundedness of gj and g∗
i imply that Aa is bounded.

Appendix B. Compactness of Aa

Aa is bounded by (A.4). Furthermore Aa maps the infinite-dimensional subspace L∞(�) to a
finite-dimensional subspace C

Nd×Ns , that is the range R(Aa) of Aa satisfies R(Aa) ∈ C
Nd×Ns

due to the finite number of sources and detectors. As a result, Aa is compact [18]. The inverse
problem is illposed as a consequence of compactness [18].

Appendix C. Proof of the lemma

The identity operator I is a bounded operator with bounded inverse and (PnI)−1 = I : Xn →
Xn. Furthermore, ‖Pn‖X→Xn

is bounded for first-order Lagrange basis functions [4, 18]. Thus,
projection by collocation converges for the identity operator. A is bounded and compact, and
K = λI + A is injective, with bounded inverse given by (4.1). As a result, by theorem 13.7 in
[18], the projection method also converges for K = λI + A. Convergence of projection for K
implies (PnK)−1PnKαλ → αλ, n → ∞ for (PnK)−1PnK : X → Xn [18].

It follows from the proof of theorem 13.7 in [18] that
(
I + 1

λ
PnA

)−1
: Yn → Xn exists

and is uniformly bounded for all sufficiently large n. Then from PnK = λPn

(
I + 1

λ
PnA

) =
λ
(
I + 1

λ
PnA

)
, it follows that PnK : Xn → Yn is invertible for all sufficiently large n with the

inverse given by

(PnK)−1 =
(
I +

1

λ
PnA

)−1 1

λ
. (C.1)

As a result we can write (PnK)−1PnK as follows:

(PnK)−1PnK =
(
I +

1

λ
PnA

)−1 1

λ
PnK. (C.2)

Thus,

‖(PnK)−1PnK‖X→Xn
� CM

‖K‖X→Y

λ
(C.3)

where CM > 0 is independent of n, using the facts that projection by collocation method
converges for the identity operator and

(
I + 1

λ
PnA

)−1
is uniformly bounded.
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