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Abstract
In part I (Guven et al 2007 Inverse Problems 23 1115–33), we analysed
the error in the reconstructed optical absorption images resulting from the
discretization of the forward and inverse problems. Our analysis led to two new
error estimates, which present the relationship between the optical absorption
imaging accuracy and the discretization error in the solutions of the forward
and inverse problems. In this work, based on the analysis presented in part I,
we develop new adaptive discretization schemes for the forward and inverse
problems in order to reduce the error in the reconstructed images resulting
from discretization. The proposed discretization schemes lead to adaptively
refined composite meshes that yield the desired level of imaging accuracy while
reducing the size of the discretized forward and inverse problems. We present
numerical experiments to validate the error estimates developed in part I and
show the improvement in the accuracy of the reconstructed optical images with
the new adaptive mesh generation algorithms.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Numerical approaches in solving the forward and inverse problems in diffuse optical
tomography (DOT) pose a tradeoff between computational efficiency and imaging accuracy.
This tradeoff is a direct consequence of the discretization of the forward and inverse problems
[2, 9] and the size of the resulting discrete forward and inverse problems. The imaging
accuracy depends on the discretization error in the forward and inverse problem solutions.
On the other hand, attempting to minimize the discretization error in the solutions of both
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problems separately implies a significant increase in the size of the discrete forward and inverse
problems. Hence, it is important to understand the relationship between the discretization error
and the resulting error in the solution of the inverse problem. Such a relationship can illuminate
the mutual dependence of the forward and inverse problem solutions and identify the factors
that control the extent to which the discretization error in the solutions of the forward and
inverse problems affects the accuracy of the reconstructed optical images.

In part I of this two-part study, we presented an error analysis which showed the effect of
discretization of the forward and inverse problems on the accuracy of the reconstructed optical
absorption images [9]. The analysis led to two new error estimates that took into account the
interdependence of the forward and inverse problems (see section 2). In the second part of our
work, based on the error analysis presented in part I, we develop new adaptive discretization
schemes for the forward and inverse problems. The resulting locally refined meshes reduce
the error in the reconstructed optical images while keeping the size of the discrete forward and
inverse problems relatively small.

There has been extensive research on adaptive mesh generation for the numerical solution
of partial differential equations (see [9] for a list of publications) and inverse parameter
estimation problems to reduce the undesired effect of discretization error [4, 14]. In the
area of DOT, in [3] it was numerically shown that approximation errors resulting from the
discretization of the forward problem can lead to significant degradation in the quality of
the reconstructed images. In that work, the error in the reconstructed images is minimized
by using an enhanced imaging model that treats this additional approximation error within
the Bayesian framework. Alternatively, several investigators have reported on adaptive
discretization schemes for the forward and inverse problems to address the optical image
degradation due to discretization. In [6] a ‘data-driven zonation’ scheme, which can be
viewed as an adaptive discretization algorithm, was proposed for fluorescence imaging [6].
In [8], we presented a region-of-interest (ROI) imaging scheme for DOT, which employed
a multi-level algorithm on a non-uniform grid. The non-uniform grid is designed so as to
provide finer spatial resolution for the ROI which corresponds to the tumour region as indicated
by a priori anatomical image. In [16] an a priori non-uniform mesh design which provides
high resolution at the heterogeneities and near boundary regions was proposed. In that work,
the mesh refinement is independent of the source–detector configuration and the location of
the heterogeneities. In [7] a dual mesh strategy was proposed, in which, a relatively fine
uniform mesh is considered for the forward problem discretization and a coarse uniform mesh
is generated for the inverse problem discretization. In the same study, an adaptive refinement
scheme was proposed for the inverse problem discretization, but no adaptive refinement was
considered for the solution of the forward problem. Another dual mesh strategy which makes
use of a priori ultrasound information was presented in [10]. In that work, the dual mesh
is a coarse mesh for the background tissue and a relatively fine mesh for the heterogeneity,
similar to the approach in [8]. In fluorescence imaging, a dual adaptive mesh strategy was
used to discretize the inverse problem and the associated coupled diffusion equations, where
the refinement criterion is based on a posteriori discretization error estimates [12]. Note that
in all these studies [6–8, 10, 12, 16], the mesh refinement criteria considered for the inverse
(forward) problem disregard the impact of the solution of the forward (inverse) problem. In
other words, the discretization of each problem is considered independently of the solution of
the other problem.

In this work, based on the two error bounds provided by the error analysis in part I [9], we
introduce an adaptive discretization scheme for the forward and inverse problems, respectively.
We remark that the mesh refinement criterion for each problem comprises the discretization
error in the corresponding problem solution, scaled spatially by the solutions of both problems.
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Table 1. Definition of function spaces and norms.

Notation Explanation

f The complex conjugate of the function f

C(�) Space of continuous complex-valued functions on �

Ck(�) Space of complex-valued k-times continuously differentiable functions on �

L∞(�) L∞(�) = {f |ess sup� |f (x)| < ∞}
Lp(�) Lp(�) =

{
f

∣∣∣ ( ∫
�

|f (x)|p dx
)1/p

< ∞
}
, p ∈ [1,∞(b))

Dz
wf zth weak derivative of f

Hp(�) Hp(�) =
{
f

∣∣∣ ( ∑
|z|�p

∥∥∥Dz
wf

∥∥∥2

0

)1/2
< ∞

}
, p ∈ [1,∞)

‖f ‖0 The L2(�) norm of f

‖f ‖p The Hp(�) norm of f

‖f ‖∞ The L∞(�) norm of f

‖f ‖Lp(�) The Lp(�) norm of f

‖f ‖0,m The L2 norm of f over the mth finite element �m

‖f ‖p,m The Hp norm of f over the mth finite element �m

Thus, the proposed adaptive mesh generation algorithms address the interdependence between
the solutions of the forward and inverse problems and take into account the orientation of the
source–detectors and the absorptive perturbations. This makes the adaptive discretization
algorithms introduced in this paper different from the previous approaches [6–8, 10, 12, 16].
The simulation experiments validate the implications of our error analysis and show that the
proposed mesh generation algorithms significantly improve the accuracy of the reconstructed
optical images for a given number of unknowns in the discrete forward and inverse problems.
We specifically show that using the discretization error estimates, which do not take into
account the interdependence of forward and inverse problems as a criterion for discretization,
may lead to severely degraded image reconstructions (see simulation study 3). We also
discuss the computational complexity of the proposed adaptive mesh generation algorithms
and compare it to the computational complexity of mesh generation algorithms based on
the conventional discretization error estimates. We finally note that the proposed adaptive
mesh generation algorithms can be adapted for similar inverse parameter estimation problems,
such as electrical impedance tomography, optical fluorescence tomography, bioluminescence
tomography, microwave imaging, etc.

The outline of this paper is as follows: in section 2, we give a brief overview of the forward
and inverse DOT problems and recall the two theorems presented in part I which summarize
the impact of discretization on the accuracy of the reconstructed optical images. In section 3,
based on these two theorems, we introduce the adaptive mesh generation algorithms for the
solution of the forward and inverse problems and discuss their computational complexity. In
section 4, we present our experimental results, which is followed by section 5. The appendix
includes the solution of a model problem used to initiate the adaptive mesh generation.

2. Overview

In this section, we first briefly define the forward and inverse problems in DOT. Next, we
state theorems 1 and 2 presented in the first part of this work [9] to recall the effect of the
discretization of the forward and inverse problems on the accuracy of optical absorption image
reconstruction. We refer to table 1 for the explanation of the notation associated with functions



1138 M Guven et al

and their norms. Note that calligraphic letters are used to denote the operators, e.g. Aa, I,

K etc.

2.1. Forward and inverse problems in DOT

We consider the following boundary value problem to model the near-infrared light propagation
in a bounded domain � ⊂ R

3 with Lipschitz boundary ∂� [2, 5]:

−∇ · D(x)∇gj (x) +

(
µa(x) +

iω

c

)
gj (x) = Qj(x) x ∈ �, (2.1)

gj (x) + 2aD(x)
∂gj

∂n
(x) = 0 x ∈ ∂�, (2.2)

where gj (x) is the photon density at x,Qj is the point source located at the source position
xj

s , j = 1, . . . , Ns , where Ns is the number of sources, D(x) is the diffusion coefficient and
µa(x) is the absorption coefficient at x, i = √−1, ω is the modulation frequency of the
source, c is the speed of the light, a = (1 + R)/(1 − R) where R is a parameter governing
the internal reflection at the boundary ∂�, and ∂ · /∂n denotes the directional derivative along
the unit normal vector on the boundary. The boundary value problem (2.1)–(2.2) constitutes
the forward problem in DOT together with the associated adjoint problem [2, 9]:

−∇ · D(x)∇g∗
i (x) +

(
µa(x) − iω

c

)
g∗

i (x) = 0 x ∈ �, (2.3)

g∗
i (x) + 2aD(x)

∂g∗
i

∂n
(x) = Q∗

i (x) x ∈ ∂�, (2.4)

where Q∗
i is the adjoint source located at the detector position xi

d , i = 1, . . . , Nd , where Nd

is the number of detectors. Note that we approximate the point source Qj in (2.1) and the
adjoint source Q∗

i in (2.4) by Gaussian functions with sufficiently low variance, whose centres
are located at xj

s and xi
d , respectively.

In this work, we focus on the estimation of the absorption coefficient and consider an
iterative algorithm based on repetitive linearization of the inverse problem using first-order
Born approximation. Using a zeroth-order Tikhonov regularization to address the illposedness,
the inverse problem at each iteration reads

γ (x) := (A∗
a�)(x) = [(A∗

aAa + λI)αλ](x)

:=
∫

�

κ(x, x́)αλ(x́) dx́ + λαλ(x) (2.5)

:= (Kαλ)(x), (2.6)

where � ∈ C
Nd×Ns is the vector of differential measurements at Nd number of detectors due

to Ns number of sources, as a result of the small perturbation α on the background absorption
coefficient µa , and αλ is the solution of the regularized inverse problem. In (2.5), κ(x, x́) is
the kernel of the integral equation, given by [9]

κ(x, x́) =
Nd,Ns∑

i,j

H ∗
i,j (x)Hi,j (x́), (2.7)
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where Hi,j := −g∗
i gj is the (i, j)th kernel of the matrix-valued operator Aa : L∞(�) →

C
Nd×Ns and H ∗

i,j := −g∗
i gj is the (i, j)th kernel of the adjoint operator A∗

a : C
Nd×Ns → L1(�)

defined by

(A∗
aβ)(x) =

Nd,Ns∑
i,j

H ∗
i,j (x)βi,j =

Nd,Ns∑
i,j

−g∗
i (x)gj (x)βi,j , (2.8)

for all β ∈ C
Nd×Ns . We note that gj and g∗

i in (2.7) and (2.8) are the solutions of the variational
formulations of (2.1)–(2.2) and (2.3)–(2.4), respectively [9]. Assume that D,µa ∈ C1(�).
Noting Qj,Q

∗
i ∈ H 1(�), the solutions gj , g

∗
i ∈ H 1(�) of the variational formulations of the

boundary value problems (2.1)–(2.2) and (2.3)–(2.4) also satisfy [9]

gj , g
∗
i ∈ C(�). (2.9)

For the rest of the paper, we will denote L∞(�) and L1(�) by X and Y, respectively.
Below we summarize the two theorems of part I [9] and provide the error estimates

which will be used in the design of adaptive meshes for the discretization of the forward and
inverse DOT problems. In this respect, we first consider the impact of the inverse problem
discretization when the associated kernel κ(x, x́) in (2.5) is exact. Next, we give the error
estimate for the case in which the kernel is replaced by its finite-dimensional approximation
(i.e. degenerate kernel) and analyse the effect of the forward problem discretization on the
accuracy of the reconstructed image without projecting (2.6).

2.2. Effect of inverse problem discretization

Let Xn ⊂ X and Yn ⊂ Y denote a sequence of finite dimensional subspaces of dimension
n = 1, 2, . . . , spanned by first-order Lagrange basis functions {L1, . . . , Ln}, and {xp}, p =
1, . . . , n, be the set of collocation points on �. Then, the discretization of the inverse problem
(2.6) by projecting it onto the finite dimensional subspace Yn using the collocation method
approximates the solution of (2.6) by an element αλ

n ∈ Xn which satisfies(
Kαλ

n

)
(xp) = γ (xp), p = 1, . . . , n, (2.10)

where we express αλ
n(x), x ∈ � on a set {�m} of finite elements for m = 1, . . . , N
 such that⋃N


m �m = � as follows:

αλ
n(x) =

n∑
k=1

akLk(x). (2.11)

Equivalently, the collocation method can be interpreted as a projection with the interpolation
operator Pn : Y → Yn defined by [13]

Pnf (x) :=
n∑

p=1

f (xp)Lp(x), x ∈ �, (2.12)

for all f ∈ Y . Then, (2.10) is equivalent to

PnKαλ
n = Pnγ. (2.13)

Let ψ be the interpolant of αλ [5] and assume that αλ ∈ H 1(�). Then, the interpolation
error eα = αλ − ψ on each finite element �m is bounded by

‖eα‖0,m � C‖αλ‖1,mhm, (2.14)
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where C is a positive constant and hm is the diameter of the smallest ball that contains the mth
element �m.

Theorem 1 describes the effect of inverse problem discretization on the accuracy of the
reconstructed optical absorption image.

Theorem 1. Let gj , g
∗
i be the solutions of the variational formulations of the boundary value

problems (2.1)–(2.2) and (2.3)–(2.4), respectively. The error between the solution αλ of (2.6)
and the solution αλ

n of (2.13) is bounded by

∥∥αλ − αλ
n

∥∥
L1(�)

� C
√

V�‖I − Tn‖Y→Xn

N
∑
m=1

‖αλ‖1,mhm

+
C

λ
‖Tn‖Y→Xn

max
i,j

‖g∗
i gj‖L1(�)

N
∑
m=1

Nd,Ns∑
i,j

‖g∗
i gj‖0,m‖αλ‖1,mhm, (2.15)

where C is a positive constant, V� is the volume of �, Tn : Y → Xn is a uniformly bounded
operator given by Tn = (

I + 1
λ
PnA∗

aAa

)−1Pn [9].

Proof. See [9]. �

2.3. Effect of forward problem discretization

Let
{
�

j
m

}
denote the set of linear elements used to discretize the variational formulation of

the boundary value problem (2.1)–(2.2) for m = 1, . . . , N
j


; such that
⋃N

j




m �
j
m = �, and

h
j
m be the diameter of the smallest ball that contains the element �

j
m in the finite-dimensional

solution Gj , for all j = 1, . . . , Ns [9]. Similarly, let
{
�i

n

}
denote the set of linear elements

used to discretize the variational formulation of the boundary value problem (2.3)–(2.4) for

n = 1, . . . , N∗i

 ; such that

⋃N∗i



n �i
n = �, and hi

n be the diameter of the smallest ball that
contains the element �i

n in the finite-dimensional solution G∗
i , for all i = 1, . . . , Nd [9]. Then,

a bound for the discretization error in the finite element solutions Gj and G∗
i with respect

to the solutions gj and g∗
i of the variational formulations of the boundary value problems

(2.1)–(2.2) and (2.3)–(2.4) on each finite element can be given by [5]

‖gj − Gj‖0,mj � C‖gj‖1,mj hj
m, (2.16)

‖g∗
i − G∗

i ‖0,ni � C‖g∗
i ‖1,ni hi

n, (2.17)

where C is a positive constant, and ‖·‖0,mj (‖·‖0,ni ) and ‖·‖1,mj (‖·‖1,ni ) are respectively the L2

and H 1 norms on �
j
m

(
�i

n

)
.

Consider the inverse problem

K̃α̃λ = γ̃ , (2.18)

where K̃ and γ̃ are the finite dimensional approximations to K and γ , obtained by substituting
gj and g∗

i in Hi,j and H ∗
i,j by Gj and G∗

i , respectively.
Theorem 2 shows the effect of forward problem discretization on the accuracy of the

reconstructed optical absorption image.

Theorem 2. A bound for the error between the solution αλ of (2.6) and the solution α̃λ of
(2.18) due to approximations K̃ and γ̃ is given by
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‖αλ − α̃λ‖L1(�) � C

λ
max
i,j

‖g∗
i gj‖L1(�)


 Nd∑

i=1

N∗i

 ,Ns∑
n,j

(2‖gjα
λ‖0,ni + ‖α‖∞‖gj‖0,ni )‖g∗

i ‖1,ni hi
n

+
Ns∑

j=1

N
j


,Nd∑
m,i

(2‖g∗
i α

λ‖0,mj + ‖α‖∞‖g∗
i ‖0,mj )‖gj‖1,mj hj

m


 , (2.19)

where C is a positive constant.

Proof. See [9]. �

We refer to part I [9] for further details of the discussion regarding the definition and
discretization of the forward and inverse problems. In the following, we discuss the adaptive
mesh generation for the forward and inverse problems.

3. Adaptive mesh generation

In this section, we discuss the adaptive mesh design for the discretization of the forward and
inverse problems based on theorems 1 and 2. For each problem, we present an adaptive mesh
generation algorithm, which is followed by the corresponding computational cost analysis.

3.1. Adaptive mesh generation for the forward problem

Let the mesh parameter h
j
m for Gj, j = 1, . . . , Ns , and the mesh parameter hi

n for
G∗

i , i = 1, . . . , Nd be chosen so that

hj
m � εf∑Nd

i=1(2‖g∗
i α

λ‖0,mj + ‖α‖∞‖g∗
i ‖0,mj )‖gj‖1,mj

:= Bm
j , (3.20)

hi
n � εf∑Ns

j=1(2‖gjαλ‖0,ni + ‖α‖∞‖gj‖0,ni )‖g∗
i ‖1,ni

:= B∗n
i , (3.21)

where the tolerance εf will be defined later. Then, by theorem 2, the error in the reconstructed
image due to the forward problem discretization is bounded by

C

λ
max
i,j

‖g∗
i gj‖L1(�)


 Ns∑

j=1

N
j


 +
Nd∑
i=1

N∗i




 εf = ε̃f , (3.22)

where C is a positive constant and ε̃f is the total allowable error in the reconstructed optical
image due to the forward problem discretization. Equation (3.22) implies the following value
for εf :

εf = λε̃f /C

maxi,j‖g∗
i gj‖L1(�)

1( ∑Ns

j=1 N
j


 +
∑Nd

i=1 N∗i



) . (3.23)

Algorithm 1 outlines the adaptive mesh generation algorithm for the forward problem in
the form of a pseudocode. The algorithm is performed for each source and detector before the
linearization of the inverse problem and it yields a family of adaptively refined meshes with
conforming elements. We use Rivara’s algorithm [15] for refinement.
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Algorithm 1. The pseudocode for the mesh generation algorithm for the forward problem,
prior to the linearization of the inverse problem.

	 Generate an initial uniform mesh (
,N
), 
 = ⋃N


e=1{
e}
	 Set εf

	 Initialize the set of marked elements: Me ← {}
	 flag = True

while flag = True

for each element 
e ∈ 
with mesh parameter h
j
e

(
hi

e

)
if first linearization

� Use analytical solutions for gj and g∗
i and a priori anatomical

information about α to compute the bound Bm
j in (3.20) (B∗n

i in (3.21))
else

� Use current solution updates Gj and G∗
i and α̃λ

n

to compute Bm
j in (3.20) (B∗n

i in (3.21))
end

if h
j
e > Bm

j

(
hi

e > B∗n
i

)
� Me ← Me

⋃{
e}
end

end
if Me �= {}

� Refine the marked elements and update the mesh 


� Me ← {}
else

� flag = False
end

end
	 Solve for Gj (G∗

i ).

Remark 1.

(i) In practice, Bm
j and B∗n

i in (3.20)–(3.21) cannot be computed since α, αλ, gj and g∗
i

are unknown. However, Bm
j and B∗n

i can be estimated by using approximations for the
functions involved in these bounds, based on either a priori information or on the recent
forward and inverse problem solution updates. Then, the elements whose mesh parameter
h

j
m

(
hi

n

)
exceeds Bm

j

(
B∗n

i

)
can be determined and refined.

(ii) After the first sweep of refinement, one can compute the bound Bm
j and B∗n

i only for
the new elements. We note that for the initial mesh design, we use a model problem
to compute the terms in the error bound relevant to the forward problem solution (see
appendix). If there is no a priori information, αλ can be assumed to be spatially constant
at the first linearization step. After the first linearization, the norms in Bm

j and B∗n
i

relevant to gj and g∗
i are not expected to change significantly. In this context, the terms

‖g∗
i α

λ‖0,mj , ‖gjα
λ‖0,ni in (3.20) and (3.21) can be bounded by ‖g∗

i ‖0,mj ‖αλ‖∞,mj and
‖gj‖0,ni ‖αλ‖∞,ni , respectively. Therefore, one can store the norms ‖gj‖0,ni and ‖g∗

i ‖0,mj

at the end of the first mesh generation, and update Bm
j and B∗n

i in the following mesh
generations by using these stored values and the updated αλ values.
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(iii) In case εf cannot be chosen in prior, we consider a posterior approach, set εf = 1, and
compute h

j
m

/
Bm

j

(
hi

n

/
B∗n

i

)
on each element, which is used as the indicator for refinement.

Then, the elements with indicator value exceeding the average h
j
m

/
Bm

j

(
hi

n

/
B∗n

i

)
quantity

are marked for refinement. We note that in this case, the algorithm has to be stopped
when the number of nodes in the mesh exceeds the allowable number of nodes.

3.2. Computational cost of the adaptive mesh generation algorithm for the forward problem

Consider the algorithm described in remark 1(iii) for � ⊂ R
2. Using triangular finite elements

with first-order Lagrange basis functions and an analytical (exact) integration on each finite
element, the number of multiplications required to compute the L2 or H 1 norm of a finite-
dimensional function on each triangular element �j

m

(
�i

n

)
is 12. On the other hand, computing

the norm ‖gjα
λ‖0,ni (‖g∗

i α
λ‖0,mj ) takes ten times the number of multiplications to compute

‖gj‖1,mj (‖g∗
i ‖1,ni ). As a result, the total number of multiplications required to compute

the error estimates on all finite elements for the j th source is given by (132Nd + 16)N
j


.
Similarly, the total number of multiplications required to compute the error estimates on all
finite elements for the ith detector is equal to (132Ns + 16)N∗i


 .
In order to reduce the computational cost of the proposed adaptive mesh generation

algorithm, we can approximate the bounds Bm
j in (3.20) and B∗n

i in (3.21) as follows:

Bm
j ≈ 1(

2
∥∥ ∑Nd

i=1 g∗
i α

λ
∥∥

0,mj + ‖α‖∞
∥∥∑Nd

i=1 g∗
i

∥∥
0,mj

)‖gj‖1,mj

(3.24)

B∗n
i ≈ 1(

2
∥∥ ∑Ns

j=1 gjαλ
∥∥

0,ni + ‖α‖∞
∥∥ ∑Ns

j=1 gj

∥∥
0,ni

)‖g∗
i ‖1,ni

. (3.25)

Then, the number of multiplications required to compute the error estimates on all finite
elements becomes 148N

j




(
148N∗i




)
, which implies a significant reduction as compared to

(132Nd + 16)N
j




(
(132Ns + 16)Ni∗




)
.

If one uses the discretization error estimates (2.16)–(2.17) to generate adaptive meshes
for the discretization of (2.1)–(2.2) and (2.3)–(2.4), the number of multiplications is equal
to 13N

j


 and 13N∗i

 , respectively. Then, the resulting adaptive meshes will lead to finite

element solutions Gj and G∗
i with reduced discretization error. However, reduction in the

discretization error in Gj and G∗
i may not ensure the accuracy of the reconstructed absorption

image (see simulation experiment 3).

3.3. Adaptive mesh generation for the inverse problem:

Let the mesh parameter hm for the solution of the inverse problem be defined as follows:

hm � εinv

/(√
V�‖I − Tn‖Y→Xn

‖αλ‖1,m +
1

λ
‖Tn‖Y→Xn

× max
i,j

‖g∗
i gj‖L1(�)

Nd ,Ns∑
i,j

‖g∗
i gj‖0,m‖αλ‖1,m

)
:= Bm

inv. (3.26)

Then, by theorem 1, the error in the reconstructed image due to inverse problem discretization
is bounded by

CN
εinv = ε̃inv, (3.27)
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where C is a positive constant and ε̃inv is the total allowable error in the reconstructed optical
image due to inverse problem discretization.

We present the pseudocode for our adaptive mesh generation algorithm used at each
linearization of the inverse problem in algorithm 2. Similar to the forward problem
discretization, we use Rivara’s algorithm [15] for the refinement of the elements.

Algorithm 2. The pseudocode for the mesh generation algorithm at every linearization step
of the inverse problem.

	 Generate an initial uniform mesh (
,N
), 
 = ⋃N


m=1{
m}
	 Set εinv

	 Initialize the set of marked elements: Me ← {}
	 flag = True

while flag = True
for each element 
m ∈ 
 with mesh parameter hm

if first linearization
� Use current solution updates Gj and G∗

i and a priori information
about α to compute Bm

inv in (3.26)
else

� Use current solution updates Gj and G∗
i and α̃λ

n

to compute Bm
inv in (3.26)

end
if hm > Bm

inv

� Me ← Me

⋃{
m}
end

end
if Me �= {}

� Refine the marked elementsand update themesh 


� Me ← {}
else

� flag = False
end

end
	 Solve for α̃λ

n .

Remark 2.

(i) In practice, Bm
inv in (3.26) cannot be computed since αλ, gj , g

∗
i and Tn are unknown.

Similar to the approach described in section 3.1, we can compute an estimate for Bm
inv by

using the uniform boundedness of the operator Tn [9] and by using approximate values
for the functions involved in Bm

inv. In this context, we use either a priori information or the
recent forward and inverse problem solution updates to calculate (3.26) on each element.
Then, the elements with the mesh parameter hm > Bm

inv are determined and refined.
(ii) In order to save computations, after the first sweep of refinement, one can compute the

bound Bm
inv only for the new elements. Furthermore, similar to the approach described

in section 3.1, the term ‖g∗
i gj‖0,m in (3.26) can be stored after the first mesh generation

and can be used in the following mesh generations. In this context, the bound Bm
inv can be

updated by using only the updated ‖αλ‖1,m value.
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(iii) Note that, in practice, one of the two terms in the denominator of Bm
inv will be dominant

depending on the value of λ. Thus, we consider only the dominant term for the
computation of Bm

inv. In case εinv cannot be chosen in prior, we consider a posterior
approach, set εinv = 1 and compute ‖αλ‖1,mhm or

∑Nd,Ns

i,j ‖g∗
i gj‖0,m‖αλ‖1,mhm on each

element, which are used as the refinement indicators. Then, the elements with indicator
value which exceeds the average indicator value are refined. In this case, the algorithm
has to be stopped when the number of nodes in the mesh exceeds the allowable number
of nodes.

3.4. Computational cost of the adaptive mesh generation algorithm for the inverse problem

Consider the algorithm stated in remark 2(iii) for � ⊂ R
2 and assume that the second term in

the denominator of Bm
inv (3.26) is dominant. Using triangular finite elements with first-order

Lagrange basis functions and an analytical (exact) integration on each finite element, the total
number of multiplications required to compute the error estimates on all finite elements is
given by (120NdNs + 14)N
.

In order to reduce the number of multiplications, we can consider an approximation for
Bm

inv as follows:

Bm
inv ≈ 1∥∥∑Nd,Ns

i,j g∗
i gj

∥∥
0,m

‖αλ‖1,m

. (3.28)

Then, the number of multiplications reduces to 134N
.
If one uses the interpolation error estimate (2.14) to generate adaptive meshes, the number

of multiplications to compute the error estimates on all finite elements will be 13N
. However,
such adaptive meshes may not help reduce the error in the reconstructed optical images,
resulting from discretization (see simulation experiment 3).

4. Numerical experiments

We conduct a series of numerical experiments to demonstrate the implications of theorems 1
and 2, and to present the effectiveness of the proposed adaptive mesh generation algorithms.
We perform our experiments in 2D for ease of comparison.

In the first simulation, we consider a series of image reconstructions to show the
effectiveness of the proposed adaptive mesh generation algorithms. In this context, we
compare the images reconstructed by using uniform meshes for the forward and inverse
problems to the images reconstructed by using adaptive meshes which are designed based on
theorems 1 and 2.

In the second simulation, we show the effect of the heterogeneity size on the accuracy of
the reconstructed absorption images. Next, we demonstrate how this error can be addressed
by the proposed adaptive discretization schemes.

In the final simulation study, we demonstrate the implication of theorem 2 and show
that meshes generated for the forward problem by using discretization error estimates which
disregard the interaction between the solutions gj , g

∗
i and αλ can lead to unstable image

reconstructions. We note that the proposed adaptive mesh generation algorithm for the forward
problem addresses this problem.

Note that in all experiments, we use triangular finite elements with first-order Lagrange
basis functions. We apply Gaussian elimination method to solve the discrete forward problem
resulting from the variational formulation [5] of the boundary value problems (2.1)–(2.2)
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(a) (b) (c)

Figure 1. The setups used for the simulation studies 1, 2 and 3. The squares and triangles denote
the detectors and sources, respectively. (a) The optical domain and source–detector configuration
for simulation study 1. (b) The optical domain and source–detector configuration for simulation
study 2. r1 = 0.50 cm, r2 = 0.75 cm, r3 = 1.0 cm and r4 = 1.25 cm. (c) The optical domain and
source–detector configuration for simulation study 3. The radius of the circles is 0.75 cm.

and (2.3)–(2.4) [9]. For the inverse problem, we consider the discrete problem obtained by
projecting (2.18) by the collocation method [9]:

PnK̃α̃λ
n = Pnγ̃ , (4.29)

where the regularization parameter is chosen as small as possible, yet large enough to enable
robust image reconstructions. In this respect, an appropriate value for the regularization
parameter is chosen based on experience. The discrete inverse problem (4.29) is solved using
Gaussian elimination as well.

4.1. Simulation study 1

In this simulation study, we consider the geometry shown in figure 1(a). We simulate the
optical data by solving the diffusion equation at ω = 0 on a fine uniform grid with 81 nodes
along the x and y directions, where the refractive index mismatch parameter a = 3.11 sources
and 11 detectors are evenly spaced on the bottom and top edges of the square, respectively.
The diffusion coefficient D(x) = 0.0410 for x ∈ � ∪ ∂�. The circular heterogeneity with
absorption coefficient µa = 0.2 cm−1 is embedded in an optically homogeneous background
with µa = 0.04 cm−1.

In order to obtain a series of absorption imaging problems using the same setup, we
consider five values for the background absorption value. Then, for each imaging problem,
we consider three mesh scenarios: uniform mesh for both forward and inverse problems;
adaptive mesh for the forward problem and uniform mesh for the inverse problem; and
adaptive meshes for both forward and inverse problems. We refer to table 2 for a brief outline
of the first simulation study.

The uniform mesh used for the forward problem discretization has 625 nodes and is
shown in figure 2(a). The uniform mesh for the inverse problem has 313 nodes and is shown in
figure 2(b). We use the algorithms described in section 3.1 and remark 1(iii), and section 3.3
remark 2(iii) to generate the adaptive meshes for the forward and inverse problems,
respectively. The number of nodes in each of the adaptive meshes used for the forward problem
does not exceed 750. An example for the adaptive mesh generated for a source located at
(1.0, 0) is shown in figure 2(c). The adaptive mesh for the inverse problem generated for the
case where the background µa = 0.050 cm−1 has 418 nodes and is shown in figure 2(d).
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Figure 2. Examples of meshes used in the first simulation study. (a) The uniform mesh with 625
nodes. (b) The uniform mesh with 313 nodes. (c) The adaptive mesh generated for the forward
problem for the source located at (1.0,0): background µa = 0.050 cm−1. (d) The adaptive mesh
generated for the inverse problem solution, with 418 nodes. Background µa = 0.050 cm−1.

Table 2. The mesh scenarios and the background µa values in simulation study 1.

Mesh (forward) Mesh (inverse) Background µa (cm−1)

Uniform Uniform 0.032, 0.036, 0.040, 0.044, 0.050
Adaptive Uniform 0.032, 0.036, 0.040, 0.044, 0.050
Adaptive Adaptive 0.032, 0.036, 0.040, 0.044, 0.050

For the inverse problem, we set the regularization parameter λ to 10−7 in all experiments to
eliminate the dependence of the error estimates (2.15)–(2.19) on the regularization parameter.
We consider the image reconstructed by using fine uniform meshes (61 × 61 nodes for the
forward problem and 61×61 nodes for the inverse problem) as the reference image αλ, which
is assumed to possess no error due to discretization. We compute the error

∥∥αλ − α̃λ
n

∥∥
L1(�)

for each image reconstruction and tabulate the results in table 3. We see that the error in
the images reconstructed by using uniform meshes for both forward and inverse problems is
significantly reduced by the use of adaptively refined meshes. A similar behaviour is observed
for all choices of background absorption value.
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(a) (b)

(c) (d)

Figure 3. The reconstruction results of simulation study 1, with the background µa = 0.032 cm−1.
(a) The optical absorption image used as the reference for error computations. (b) The reconstructed
absorption image using the uniform mesh in figure 2(a) for the forward, and the uniform mesh in
figure 2(b) for the inverse problem. (c) The reconstructed absorption image using an adaptive mesh
for the forward, and the uniform mesh in figure 2(b) for the inverse problem. (d) The reconstructed
absorption image using an adaptive mesh for the forward, and the adaptive mesh in figure 2(d) for
the inverse problem.

Table 3. The error ‖αλ − α̃λ
n‖L1(�) for each experiment described in the simulation study 1 and

table 2. The first column shows the type of the meshes used in the forward and inverse problems,
respectively. The unit of background µa is cm−1.

Background µa : 0.032 0.036 0.040 0.044 0.050

Uniform–uniform ‖αλ − α̃λ
n‖L1(�) : 0.2325 0.2559 0.2773 0.2932 0.3013

Adaptive–uniform ‖αλ − α̃λ
n‖L1(�) : 0.1238 0.1139 0.1166 0.1209 0.1278

Adaptive–adaptive ‖αλ − α̃λ
n‖L1(�) : 0.1043 0.0997 0.0998 0.1003 0.1009

We present image reconstructions in figures 3 and 4 for the two extreme cases, where
the background absorption value is equal to 0.032 and 0.050 cm−1, respectively. Figures 3(a)
and 4(a) display the reference images used to compute the error values given in table 3.
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Figure 4. The results of simulation study 1, with the background µa = 0.050 cm−1. (a) The
optical absorption image used as the reference for error computations. (b) The reconstructed
absorption image using the uniform mesh in figure 2(a) for the forward, and the uniform mesh in
figure 2(b) for the inverse problem. (c) The reconstructed absorption image using an adaptive mesh
for the forward, and the uniform mesh in figure 2(b) for the inverse problem. (d) The reconstructed
absorption image using an adaptive mesh for the forward, and the adaptive mesh in figure 2(d) for
the inverse problem.

Figures 3(c) and (d) show that the optical heterogeneity is resolved better by using adaptive
meshes as compared to the reconstructed image obtained by using uniform meshes, which is
shown in figure 3(b). These results are consistent with the error values given in table 3. A
similar trend is seen in figures 4(c) and (d). Note that the number of nodes in the adaptive
meshes is almost equal to the number of nodes that the uniform meshes have. In figure 5,
we show the cross-sectional views from the reconstructed images. We see that the use of
coarse uniform meshes fails to resolve the circular heterogeneity especially for the case in
which the background µa = 0.032 cm−1.

4.2. Simulation study 2

In this study, we consider the geometry shown in figure 1(b). To simulate the optical data,
we use the same source–detector configuration considered in the first simulation study. We
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Figure 5. The cross-sectional views from the reconstructed images in simulation study 1,
corresponding to the cases where the background µa = 0.032 and µa = 0.050 cm−1, respectively.
(a) The cross-sectional cuts taken from figures 3(a), (b) and (d), along the x-direction at y = 3.
The solid, square and diamond lines correspond to the cross-sectional cuts taken from the images
shown in figures 3(a), (b) and (d), respectively. (b) The cross-sectional cuts taken from figures 4(a),
(b) and (d), along the x-direction at y = 3. The solid, square and diamond lines correspond to the
cross-sectional cuts taken from the images shown in figures 4(a), (b) and (d), respectively.

simulate the optical data by solving the diffusion equation at ω = 0 on a fine uniform grid
with 81 nodes along the x and y directions, where the refractive index mismatch parameter
a = 3. The diffusion coefficient D is assumed to be constant and D(x) = 0.0410 cm, for all
x ∈ � ∪ ∂�.

We consider four different radii for the circular heterogeneity with µa = 0.20 cm−1

embedded in a background with µa = 0.040 cm−1 as shown in figure 1(b). For each case, we
compute the error for different mesh scenarios, similar to the first simulation study: uniform
mesh for both forward and inverse problems; adaptive mesh for the forward problem and
uniform mesh for the inverse problem; and adaptive meshes for both forward and inverse
problems. The adaptive meshes for this simulation study were generated based on theorems 1
and 2, and the mesh generation algorithms described in the first simulation study and section 3.
The uniform meshes used for the forward and inverse problems are identical to those used in
the first simulation study. We note that the number of nodes in the adaptive meshes generated
for the forward and inverse problems is close to the number of nodes in the corresponding
uniform meshes.

In table 4, we tabulate the error norm
∥∥αλ − α̃λ

n

∥∥ obtained for each heterogeneity size
with different mesh choices, where αλ is the reference image reconstructed by using fine
uniform meshes as in the first study. Table 4 shows that the error increases with increasing
heterogeneity size. We see that the reduction in the error as a result of using adaptive meshes
is more significant for smaller sized heterogeneities. Further reduction in the error norm∥∥αλ − α̃λ

n

∥∥ is possible by increasing the number of nodes in the meshes.
For brevity, we only show the reconstruction results for the extreme cases: r = 0.5 cm and

r = 1.25 cm. We note that the regularization parameter λ = 5 × 10−9 in all reconstructions.
Figures 6(a) and (b) show the images used as the reference images αλ in the calculation of
the error norms

∥∥αλ − α̃λ
n

∥∥ listed in table 4. Figures 6(e)–(f) show that the adaptive meshes
reduce the artefacts as compared to the images reconstructed by using uniform meshes, which
are shown in figures 6(c)–(d).
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Table 4. The L1 norm of αλ and the error ‖αλ − α̃λ
n‖L1(�) for each experiment described in the

simulation study 2. The first column shows the type of the meshes used in the forward and inverse
problems, respectively. The radius of the circular heterogeneity is given in cm.

Radius: 0.50 0.75 1.0 1.25

‖αλ‖L1(�): 0.7196 1.3760 1.4759 1.7817
Uniform–uniform ‖αλ − α̃λ

n‖L1(�): 0.5622 0.5706 0.5850 0.6337

Adaptive–uniform ‖αλ − α̃λ
n‖L1(�): 0.2153 0.2776 0.3766 0.5113

Adaptive–adaptive ‖αλ − α̃λ
n‖L1(�): 0.2020 0.2630 0.3592 0.5034

4.3. Simulation study 3

In this simulation study, we consider the geometry shown in figure 1(c). The centre of
the circular heterogeneity is moved vertically towards the detector side to see the effect on
the imaging accuracy. Next, we show how the error in the reconstructed images due to
discretization can be addressed by using appropriate meshes for the solutions of the forward
and inverse problems. In this context, we compare the results obtained by using (1) uniform
meshes, (2) the adaptive meshes generated using conventional a priori discretization error
estimates, and (3) the adaptive meshes proposed in this study. By conventional error estimates,
we mean the a priori discretization error estimates (2.16) and (2.17) for the solution of the
forward problem, and the a priori interpolation error estimate (2.14) for the solution of the
inverse problem.

To simulate the optical data, we use the same source–detector configuration considered
in the first simulation study. We simulate the optical data by solving the diffusion equation at
ω = 0 on a fine uniform grid with 81 nodes along the x and y directions, where the refractive
index mismatch parameter a = 3. We note that, in all reconstructions, the background
absorption value is set to µa = 0.04 cm−1 and the diffusion coefficient D is assumed to be
constant and D(x) = 0.0410 cm, for all x ∈ � ∪ ∂�.

The uniform meshes used in this simulation study are identical to those used in simulation
studies 1 and 2. Sample meshes for the forward problem solution using the conventional and
the proposed adaptive meshing strategies are shown in figures 7(a) and (b) and figures 8(c)
and (d), respectively. We see that the conventional adaptive mesh generation strategy leads to
meshes refined around only sources or detectors, but not both. In contrast, figures 8(c) and (d)
show that the proposed strategy results in adaptive meshes refined around sources, detectors
and the heterogeneity as well. This observation is consistent with theorem 2. The adaptive
mesh for the inverse problem solution, which was generated using the a priori interpolation
error estimate (2.14), is shown in figure 8(f). Note that the mesh was generated for the
case where the circular heterogeneity was centred at (3.0, 3.5). The mesh generated based
on theorem 1 (figure 8(e)) provides higher resolution close to the sources and detectors as
compared to the mesh shown in figure 8(f), which is merely refined around the heterogeneity.

In this simulation study, we consider four different positions for the centre of the circular
heterogeneity with radius 0.75 cm, along the y-axis: centre at (3.0, 3.0), (3.0, 3.5), (3.0,
4.0) and (3.0, 4.5), respectively. Similar to the previous simulations, we compute the error
in the reconstructed images for all cases, and compare the error values attained by different
meshing strategies. Finally we present the reconstructed images obtained by using different
mesh strategies corresponding to the case where the circular inclusion is centred at (3.0, 3.5)

and (3.0, 4.0).
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(a) (b)

(c) (d)

(e) (f)

Figure 6. The results of simulation study 2. The left and right columns show the reconstructed
images regarding the optical heterogeneity with radius 0.50 cm and 1.25 cm, respectively. The
background µa = 0.040 cm−1 in all of the reconstructions. The reference images shown in
(a) and (b) are obtained using a uniform mesh with 61 × 61 nodes in both the forward and inverse
problems. ((a) and (b)) The optical absorption images used as the reference for error computations.
The images correspond to the reconstruction of the circular heterogeneities of radii 0.5 cm and
1.25 cm, respectively. ((c) and (d)) The reconstructed absorption images using the uniform mesh
in figure 2(a) for the forward, and the uniform mesh in figure 2(b) for the inverse problem.
((e) and (f)) The reconstructed absorption image using adaptive meshes for both the forward and
the inverse problems.
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(a) (b)

(c) (d)

(e) (f)

Figure 7. ((a) and (b)) Samples of adaptive meshes in the third simulation study (with 865 nodes
for the source and the detector located at (2.0, 0) and (4.0, 6.0), respectively), generated by using the
conventional error estimates (2.16) and (2.17), which led to unstable optical image reconstruction
shown in (c) to (f), for the circular heterogeneity centred at (3.0, 3.5). ((c) and (d)) The unstable
optical image reconstructions in the third simulation study, obtained by using the adaptive meshes
for the forward problem solution whose examples are shown in (a) and (b) (λ = 10−8). ((e) and
(f)) The unstable optical image reconstructions in the third simulation study, obtained by using the
adaptive meshes for the forward problem solution whose examples are shown in (a) and (b). λ was
set to 10−6 to suppress the significantly large artefacts observed in (c) and (d).

Using the meshes for the forward problem discretization (see figures 7(a) and (b)),
which were generated by using the conventional a priori discretization error estimates
(2.16)–(2.17), leads to the image reconstructions shown in figures 7(c) and (d), where the
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Figure 8. Samples of adaptive meshes used in the third simulation study, which led to the optical
image reconstructions shown in figure 10. The meshes were generated for the circular heterogeneity
centred at (3.0, 4.0). (a) The adaptive mesh with 942 nodes for the forward problem solution for
the source located at (2.0, 0), obtained by refining the adaptive mesh shown in figure 7(a) around
the detectors. (b) The adaptive mesh with 955 nodes for the forward problem solution for the
detector located at (4.0, 6.0), obtained by refining the adaptive mesh shown in figure 7(b) around
the sources. (c) The adaptive mesh with 895 nodes for the forward problem solution for the source
located at (2.0, 0), generated based on theorem 2. (d) The adaptive mesh with 896 nodes for the
forward problem solution for the detector located at (4.0, 6.0), generated based on theorem 2.
(e) The adaptive mesh with 691 nodes for the inverse problem solution, generated based on
theorem 1. (f) The adaptive mesh with 609 nodes for the inverse problem solution, generated based
on the conventional error estimate (2.14).



Effect of discretization error and adaptive mesh generation in diffuse optical tomography: II 1155

regularization parameter λ = 10−8. We observe that the finite-dimensional operator does
not provide a stable solution. We note that using an adaptive mesh for the inverse problem
solution does not change the outcome (figure 7(d)). Note also that the meshes generated by
using the conventional a priori discretization error estimates (2.16)–(2.17) are sufficient to
provide accurate finite element approximations to the actual solutions gj and g∗

i . Therefore,
the unstable reconstructions can be attributed to the errorsK−K̃ and γ −γ̃ , due to inappropriate
discretization as noted by theorem 2. In consistence with theorem 2, this observation suggests
that solving the forward problem accurately does not necessarily imply that approximate
operator K̃ and γ̃ are error-free. Therefore, in order to address such problems, one has to
follow a discretization scheme based on theorem 2 for the solution of the forward problem,
which takes into account the interaction between the solutions of the diffusion equation and
the associated adjoint problem, as described in section 3.1.

In order to suppress the severe artefacts observed in figures 7(c) and (d), we increased
the regularization parameter and set λ = 10−6. The resulting images are shown in
figures 7(e) and (f). As noted by theorems 1 and 2, increasing the regularization parameter
reduces the error in the reconstructed images. However, increasing the regularization
parameter will also compromise the image quality and lead to over-smoothed images. In
order to address the instability issue without degrading the image quality by using high
regularization parameters, we modified the adaptive mesh generation method that leads to the
meshes shown in figures 7(a) and (b). In this context, for the first 2 refinements, we used
the proposed mesh generation algorithm based on theorem 2 to generate an initial adaptive
mesh; and for the next two refinements, we used the conventional error estimates (2.16)–
(2.17). Following this modification, the samples of the resulting adaptive meshes are shown in
figures 8(a) and (b). For a comparison, we also present in figures 8(c) and (d), the adaptive
meshes generated by using the proposed adaptive mesh generation algorithms as described
in section 3.1 and remark 1(iii). We observe that the meshes shown in figures 8(c) and
(d), indicate further refinement around sources, detectors and the circular heterogeneity as
compared to the adaptive meshes shown in figures 8(a) and (b).

Examples of the adaptive meshes generated for the inverse problem based on theorem 1
and the conventional a priori interpolation estimate (2.14) are shown in figures 8(e) and
(f), respectively. We observe that the adaptive mesh shown in figure 8(e) provides higher
resolution around sources and detectors as compared to the adaptive mesh shown in
figure 8(f).

We note that the uniform meshes used in this simulation study are identical to those used
in the previous simulation studies.

In order to compare the performance of the conventional and proposed adaptive mesh
strategies, we perform four experiments and compute the error in the reconstructed optical
absorption images. For each experiment, we consider five different mesh strategies and refer
to table 5 for the description of these experiments.

We show the reconstructed optical absorption images for the two cases in figures 9 and 10,
corresponding to the circular heterogeneity centred at (3.0, 3.5) and (3.0, 4.0), respectively.
Figures 9(a) and 10(a) show the reference absorption image reconstructions which are used to
compute the error in the reconstructed optical images.

Figure 9(b) shows the image reconstructed using coarse uniform meshes for both the
forward and inverse problems, for the case where the circular inclusion is centred at (3.0,
3.5) where the regularization parameter was set to λ = 10−8. With the same value of the
regularization parameter, figure 9(c) shows the reconstructed image by using the adaptive
mesh based on theorem 2 for the forward problem and the coarse uniform mesh (shown in
figure 2(b)) for the inverse problem. Figure 9(e) shows the reconstructed image obtained
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Table 5. The relevant parameters in experiments 1–5 in simulation study 3. The abbreviation
‘Conv.’ implies that the corresponding mesh was generated using the conventional a priori
discretization error estimates (2.16)–(2.17) for the forward problem solution, and the conventional
a priori interpolation error estimate (2.14) for the inverse problem solution. The abbreviation
‘Prop.’ refers to the adaptive meshes generated by using the proposed adaptive mesh generation
algorithms based on theorems 1 and 2, for the inverse and forward problem solutions, respectively.
The last column in the table shows the coordinates of the centre of the circular heterogeneity,
considered in each experiment.

Mesh (forward) Mesh (inverse) Centre at:

Exp. 1 Uniform Uniform [(3.0, 3.0), (3.0, 3.5), (3.0, 4.0), (3.0, 4.5)]
Exp. 2 Adaptive (Conv.) Uniform [(3.0, 3.0), (3.0, 3.5), (3.0, 4.0), (3.0, 4.5)]
Exp. 3 Adaptive (Conv.) Adaptive (Conv.) [(3.0, 3.0), (3.0, 3.5), (3.0, 4.0), (3.0, 4.5)]
Exp. 4 Adaptive (Prop.) Uniform [(3.0, 3.0), (3.0, 3.5), (3.0, 4.0), (3.0, 4.5)]
Exp. 5 Adaptive (Prop.) Adaptive (Prop.) [(3.0, 3.0), (3.0, 3.5), (3.0, 4.0), (3.0, 4.5)]

Table 6. The error ‖αλ − α̃λ
n‖L1(�) for each experiment described in the simulation study 3. The

first column shows the type of the meshes used in the forward and inverse problems, respectively.
The superscript ‘C’ denotes that the corresponding adaptive mesh generation is based on the
conventional a priori error estimates (2.16)–(2.17) and (2.14).

Radius at: (3.0, 3.0) (3.0, 3.5) (3.0, 4.0) (3.0, 4.5)

Uniform–uniform ‖αλ − α̃λ
n‖L1(�): 0.4539 0.4606 0.4733 0.4956

Adaptive–uniform ‖αλ − α̃λ
n‖L1(�): 0.2690 0.2695 0.2634 0.2507

Adaptive–adaptive ‖αλ − α̃λ
n‖L1(�): 0.2433 0.2455 0.2459 0.2434

Adaptive–uniform ‖αλ − α̃λ,C
n ‖L1(�): 0.7989 0.7596 0.7072 0.6418

Adaptive–adaptive ‖αλ − α̃λ,C
n ‖L1(�): 0.8011 0.7614 0.7070 0.6351

by using the adaptive meshes based on theorems 1 and 2. We observe the improvements
especially around the boundaries. Using the conventional adaptive meshes for the forward
problem solution, which were modified around sources and detectors as noted before, we
ran into a similar instability problem. Therefore, in order to obtain better reconstructions
with the conventional adaptive meshes, we set the regularization parameter λ = 10−7 in the
corresponding inverse problem formulations. The resulting reconstructed images are shown
in figures 9(c) and (f). In this case, we observe that the use of conventional adaptive meshes
for the forward and inverse problems does not improve the image quality as compared to the
reconstructed image shown in figure 9(b), which is obtained by using coarse uniform meshes.

We observe similar results for the case where the circular inclusion is centred at (3.0, 4.0).
We note that the regularization parameter is set to λ = 10−8 for all reconstructions except for
the reconstructions obtained by using conventional adaptive meshes, in which case λ = 10−7.
Figure 9 shows the reconstructed images corresponding to all meshing strategies.

Table 6 shows the error norm αλ − α̃λ
n computations for all cases. Similar to the

previous experiments, αλ is the reference image obtained by using fine uniform meshes
for the discretization of the forward and inverse problems. The error values are consistent
with figures 9 and 10. In all cases, the proposed adaptive meshes significantly reduce the
error in the reconstructed images. Furthermore, the image quality is enhanced by merely
appropriate discretization, without having to increase the regularization parameter. In contrast,
the conventional adaptive meshes perform worse than uniform meshes even though a higher
regularization parameter is used.
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(a) (b)

(c) (d)

(e) (f)

Figure 9. The reconstructed optical images regarding the circular heterogeneity centred at
(3.0, 3.5) in the third simulation study. (a) The absorption image used as the reference in the
error computations. (b) The reconstructed absorption image using the uniform mesh in figure 2(a)
for the forward, and the uniform mesh in figure 2(b) for the inverse problem. (c) The reconstructed
absorption image using adaptive meshes based on theorem 2 for the forward, and the uniform
mesh in figure 2(b) for the inverse problem. (d) The reconstructed absorption image using adaptive
meshes based on a priori error estimates (2.16) and (2.17) for the forward, and the uniform mesh
in figure 2(b) for the inverse problem. (e) The reconstructed absorption image using adaptive
meshes based on theorem 2 for the forward, and using the adaptive mesh based on theorem 1
for the inverse problem. (f) The reconstructed absorption image using adaptive meshes based on
a priori error estimates (2.16) and (2.17) for the forward, and the interpolation error estimate (2.14)
for the inverse problem.
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(a) (b)

(c) (d)

(e) (f)

Figure 10. The reconstructed optical images regarding the circular heterogeneity centred at
(3.0, 4.0) in the third simulation study. (a) The absorption image used as the reference in the
error computations. (b) The reconstructed absorption image using the uniform mesh in figure
2(a) for the forward, and the uniform mesh in figure 2(b) for the inverse problem. (c) The
reconstructed absorption image using adaptive meshes based on theorem 2 for the forward, and
the uniform mesh in figure 2(b) for the inverse problem. (d) The reconstructed absorption image
using adaptive meshes based on a priori error estimates (2.16) and (2.17) for the forward, and the
uniform mesh in figure 2(b) for the inverse problem. (e) The reconstructed absorption image using
adaptive meshes based on theorem 2 for the forward, and the adaptive mesh based on theorem 1
for the inverse problem. (f) The reconstructed absorption image using adaptive meshes based on
a priori error estimates (2.16) and (2.17) for the forward, and the interpolation error estimate (2.14)
for the inverse problem.
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5. Conclusion

In this work, based on the error analysis presented in part I [9], we developed two new adaptive
mesh generation algorithms, one for the forward and one for the inverse problem, which take
into account the interdependence between the solutions of the two problems. We have also
presented the computational complexity of the presented adaptive mesh generation algorithms.
Our numerical experiments provided a verification of theorems 1 and 2 and showed that the
proposed mesh generation algorithms significantly improve the accuracy of the reconstructed
optical images for a given number of unknowns in the discrete forward and inverse problems.
Conventional error estimates do not include domain-specific factors. As a result, the adaptive
mesh generation algorithms based on conventional error estimates (2.16)–(2.17) and (2.14)
may lead to high errors in reconstructed optical images as demonstrated in our numerical
experiments.

We finally note that the adaptive mesh generation algorithms introduced in this paper can
be adapted for the forward and inverse problems of similar inverse parameter estimation
problems, such as electrical impedance tomography, optical fluorescence tomography,
bioluminescence tomography, microwave imaging etc.
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Appendix. Solution of the model problem

In order to initialize the adaptive mesh for the solution of the forward problem (provided
D(x) = D and µa(x) = µa are spatially constant), we use an analytical solution to compute
the estimates of gj and g∗

i . Below, we give the solution in 2D for (2.1). Under the same
conditions, an analytical solution for the adjoint problem (2.3) can be obtained in a similar
way.

First, we use the polar coordinates (ρ, θ ) to rewrite (2.1):

1

ρ

∂

∂ρ

(
ρ

∂gj

∂ρ

)
+

1

ρ

∂

∂θ

(
ρ

∂gj

∂θ

)
+ K2

�gj = −4π

ρ

δ
(
ρ − ρ

j
s

)
δ
(
θ − θ

j
s

)
D

,

where we consider an unbounded domain, model the point source located at
(
ρ

j
s , θ

j
s

)
by the

Dirac-delta function 4πδ
(
ρ−ρ

j
s

)
δ
(
θ −θ

j
s

)/
ρ and K2

� = −(µac+iω)/cD. Then, the solution

gj at (ρ, θ ) due to the point source located at
(
ρ

j
s , θ

j
s

)
is given by [11]

gj

(
ρ, ρj

s ; θ, θj
s

) = 4

Dπ

{
1

2
I0(k�ρ<)K0(k�ρ>) +

∞∑
m=1

cos[m(θ − θs)]Im(k�ρ<)Km(k�ρ>)

}
,

where ρ< means the smaller of ρ and ρ
j
s , ρ> means the greater of ρ and ρ

j
s , Im and Km are

the modified Bessel functions of the first and second kind, respectively [1] and k� =
√

−K2
�.

The solution of the problem in 3D can be derived in a similar manner [11, 17].
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