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Abstract
In this paper, we develop a method of forming pharmacokinetic-rate images
of indocyanine green (ICG) and apply our method to in vivo data obtained
from three patients with breast tumors. To form pharmacokinetic-rate images,
we first obtain a sequence of ICG concentration images using the differential
diffuse optical tomography technique. We next employ a two-compartment
model composed of plasma, and extracellular–extravascular space (EES), and
estimate the pharmacokinetic rates and concentrations in each compartment
using the extended Kalman filtering framework. The pharmacokinetic-rate
images of the three patient show that the rates from the tumor region and
outside the tumor region are statistically different. Additionally, the ICG
concentrations in plasma, and the EES compartments are higher around the
tumor region agreeing with the hypothesis that around the tumor region ICG
may act as a diffusible extravascular flow in compromised capillary of cancer
vessels. Our study indicates that the pharmacokinetic-rate images may provide
superior information than single set of pharmacokinetic rates estimated from
the entire breast tissue for breast cancer diagnosis.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Near-infrared (NIR) diffuse optical imaging offers several advantages over other imaging
modalities (Arridge 1999, Boppart et al 2004, Gu et al 2004, Intes and Chance 2005, Mahmood
et al 1999, Sevick-Muraca et al 1997, Yodh and Chance 1995). NIR techniques are minimally
invasive, easy to use, relatively inexpensive and can be made portable. Moreover, optical
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techniques, when coupled with contrast agents, have the potential to provide molecular/cellular
level information, which can improve cancer detection, staging and treatment monitoring
(Alacam et al 2006, Cuccia et al 2003, Intes et al 2003, Mahmood et al 1999, Sevick-Muraca
et al 1997).

Among many commercially available optical contrast agents, only indocyanine green
(ICG) is approved for use in humans by the Food and Drug Administration (ElDeosky et al
1999, Hansen et al 1993, Shinohara et al 1996). ICG is a blood pooling agent that has different
delivery behavior between normal and cancer vasculature. In normal tissue, ICG acts as a
blood flow indicator in tight capillaries of normal vessels. However in tumors, ICG may act
as a diffusible (extravascular) flow in leaky capillary of vessels (Alacam et al 2006, Cuccia
et al 2003, Ntziachristos et al 2000, Vaupel et al 1991). Therefore, pharmacokinetics of ICG
has the potential to provide new tools for tumor detection, diagnosis and staging.

One approach to analyze pharmacokinetics of contrast agents is the compartmental
modeling (Anderson 1983, Jacquez 1972, Tornoe 2002). A number of studies using
compartmental modeling were reported to show the feasibility of ICG pharmacokinetics in
tumor characterization (Alacam et al 2006, Cuccia et al 2003, Intes et al 2003). Cuccia et al
(2003) presented a study of the dynamics of ICG in an adenocarcinoma rat tumor model using
a two-compartment model. Intes et al (2003) presented the uptake of ICG in breast tumors
using a continuous wave diffuse optical tomography apparatus using a two-compartment
model. We recently introduced the extended Kalman filtering (EKF) framework to model and
estimate the ICG pharmacokinetics and tested three different compartmental models for the
ICG pharmacokinetics using the in vivo NIR data collected from Fischer rats with cancerous
tumors (Alacam et al 2006). Our study suggests that the pharmacokinetic rates out of the
vasculature are higher in edematous tumors as compared to necrotic tumors.

In all the studies described above, the pharmacokinetic rates are assumed to be constant
over a tissue volume that may be as large as the entire imaging domain. However,
pharmacokinetic rates are expected to be different in healthy and tumor tissue as reported
in positron emission tomography (PET) and magnetic resonance imaging (MRI) literature.
It was shown that the spatially resolved pharmacokinetic-rate analysis provides increased
sensitivity and specificity for breast cancer diagnosis (Mussurakis et al 1997, Su et al
2005, Sun et al 2006). For example, Sun et al (2006) showed that FAU (1-2′-deoxy-2′-
fluoro- β-D-arabinfuranosyl urasil, a PET contrast agent) accumulation in tumor regions is
significantly higher when compared to normal breast tissue based on pharmacokinetic-rate
images. Mussurakis et al (1997) showed that the pharmacokinetics of gadolinium-DTPA (an
MRI contrast agent) can be used to differentiate between malignant and benign breast tumors
with a high accuracy. It has also been shown that the spatially resolved image interpretation
is superior to the isolated use of quantitative pharmacokinetic rates.

In the area of diffuse NIR spectroscopy and imaging, a number of studies on spatially
resolved pharmacokinetic rates has been reported (Gurfinkel et al 2000, Milstein et al 2005).
Gurfinkel et al (2000) presented in vivo NIR reflectance images of ICG pharmacokinetics to
discriminate canine adenocarcinoma (located at 0.5–1 cm depth) from normal mammary tissue.
These images were generated by a non-tomographic technique using a CCD camera that is
suitable only for imaging tumors close to surface. Milstein et al (2005) presented a Bayesian
tomographic image reconstruction method to form pharmacokinetic-rate images of optical
fluorophores based on fluorescence diffuse optical tomography. Numerical simulations show
that the method provides good contrast. However, no real data experiments were presented to
study the diagnostic value of spatially resolved pharmacokinetic rates.

In this paper, we present a method of forming pharmacokinetic-rate images and report
spatially resolved pharmacokinetic rates of ICG using in vivo NIR data acquired from three
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patients with breast tumors. To the best of our knowledge, our work is the first study
presenting the pharmacokinetic-rate images of an optical contrast agent using in vivo breast
data based on tomographic techniques. We first develop a set of spatio-temporally resolved
ICG concentration images based on differential diffuse optical tomography. We model the
ICG pharmacokinetics by a two-compartment model composed of plasma and extracellular–
extravascular space (EES) compartments. We then estimate the ICG pharmacokinetic rates
and the concentrations in different compartments based on the EKF framework (Alacam
et al 2006). We show that the pharmacokinetic rates from the tumor region and outside the
tumor region are statistically different. We also estimate a single set of pharmacokinetic rates
(bulk pharmacokinetic rates) for the entire breast tissue. Our study indicates that spatially
resolved pharmacokinetic rates provide more consistent and superior diagnostic information
as compared to the bulk pharmacokinetic rates.

The rest of the paper is organized as follows. In section 2, we present the reconstruction
of ICG concentration images. In section 3, we present modeling and estimation of ICG
pharmacokinetic-rate images using the EKF framework. In section 4, we present the spatially
resolved ICG pharmacokinetic-rate analysis of in vivo breast data. Section 5 summarizes our
results and conclusion.

2. Reconstruction of bulk ICG concentration images

In our data collection process, a sequence of boundary measurements are collected over a period
of time. Each set of measurements are used to form a frame of the ICG concentration images.
The resulting sequence of ICG concentration images are then used to form pharmacokinetic-
rate images. To reconstruct each frame of the ICG concentration images, we follow a static
reconstruction approach and use differential diffuse optical tomography (DDOT) technique
(Intes et al 2003, Ntziachristos et al 1999).

In DDOT, two sets of excitation measurements are collected corresponding to before and
after the ICG injection, and the ICG concentration is determined by the perturbation method
(Intes et al 2003, Ntziachristos et al 1999). The photon propagation before and after the
injection is modeled by the following diffusion equations:

∇ · Dx(r)∇�±
x (r, ω) − (

µ±
ax(r) + jω/c

)
�±

x (r, ω) = 0, r ∈ � ⊂ R3, (1)

with Robin-type boundary conditions:

2Dx(r)
∂�±

x (r, ω)

∂ν
+ ρ�±

x (r, ω) = −S(r, ω), r ∈ ∂�, (2)

where x stands for the excitation, c is the speed of light inside the medium �; ω denotes the
modulation frequency of the source, µ−

ax(r) and µ+
ax(r) are the absorption coefficients before

and after the ICG injection, Dx is the diffusion coefficient which is assumed independent of
µ±

ax , known but not necessarily constant, �±
x (r, ω) denotes optical field at location r before

and after the ICG injection. Here, ν denotes the outward normal to the boundary ∂� of �, ρ

is a constant representing the refractive index mismatch between the two regions separated by
∂� and S(r, ω) is the excitation source on the boundary.

The absorption coefficients after the injection µ+
ax are modeled as a sum of the absorption

coefficient of the medium before the ICG injection µ−
ax and the perturbation caused by the

ICG �µax(r):

�µax(r) = µ+
ax(r) − µ−

ax(r), r ∈ � ⊂ R3. (3)

In the forward model, the analytical solutions of the heterogonous diffusion equation given
in (1) is derived using first-order Rytov approximation (Intes et al 2003). The sample volume
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is divided into a set of voxels and the measurements are related to the relative absorption
coefficients of each voxel by a system of linear equations. The shape of the breast was
approximated as a cylinder and the Kirchhoff approximation (Ripoll et al 2001a, 2001b) for
diffuse waves was used to model the interaction of light with boundaries. In order to minimize
optode-tissue coupling mismatch due to breathing motion, the forward model was augmented
with the coupling coefficient technique as described in Boas et al (2001).

Here, the Rytov-type measurements, which are defined by the natural logarithm of the
ratio of the post-ICG measurements to the pre-ICG measurements were used (Ntziachristos
et al 1999). Let 	x(ω; rd; rs) denote the Rytov-type measurements at location rd due to
source at rs . The linearized relationship between the differential absorption coefficient and
measurements is given by O’Leary (1996)

	x(ω; rd; rs) = − 1

�−
x (ω; rd; rs)

∫
�

G−
x (r, ω; rd)Ix(r)�

−
x (r, ω; rs) d3r, (4)

where �−
x (r, ω; rs) is the photon density obtained at the excitation wavelength before ICG

injection, Ix(r) = c�µax(r)/Dx , and G−
x (r, ω; rd) is the Green’s function of (1) for a source

at rs before the injection.
We address the inverse problem of recovering �µax from Rytov measurements 	x based

on the forward model (4) using the singular-value decomposition of the Moore–Penrose
generalized system. We use a zeroth-order Tikhonov regularization to stabilize the inversion
procedure. The regularization parameter was determined by L-curve analysis (Hansen and
O’Leary 1993) using the data obtained from a phantom study previously employed to validate
the apparatus (Intes et al 2003). The optimal regularization parameter was found to be 6×10−4

and set to be the same for all patient images and time instances. A detailed discussion of the
forward and inverse models used for the reconstruction of differential absorption coefficients
(�µax) can be found in Intes et al (2003).

To construct a set of ICG concentration images, we use the linear relationship between
the differential absorption coefficients and ICG concentrations (Landsman et al 1976),

�µa(r) = ln 10ελm(r), (5)

where ελ is the extinction coefficient of ICG at the wavelength 805 nm, m(r) is the bulk ICG
concentration in the tissue and �µa(r) is as defined in (3).

Note that the method described here is applicable for frequency domain case but for
simplicity we set the frequency to zero, i.e. ω = 0.

3. Modeling and estimation of ICG pharmacokinetics

3.1. Two-compartment model of ICG pharmacokinetics

Using the method outlined in section 2, we reconstruct a sequence of ICG concentration
images. As an example, figures 1–3 show a set of images reconstructed from in vivo breast
data.

Our objective is to model the pharmacokinetics of ICG at each voxel of ICG concentration
images using compartmental modeling. To do so, we first extracted the time varying ICG
concentration curves for each voxel from the sequence of ICG concentration images. An
example of such a curve is shown in figure 4. We next fit a two-compartment model to each
ICG concentration curve (Alacam et al 2006, Gurfinkel et al 2000).
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Figure 1. ICG concentration images for a set of time instants for case 1.

Using the two-compartment model introduced by Alacam et al (2006), ICG transition
between plasma and extracellular–extravascular space (EES) can be modeled as follows:[

Ċe(t)

Ċp(t)

]
=

[−kout kin

kout −(kin + kelm)

] [
Ce(t)

Cp(t)

]
+ ω(t), t ∈ [T0, T1], (6)

where Cp(t) and Ce(t) represent the ICG concentrations in plasma and EES at time t,
respectively. The rates kin, kout and kelm have a unit of sec−1. They are defined as the
permeability surface area products given by PSγ , where P is the capillary permeability
constant, S is the capillary surface area and γ is the tissue density. kin and kout govern
the leakage into and the drainage out of the EES. The parameter kelm describes the ICG
elimination from the body through kidneys and liver. Here, ω(t) is uncorrelated zero-mean
Gaussian process with covariance matrix Q representing the model mismatch.

The actual total ICG concentration in the tissue is a linear combination of plasma and the
EES ICG concentrations, and modeled as

m(t) = [
ve vp

] [
Ce(t)

Cp(t)

]
+ η(t), t ∈ [T0, T1], (7)

where m(t), Ce(t) and Cp(t) are defined in (5) and (6), vp and ve are plasma and the EES
volume fractions, respectively, and η(t) is uncorrelated zero-mean Gaussian process with
covariance matrix R, representing the measurement noise.
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Figure 2. ICG concentration images for a set of time instants for case 2.

3.2. Estimation of ICG pharmacokinetics using extended Kalman filtering

In matrix–vector notation, (6) and (7) can be expressed as

Ċ(t) = K(α)C(t) + ω(t), m(t) = V(α)C(t) + η(t), (8)

where C(t) denotes the concentration vector with elements Ce(t), and Cp(t); K(α) is the
system matrix, V(α) is the measurement matrix as defined in equation (7) and α is the
parameter vector given by

α = [kout kin kelm ve vp]T . (9)

The ICG measurements in (8) are collected at discrete time instances, t = kT , k =
0, 1, . . . , where T is the sampling period. Therefore, the continuous model described in (8) is
discretized. We can express the discrete compartmental model as follows:

Cd(k + 1) = Kd(θ)Cd(k) + ωd(k), m(k) = Vd(θ)Cd(k) + ηd(k), (10)

where Kd(θ) = eK(α) is the discrete time system matrix; Vd(θ) = V(α) is the discrete
measurement matrix; ωd(k) and ηd(k) are zero-mean Gaussian white noise processes with
covariances matrix Qd and variance Rd , respectively. The vector θ is composed of parameters
τij which are functions the pharmacokinetic rates and volume fractions:

θ = [τ11 τ12 τ21 τ22 ve vp]T . (11)
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Figure 3. ICG concentration images for a set of time instants for case 3.
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Figure 5. (Left) Schematic diagram. (Right) The cut section of the CW NIR imaging apparatus
with 16 sources and detectors.

We first estimate τij , i, j = 1, 2 and then compute the pharmacokinetic rates kin, kout and kelm

(Alacam et al 2006, Chen 1999). The explicit form of the discrete state-space model is given
as follows: [

Ce(k + 1)

Cp(k + 1)

]
=

[
τ11 τ12

τ21 τ22

] [
Ce(k)

Cp(k)

]
+ ωd(k)

(12)

m(k) = [ve vp ]

[
Ce(k)

Cp(k)

]
+ ηd(k).

We estimate the parameter vector θ and concentration vector Cd by using the EKF
framework. The EKF is a recursive modeling and estimation method with numerous
advantages in ICG pharmacokinetic modeling (Alacam et al 2006). These include effective
modeling of multiple compartments, and multiple measurement systems in the presence of
measurement noise and uncertainties in the compartmental model dynamics, simultaneous
estimation of model parameters and ICG concentrations in each compartment, statistical
validation of estimated concentrations and error bounds on the model parameter estimates, and
incorporation of available a priori information about the initial conditions of the permeability
rates into the estimation procedure.

When both states (ICG concentrations) and model parameters (pharmacokinetic rates
and volume fractions) are unknown, a linear state-space model can be regarded as a nonlinear
model; the linear system parameters and states combine to form the new states of the nonlinear
model. This system is then linearized and the new unknown states are found using the EKF
estimator (Alacam et al 2006, Ljung 1979, Togneri and Deng 2003, Nelson and Stear 1976).
In EKF framework, θ can be treated as a random process with the following model:

θ(k + 1) = θ(k) + ςd(k), (13)

where ςd(k) is a zero-mean Gaussian process with covariance matrix Sd .
Table 1 summarizes the joint estimation of pharmacokinetic rates and ICG concentration

in different compartments. In table 1, Ĉd(k|k − 1) is the state estimate propagation at step
k given all the measurements up to step k − 1, Ĉd(k) is the state estimate update at step
k, Pk,k−1 denotes the error covariance propagation at step k given all the measurements up to
step k−1, Pk,k is the error covariance update at step k, Sd is the preassigned covariance matrix
of ςd(k), Jk is the Jacobian matrix due to iterative linearization of the state equation at step
k, Gk is the recursive Kalman gain at step k, Rd is the covariance matrix of the measurements,
Qd is the covariance matrix of the concentration vector and I is the identity matrix. A detailed
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Figure 6. Pharmacokinetic rate images, (a) kin and (b) kout for case 1. The kin images are shown
with approximate tumor location and size.

Table 1. EKF algorithm for simultaneous estimation of states and parameters.

Initial conditions

[
Ĉd (0)

θ̂(0)

]
=

[
E(Cd (0))

θ̂(0)

]
, P0,0 =

[
V ar(Cd (0)) 0

0 Sd

]

State estimate propagation

[
Ĉd (k|k − 1)

θ̂(k|k − 1)

]
=

[
Kd (θ̂(k − 1))Ĉd (k − 1)

θ̂(k − 1)

]

Error covariance propagation Pk,k−1 = Jk−1Pk−1,k−1JT
k−1 +

[
Qd 0

0 Sd

]

State estimate update

[
Ĉd (k)

θ̂(k)

]
=

[
Ĉd (k|k − 1)

θ̂(k|k − 1)

]

+ Gk(m(k) − Vd (θ̂(k|k − 1))Ĉd (k|k − 1))

Error covariance update Pk,k = [I − Gk�k|k−1]Pk,k−1

Kalman gain Gk = Pk,k−1�
T
k|k−1[�k|k−1Pk,k−1�

T
k|k−1 + Rd ]−1

Definitions Jk =
[

Kd (θ̂(k)) ∂
∂θ [Kd (θ̂(k))Ĉd (k)]

0 I

]

�k|k−1 =
[

Vd (θ̂(k|k − 1))

0

]T

discussion of the extended Kalman filtering algorithm, and the initialization of the parameters,
concentrations and covariance matrices can be found in Alacam et al (2006).

4. Spatially resolved ICG pharmacokinetic rate analysis of in vivo breast data

4.1. Apparatus

In this work, we use the data collected with a continuous wave (CW) NIR imaging apparatus.
The apparatus has 16 light sources, which are tungsten bulbs with less than 1 W of output
power. They are located on a circular holder at an equal distance from each other with 22.5◦
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Figure 7. Pharmacokinetic-rate images, (a) kin and (b) kout for case 2. The kin images are shown
with approximate tumor location and size.
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Figure 8. Pharmacokinetic-rate images, (a) kin and (b) kout for case 3. The kin images are shown
with approximate tumor location and size.

apart. Sixteen detectors, namely silicon photodiodes, are situated in the same plane. The
breast is arranged in a pendular geometry with the source-detector probes gently touching its
surface. Figure 5 illustrates the configuration of the apparatus and the configuration of the
detectors and the sources in a circular plane. Note that sources and detectors are co-located.
The detectors use the same positions as the sources to collect the light originating from one
source at a time. Only the signals from the farthest 11 detectors are used in the analysis.
For example, when source 1 is on, the data are collected using detectors 4–14. This provides
sufficient number of source-detector readings (176 readings) to reconstruct �µa images at
each time instant. A band pass filter at 805 nm, the absorption peak of ICG, is placed in front
of the sources to select the desired wavelength. A set of data for one source is collected every
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Figure 9. ICG concentration images in plasma for case 1 for (a) 246.4th, (b) 334.4th and
(c) 422.4th s.

∼500 ms. The total time for a whole scan of the breast including 16 sources and 16 detectors
is ∼8.8 s. A more detailed explanation of the apparatus and the data collection procedure can
be found in (Nioka et al 1997).

4.2. Tumor information and protocol

Three different patients with different tumor types are included in this study. Measurements
are made before the biopsy to avoid modification of the blood volume and flow in the tumor
region. First case (case 1) is fibroadenoma, which corresponds to a mass estimated to be
1–2 cm in diameter within a breast of 9 cm diameter located at 6–7 o’clock. Second case
(case 2) is adenocarcinoma corresponding to a tumor estimated to be 2–3 cm in diameter
within a breast of 7.7 cm diameter located at 4–5 o’clock. The third case (case 3) is invasive
ductal carcinoma, which corresponds to a mass estimated to be 4 cm by 3 cm located at
6 o’clock. Table 2 describes the tumor information for each patient. A priori information on
the location and size of the tumor was obtained by palpation and the diagnostic information
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Figure 10. ICG concentration images in the EES for case 1 for (a) 246.4th, (b) 334.4th and
(c) 422.4th s.

Table 2. Tumor information for each patient.

Tumor type Tumor size Tumor location

Case 1 Fibroadenoma 1–2 cm 6–7 o‘clock
Case 2 Adenocarcinoma 2–3 cm 4–5 o‘clock
Case 3 Invasive ductal carcinoma 4 cm by 3 cm 6 o‘clock

was derived a posteriori from biopsy and surgery. ICG is injected intravenously by bolus with
a concentration of 0.25 mg kg−1 of body weight. Data acquisition started before the injection
of ICG and continued for 10 min.

4.3. Results and discussion

Using the CW imager described above, source–detector readings were collected from different
angles for each patient. Differential absorption coefficient images were reconstructed based
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Figure 11. ICG concentration images in plasma for case 2 for (a) 228.8th, (b) 316.8th and
(c) 404.8th s.

on DDOT forward model given in equations (1)–(4) with ω set to zero. Using the linear
relationship (5) between ICG concentration and absorption coefficient, ICG concentration
images were obtained for each case. A sample set of ICG concentration images for the
selected time instants are shown in figures 1–3 for cases 1–3, respectively. Although only nine
images are displayed, there are approximately 50 images for each case, each corresponding
to a different time instant. Each image is composed of 649 voxels. Note that the ICG
concentration images in figures 1–3 represent the bulk ICG concentrations in the tissue, not
the ICG concentrations in plasma or the EES compartments.

We next extracted the time course of ICG concentration for each voxel. As an example,
figure 4 shows the time course of ICG concentrations for all three cases for a specific voxel
in the tumor region (65th, 276th, 188th voxel for cases 1, 2 and 3, respectively). We then
fit the two-compartment model to each time course data using the EKF framework; and
estimated kin, kout, kelm, and the ICG concentrations in plasma and the EES. We chose initial
values within the biological limits that lead to minimum norm error covariance matrix. The
images of kin and kout for each case are shown in figures 6(a)–(b), and 7(a)–(b), 8(a)–(b),
respectively. Additionally, we constructed the ICG concentration images for plasma and
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Figure 12. ICG concentration images in the EES for case 2 for (a) 228.8th, (b) 316.8th and
(c) 404.8th s.

the EES compartments. Figures 9–14 show the ICG concentration in plasma and the EES
for three different time instants for cases 1, 2 and 3, respectively. Our results show that
the pharmacokinetic rates are higher around the tumor region agreeing with the fact that
permeability increases around the tumor region due to compromised capillaries of tumor
vessels. We also observed that ICG concentrations in plasma and the EES compartments are
higher around the tumors agreeing with the hypothesis that around the tumor region ICG may
act as a diffusible extravascular flow in leaky capillary of tumor vessels.

Using the a priori and a posteriori information on the location, and the size of the tumors,
we plotted an ellipse (or a circle) to identify the approximate location and size of the tumor
in the pharmacokinetic-rate images. We note that the radii of the ellipses were chosen large
enough to include the tumor boundaries. Figures 6(a), 7(a) and 8(a) present the kin images
with approximate tumor location and size for cases 1, 2 and 3, respectively. The consistency
of the bright regions in the kin images, and circular/elliptical regions drawn based on the a
priori and a posteriori information shows that the pharmacokinetic-rate images may provide
good localization of tumors.
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Figure 13. ICG concentration images in plasma for case 3 for (a) 246.4th, (b) 378.4th and
(c) 510.4th s.

Table 3. Mean and standard deviation of pharmacokinetic rates for the tumor region and outside
the tumor region.

kin (sec−110−2) kout (sec−110−2) kelm (sec−110−3)

Inside Outside Inside Outside Inside Outside

Case 1 2.14 ± 0.018 0.73 ± 0.011 1.24 ± 0.069 0.43 ± 0.013 4.11 ± 0.057 3.87 ± 0.012
Case 2 2.92 ± 0.076 1.14 ± 0.052 1.58 ± 0.051 0.65 ± 0.036 3.94 ± 0.081 4.12 ± 0.047
Case 3 6.87 ± 0.093 3.06 ± 0.015 4.96 ± 0.048 1.66 ± 0.072 4.49 ± 0.056 4.46 ± 0.081

The histograms of kin and kout images for the tumor region (as indicated by
circular/elliptical regions) and outside the tumor region are shown in figures 15(a)–(c) and
figures 16(a)–(c), respectively. Note that all nonzero voxels outside the elliptical region
constitute ‘outside the tumor region’. The solid curves in figures 15 and 16 show the Gaussian
fit. The histograms and their Gaussian fits in figures 15 and 16 show that the mean and the
standard deviation of kin and kout values are different for the tumor and outside the tumor region.
Table 3 tabulates the mean values (± spatial standard deviation) of the pharmacokinetic rates
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Figure 14. ICG concentration images in the EES for case 3 for (a) 246.4th, (b) 378.4th and
(c) 510.4th s.

Table 4. Bulk pharmacokinetic rates extracted from the entire breast tissue.

kin (sec−110−2) kout (sec−110−2) kelm (sec−110−3)

Case 1 0.84 ± 0.013 0.62 ± 0.017 3.66 ± 0.042
Case 2 2.01 ± 0.022 0.83 ± 0.012 4.01 ± 0.054
Case 3 4.06 ± 0.072 3.36 ± 0.051 4.37 ± 0.052

for the tumor region and outside the tumor region for all three cases. The pharmacokinetic
rates are higher for case 3 (invasive ductal carcinoma), for both the tumor region and outside
the tumor region as compared to case 2 (adenocarcinoma). Similarly, the kinetic rates are
higher for case 2 (adenocarcinoma), as compared to case 1 (fibroadenoma) for both the tumor
region and outside the tumor region. This observation shows that high mean values of kin and
kout may be indicative of tumor aggressiveness.

To understand the value of pharmacokinetic rate imaging as compared to the bulk
pharmacokinetic rate analysis, we averaged the concentration images spatially, and obtained
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Figure 15. The histograms of kin for (a) case 1, (b) case 2, (c) case 3 for the tumor region (light
gray) and outside (blue/dark gray) the tumor region (as indicated by circular/elliptical regions).
The solid lines in figures show the Gaussian fit.

a bulk concentration value for each time instant. We then formed a time curve for the bulk
ICG concentrations. Next, we fit the two-compartment model to the resulting time curves and
estimated the bulk pharmacokinetic rates. Table 4 tabulates the bulk pharmacokinetic rates
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Figure 16. The histograms of kout for (a) case 1, (b) case 2, (c) case 3 for the tumor region (light
gray) and outside (blue/dark gray) the tumor region (as indicated by circular/elliptical regions).
The solid lines in figures show the Gaussian fit.

for each patient. To compare the bulk rates with spatially resolved rates, in figures 17 and
18, the bulk pharmacokinetic rates are overlaid on the histograms of the pharmacokinetic rate
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Figure 17. Solid lines (blue) shows bulk kin rates for (a) case 1, (b) case 2, (c) case 3 together with
the histogram fits. The dashed (red) line indicates the Bayesian minimum error classifier threshold.

images. The dotted line shows the Bayesian minimum error classifier threshold (the value
corresponding to the intersection of the histograms) (Fukunaga 1990) for each case. We see
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Figure 18. Solid lines (blue) shows bulk kout rates for (a) case 1, (b) case 2, (c) case 3 together
with the histogram fits. The dashed (red) line indicates the Bayesian minimum error classifier
threshold.

that for case 1, the bulk rates of kin and kout are both classified as healthy tissue (outside the
tumor region). For case 2, kin is classified as cancerous tissue (in the tumor region) and kout is
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classified as healthy tissue. Similarly for case 3, kin is classified as healthy and kout is classified
as cancerous tissue. This indicates that spatially resolved rates may provide more consistent
and superior information than the bulk rates.

5. Conclusion

In this study, we presented a method of forming pharmacokinetic-rate images and reported
pharmacokinetic rate images of ICG for three patients with breast tumors. To form
pharmacokinetic rate images, we first obtained a sequence of ICG concentration images using
the differential diffuse optical tomography technique. We next employed the two-compartment
model, and estimated the pharmacokinetic rates and concentrations in each compartment for
each voxel using the EKF framework. We have shown in our prior work (Alacam et al 2006)
that the EKF framework has a number of advantages in pharmacokinetic rate estimation, some
of which include robust estimation in the presence of measurement noise and dynamic model
uncertainties.

We formed the pharmacokinetic rate images using the in vivo data obtained from three
patients with breast tumors. We also obtained bulk pharmacokinetic rates for each patient.
Both spatially resolved and bulk rates show that high values of kin and kout may be indicative
of tumor aggressiveness. Along with the pharmacokinetic rates, we also estimated the ICG
concentrations in plasma and EES compartments. We observed that ICG concentrations in
plasma and the EES compartments are higher in the tumor region agreeing with the hypothesis
that around the tumor region ICG may act as a diffusible extravascular flow in leaky capillary
of tumor vessels.

Comparison of spatially resolved and bulk ICG pharmacokinetic rates show that ICG
pharmacokinetic imaging may provide more consistent and superior information than bulk
ICG pharmacokinetic rates.

While the available patient data are limited to perform a full scale receiver operating
characteristic study, clearly, pharmacokinetic rate imaging provides a new tool to investigate
and improve breast cancer diagnosis, staging, and treatment monitoring. This includes
extraction of new quantitative features from ICG pharmacokinetic rate images, within patient
comparison of these features, and statistical analysis of spatial distribution of pharmacokinetic
rates. We leave for future work to collect sufficient number of patient data, and to fully
investigate the value of ICG pharmacokinetic rate imaging for breast cancer diagnosis, staging,
and treatment monitoring.
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