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a b s t r a c t

The nonlinear Diffuse Optical Tomography (DOT) problem involves the inversion of the
associated coefficient-to-measurement operator, which maps the spatially varying optical
coefficients of turbid medium to the boundary measurements. The inversion of the
coefficient-to-measurement operator is approximated by using the Fréchet derivative of
the operator. In this work, we first analyze the Born expansion, show the conditions which
ensure the existence and convergence of the Born expansion, and compute the error in
the mth order Born approximation. Then, we derive the mth order Fréchet derivatives
of the coefficient-to-measurement operator using the relationship between the Fréchet
derivatives and the Born expansion.

© 2010 Published by Elsevier Ltd

1. Introduction

Diffuse Optical Tomography (DOT) in near infrared light is to determine the spatially resolved optical properties of a
turbid medium from boundary measurements. The propagation of light is modeled by the photon diffusion equation in the
frequency domain as follows [1]:

−∇ · (κ∇Φ)+

(
µa +

iω
c

)
Φ = q inΩ, (1.1a)

Φ + 2aν · (κ∇Φ) = 0 on ∂Ω, (1.1b)

where Ω is a Lipschitz domain in Rn, n = 2, . . ., ∂Ω is its boundary, c is the speed of light, q is the source term, ω is the
angular frequency of the source q, ν is the unit outward normal vector on the boundary, Φ is the photon density function,
and µa, µ′s, and κ =

1
3(µa+µ′s)

are the absorption, reduced scattering, and diffusion coefficients, respectively. The constant a
accounts for the refraction index mismatch at the boundary and we assume that a is a constant and κ, µa, and µ′s are scalar
functions satisfying

0 < L ≤ κ, µa, a ≤ U, (1.2)

for some positive constants L and U .
Note that there are various definitions of the diffusion coefficient κ [2,3]. In this paper, we have followed the definition

in [1].
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For notational convenience, let

µ = (κ, µa). (1.3)

Let us define coefficient-to-solution operator as

Ψ (µ) = Φ. (1.4)

The inverse DOT problem is formulated as the inversion of the associated coefficient-to-measurement operatorΓ , which
maps the coefficients of the diffusion equation µ to the boundary measurements Γ (µ) = ∆(Φ) = ∆(Ψ (µ)), where∆(Φ)
can be eitherΦ|∂Ω (Born type) or log(Φ|∂Ω)(Rytov type) [1]. Thus, for the given boundary measurement Υ , the inverse DOT
problem is to solve

Γ (µ) = Υ (Φ), (1.5)

or equivalently to solve the following minimization problem

min
µ∈A
‖Γ (µ)− Υ ‖B , (1.6)

for appropriate normed spacesA andB. For the study of the unique determination of µ, see [4–6].
Let µ0 be an initial guess for µ, then (1.5) is formally changed into

Υ − Γ (µ0) = Γ ′(µ0)(δµ)+
1
2!
Γ ′′(µ0)(δµ)2 + · · · , (1.7)

where δµ = µ0 − µ and Γ ′,Γ ′′, . . . are called the Fréchet derivatives of Γ .
Therefore, the inverse DOT problem is to find δµ by solving the nonlinear problem (1.7). Whereas, since (1.7) is

represented by Υ − Γ (µ0) = Γ ′(µ0)(δµ) + O(‖δµ‖2B), by neglecting higher order terms, we have a linearized inverse
DOT problem to find a linear approximation δµL of δµ such that

Υ − Γ (µ0) = Γ ′(µ0)(δµL). (1.8)

Therefore, computing the Fréchet derivatives of the coefficient-to-measurement operator is an integral part for linearized
and nonlinear DOT imaging. And, by definition, the Fréchet derivative of the coefficient-to-measurement operator Γ are
closely related with the Fréchet derivative of the coefficient-to-solution operator Ψ , which will be addressed in detail in
Section 4.2. The first order Fréchet derivative is used in (1.8), and to solve the nonlinear problem (1.7), the analysis for the
higher order Fréchet derivatives are needed [7].
The following questions have to be addressed for the Eq. (1.7) to be meaningful:

• Do the Fréchet derivatives Γ ′,Γ ′′,Γ ′′′, . . . (or Ψ ′,Ψ ′′,Ψ ′′′, . . .) exist? And what is appropriate normed spaces for the
domain and codomain of Γ (or Ψ ) for the Fréchet derivatives of Γ (or Ψ ) exist?
• What are the conditions on δµ for the series expansion in the right hand side of (1.7) to converge to the left hand side
of (1.7)?
• What is the approximation error between the finite series approximation of the right hand side of (1.7) and the left hand
side of (1.7)?

We address the above questions by showing that the mth order Fréchet derivative of Ψ is the same as m! times the mth
order term in the Born expansion. Note that the Born expansion is the representation of the perturbed photon density by
the unperturbed photon density and the perturbation in the optical coefficients.
To explain the Born expansion in detail, assume that µ is perturbed into µ̃ with µ̃ = µ + δµ, and δκ = 0 in some

neighborhood of ∂Ω . Let the solution of (1.1) for the optical coefficients µ̃ be Φ̃ . Then, we get the following equations:

−∇ · (κ∇Φ̃)+

(
µa +

iω
c

)
Φ̃ = q+∇ · (δκ∇Φ̃)− δµaΦ̃ inΩ, (1.9a)

Φ̃ + 2aκ
∂Φ̃

∂ν
= 0 on ∂Ω. (1.9b)

The solution of (1.1),Φ , is represented by the following integral equation:

Φ(r) =
∫
Ω

R(r, r ′)q(r ′)dr ′, (1.10)

where R is the Robin function. The detailed definition of the Robin functionwill be treated in Section 2. Likewise, the solution
of (1.1), Φ̃ , is represented by the following equation:

Φ̃(r) =
∫
Ω

R(r, r ′)[q(r ′)+∇ · (δκ(r ′)∇Φ̃(r ′))− δµa(r ′)Φ̃(r ′)]dr ′. (1.11)
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Using (1.10), (1.11), and by integration by parts, we obtain

Φ̃(r)− Φ(r) = (RΦ̃)(r), (1.12)

where

(RΨ )(r) = R(δµ)Ψ (r) = (R1Ψ )(r)+ (R2Ψ )(r),

(R1Ψ )(r) = R1(δµa)Ψ (r) = −
∫
Ω

δµa(r ′)R(r, r ′)Ψ (r ′)dr ′,

(R2Ψ )(r) = R2(δκ)Ψ (r) = −
∫
Ω

δκ(r ′)∇R(r, r ′)∇Ψ (r ′)dr ′.

Using (1.12) recursively, we obtain the formal Born expansion:

Φ̃ = Φ +RΦ̃

= Φ +RΦ +R2Φ̃

= · · ·

= Φ +RΦ +R2Φ + · · · +RmΦ +Rm+1Φ̃

= Φ +RΦ +R2Φ + · · · . (1.13)

The following questions have to be addressed for the Born expansion to be meaningful:

• What is the precise definition of the Robin function, and how singular is the Robin function around the source point?
• What are the conditions on the input function q for the Eq. (1.10) to be valid?
• For a given Ψ , isRm defined for eachm? What is the domain and codomain normed spaces (possibly Banach spaces) of
the operatorRmΨ ?
• What are the conditions on δµ for the infinite order Born expansion (the last expansion in (1.13) to converge)?
• How large is the error between Φ̃ and themth order Born approximation? How does that error depend onΦ ,µ and δµ?

These questions will be addressed in Sections 2 and 3 and will be used to solve the questions for the Fréchet derivatives.
It is evident that the formal Taylor expansion in (1.7) and the Born expansion have the same structures, and the mth order
Fréchet derivatives of Γ and the mth order terms in the Born expansion have the same order of magnitude O(‖δµ‖mB). In
this paper, we solved the questions regarding the Fréchet derivatives by analyzing the corresponding questions in the Born
expansion stated above and then showing that the mth order Fréchet derivatives of Ψ are the same as m! times the mth
order terms in the Born expansion, as in the following main theorem of this paper:

Theorem 1.1. Let us define the coefficient-to-solution operator Ψ : G→ B where normed space G and B are defined as follows:

G = L∞(Ω)× L∞(Ω), B = W 1,p(Ω), (1.14a)

G = L∞(Ω), B = W 1,p(Ω), when δµa = 0, (1.14b)

G = L∞(Ω), B = Lp(Ω), L∞(Ω),W 0,∞r,2 (Ω), or ,W 0,∞r,log(Ω), when δκ = 0, (1.14c)

where the definition of the normed spaces will be given in Section 2. Then, the mth order Fréchet derivatives of Ψ is contained in
BL(Gm, B), or the space of the bounded linear operators from Gm to B, and are given by

∂mΨ

∂µm
= m!RmΦ, (1.15a)

∂mΨ

∂µka∂κ
m−k
= m!Rk

1R
m−k
2 Φ. (1.15b)

Even though the first order approximation of the Born expansion is widely used in the heuristic derivation of the first
order Fréchet derivative (which was mentioned in [8]) in DOT, there are no studies regarding the derivation of Fréchet
derivative as bounded linear operator between appropriate normed spaces in DOT [8,9], as far as we know. Thus, the present
paper is the first paper deriving themth order Fréchet derivative using the systematic study about the relationship between
the Fréchet derivatives and the Born expansion.
A number of studies on the derivation of the Fréchet derivatives have been reported in inverse acoustic scattering

problem [10–13] and in electrical impedance tomography [14,15]. In these studies, Fréchet derivatives are either given
by the solution of partial differential equations using weak formulation [10,11,14,12] or by the solution of integral equation
systems [15,13]. Although these studies, for example [10], are potentially applicable to DOT, most researchers in DOT use
the perturbation method and the first order Born approximation to approximate the first order Fréchet derivative [1]. The
heuristic derivation of the first order Fréchet derivative is straightforward; however, the higher order terms in the Born
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expansion are usually discarded regardless of the relative magnitude of the higher order terms with respect to the first
order terms. Ye et al. [9] derived the Fréchet derivative of the coefficient-to-measurement operator using the perturbation
method without using the first order Born approximation. However, in that work, the Robin function is assumed to be H1
bounded, which is not valid. In contrast, in our work, we showed and used the argument that the convolution of the Robin
function and any H1 function is H1 bounded [16,17]. Dierkes et al. [8] derived the first order Fréchet derivative for DOT,
where a Dirichlet boundary problem with zero source is considered for the derivation, which is different from the model
used in this paper.
The approach in this paper used in the derivation of the Fréchet derivatives differs from the approaches mentioned

above [1,10,8,11,14,15,12,13,9]. We showed that the mth order Fréchet derivative is equal to the mth order term in the
Born expansion up to constant multiples, whereas other approaches [10,8,11,14,15,12,13] do not provide any higher order
derivatives. The approach using Born expansion for the derivation of the Fréchet derivative has several advantages over the
previous approaches. First, the computation of themth order Fréchet derivative is easier than the previous approaches, since
we showed that the derivative is equal to m! times the mth term in the Born expansion (1.15). Although Born expansion is
well known in quantum and acoustic scattering and DOT [10,18–21,7,22–24], to the best of our knowledge, there has not
been a study to relate the higher order Fréchet derivatives to the terms in Born expansion. Second, the recursive structure
of the Born expansion makes it possible to bound themth order Fréchet derivative in a variety of normed spaces by themth
multiple of the upper bound of the first order Fréchet derivative. Third, by using the relation between Fréchet derivatives
and Born expansion, we can show that the inclusion of the higher order Fréchet derivatives improves the resolution of the
reconstructed optical coefficients of DOT [7] and the upper bounds of the higher order Fréchet derivatives can be utilized in
the convergence of the numerical DOT reconstruction algorithms [25] (See Section 4.3).
Studies on Born expansion were developed in the area of quantum scattering [26–31]. The analysis, in this paper, for

the validity of the Born expansion and the error in the Born expansion differs from the analysis in quantum and acoustic
scattering [10,26,18–22,29–31,23,24] in the following aspects. First, in these studies, the scattered wave is considered to be
in an unbounded domain with spatially constant background properties of interest. Thus, the associated Green’s function
is explicitly known. However, we consider the Robin boundary condition for arbitrarily bounded domains and spatially
varying background optical coefficients. Therefore, the existence, singularities, and other properties of the Robin function
are not known a priori. Although the Green’s function of the diffusion equation in specific geometries with specific optical
coefficients is known analytically [32,7,33,34], to the best of our knowledge, studies on the existence and singularities of
the Robin function for arbitrary geometries in which the Robin function is not known analytically have not been reported.
Thus, we studied the properties about singularity of the Robin function using [16,17], based on the definition of the Robin
function given in [35]. Second, in quantum and acoustic scattering theory, only the perturbation in the refractive index,
which corresponds to the absorption coefficient in DOT, has been considered. In this work, we consider the perturbation
with respect to both the absorption and reduced scattering coefficients. We note that the analysis of the Born expansion
for the reduced scattering coefficient requires more sophisticated mathematical machinery as compared to the analysis
of the Born expansion for the absorption coefficient. This complication results from the presence of the gradients of the
Robin function and the unperturbed photon density in the Born expansion for the reduced scattering coefficient. Third, we
establish a relationship between the Born expansion and the Fréchet derivatives of the coefficient-to-solution operator.
The rest of our paper is organized as follows: In Section 2, we provide amathematical formulation of DOT. The definition,

existence, and singular properties of the Robin function are given in Section 3. The validity of the Born expansion and
the error analysis due to the mth order Born approximation is given in Section 4. In Section 5, we show that the Fréchet
derivatives of the coefficient-to-solution operator are given by the terms in the Born expansion. Section 6 summarizes our
results to make a conclusion. The paper concludes with two appendices providing proofs for Lemmas 2.2 and 3.6.

2. The Robin function

To explain the definition of the Robin function,wewill introduce Sobolev spaces andweighted Sobolev spaces. To simplify
our notation, for the rest of this paper, we will dropΩ from the definition of the function spaces. For example, we will use
L1 instead of L1(Ω) for integrable functions onΩ . Let us define multi-index β = (β1, β2, . . . , βn), |β| = β1+β2+· · ·+βn,
and Dβφ = ∂ |β|

∂β1 r1 ∂β2 r2 ··· ∂βn rn
for nonnegative integers βi, i = 1, . . . , n.

The Sobolev spaces and associated norms is as follows [36]:

Lp =

{
φ ∈ L1| ‖φ‖Lp :=

(∫
Ω

|φ|p
)1/p
≤ ∞

}
,

W k,p =

φ ∈ Lp| ‖φ‖W k,p :=
(

k∑
l=0

∑
|β|=l

∥∥Dβφ∥∥pLp
)1/p
≤ ∞

 ,
where k = 1, 2, . . . , p ≥ 1 and

L∞ = {φ ∈ L1| ‖φ‖L∞ = sup |φ| ≤ ∞},
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W k,∞ = {φ ∈ L∞| ‖φ‖W k,∞ = max
l=0,...,k

max
|β|=l

∥∥Dβφ∥∥L∞ ≤ ∞}.
It is well known that W k,p and W k,∞ are Banach spaces and W k,∞ ⊂ W k,p ⊂ W k,q ⊂ W k,1 for p ≥ q ≥ 1, since Ω is
bounded. W 0,p := Lp is called the Lebesgue space. In particular, W k,2 is a Hilbert space and denoted by W k,2 = Hk. Hk is
defined for noninteger and nonpositive values, such as H−1(Ω) or H1/2(∂Ω). For the precise definition, see [36].
The weighted Sobolev spacesW k,∞r0,α andW

k,∞
r0,log
, for r0 ∈ Ω , a real number α, and the associated norms are given by:

W k,∞r0,α = {φ| ‖φ‖W k,∞r0,α
:= max

l=0,...,k
max
|β|=l

∥∥|r − r0|n−α+lDβφ∥∥L∞ <∞}, (2.16a)

yr0,log =

{
φ| ‖φ‖W k,∞r0,log

:= max

(
max
i=1,...,n

∥∥∥∥∂φ∂ri
∥∥∥∥
W k−1,∞r0,n

,

∥∥∥∥ φ(·)

log(2d/| · −r0|)

∥∥∥∥
L∞

)
<∞

}
, (2.16b)

where d is the maximum distance between two points contained inΩ .W k,∞r0,α andW
k,∞
r0,log

are also Banach spaces. For details
about the weighted Sobolev spaces, see [37].
The followings hold for the Sobolev and weighted Sobolev spaces defined above:

W k,∞ ⊂ W k,∞r0,log,

W k,∞r0,α 6⊆ W
k,1, if α − k ≤ 0,

W k,∞ ⊂ W k,∞r0,α ⊂ W
k,1, if α − k > 0,

W k,∞ = W k,∞r0,α , if α − k ≥ n

for k = 0, 1, 2, . . ..
Let us define the partial differential operatorsM andN on H1(Ω) and H1/2(∂Ω), respectively, as follows:

MΨ = −∇ · (κ∇Ψ )+

(
µa +

iω
c

)
Ψ for Ψ ∈ H1(Ω), (2.17a)

Nψ = ψ + 2aν · (κ∇ψ) for ψ ∈ H1/2(∂Ω). (2.17b)

Then, (1.1) is represented by

MΦ = q inΩ, (2.18a)
NΦ = 0 in ∂Ω. (2.18b)

If there is a need to stress the operators dependence on a special position r , a singular point for example, we will use the
notationMr andNr instead ofM andN , respectively.
The source term q in (1.1) can be any distribution function by which the solution of (1.1) is meaningful. In this paper,

we will cover the general case of q containing two important cases (i) q ∈ H−1, and (ii) q is a Dirac delta function,
i.e. q = δ(· − r0), r0 ∈ Ω . It is well known that if q ∈ H−1, then there is a unique weak solution Φ ∈ H1 satisfying
(1.1) [38]. The solution Φ of (1.1) when q = δ(· − r0) is called the Robin function denoted by R(·, r0). The Dirac delta
function is not contained in H−1, since it is contained in Hs if and only if s < − n2 by [39]. Thus, we cannot conclude that
the Robin function is contained in H1. Rigorous definitions of the Dirac delta function and the Robin function requires use of
distribution theory [40,41]. To avoid technicalities involved in distribution theory, we shall follow the concepts in [35] and
use Levi functions to develop a rigorous definition of the Robin function.
The solution of (2.17a) when q(·) = δ(· − r0) is called the Green, Neumann, or Robin function, depending on whether

the operator N is Φ, κ ∂Φ
∂ν
, or (2.17b), respectively. Sometimes the Green, Neumann, and Robin functions are simply called

the Green function without any regard to the boundary conditions. In this paper, however, we will use the term ‘‘Robin
function’’.
First, we introduce the following function H which is associated with the definition of Levi functions and the Robin

function.

H(r, r ′) =


1

(n− 2)ωnκ(r ′)

∣∣r − r ′∣∣2−n n ≥ 3,

1
ω2κ(r ′)

log
(

2d
|r − r ′|

)
n = 2,

(2.19)

where r, r ′ ∈ Rn, ωn is the hypersurface area of the unit sphere in Rn, and d = supr1,r2∈Ω |r1 − r2|. The function H satisfies

∇r · (κ(r ′)∇rH(r, r ′)) = 0 for r ∈ Ω \ {r ′}. (2.20)
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2.1. The properties of the function H

In this subsection, the properties of the function H is presented using the Sobolev and weighted Sobolev spaces. And this
properties will be used in the derivation of the Robin function in the next subsection.
Noting that H(r ′, ·) has singularities only at r ′ with order O(| · −r ′|2−n), we get the following properties of the function

H(·, r ′):

H(·, r ′) ∈ C∞(Rn \ {r ′}), (2.21a)

H(·, r ′) ∈ W k,p if and only if 1 ≤ p <
n

n+ k− 2
, (2.21b)

H(·, r ′) ∈ W 2,∞r ′,2 , n = 3, 4, . . . , (2.21c)

H(·, r ′) ∈ W 2,∞r ′,log, n = 2, (2.21d)

∂H(·, r ′)
∂ri

,
∂H(r ′, ·)
∂ri

∈ W 0,∞r ′,1 , i = 1, . . . , n, (2.21e)

∂2H(·, r ′)
∂ri∂rj

,
∂2H(r ′, ·)
∂ri∂rj

∈ W 0,∞r ′,0 , i, j = 1, . . . , n. (2.21f)

(2.21b) can be written in more detail as follows:

H(·, r ′) ∈ Lp if and only if 1 ≤ p <∞when n = 2, (2.22a)

H(·, r ′) ∈ W 1,p if and only if 1 ≤ p < 2 when n = 2, (2.22b)

H(·, r ′) ∈ Lp if and only if 1 ≤ p < 3 when n = 3, (2.22c)

H(·, r ′) ∈ W 1,p if and only if 1 ≤ p <
3
2
when n = 3, (2.22d)

H(·, r ′) 6∈ W 2,p for n = 2, 3, . . . . (2.22e)

(2.21c)–(2.21f) is proved by the following computations:

‖H(·, r)‖W0,∞r,2
, ‖H(r, ·)‖W0,∞r,2

≤
1

max(1, n− 2)ωnL
, (2.23a)∥∥∥∥∂H(·, r ′)∂ri

∥∥∥∥
W0,∞
r′,1

≤
1
ωnL

, (2.23b)

∥∥∥∥∂2H(·, r ′)∂ri∂rj

∥∥∥∥
W0,∞
r′,0

≤
n
ωnL

, (2.23c)

for all i, j = 1, . . . , n. For (2.23a), the assumption (1.2) is used. If L < | ∂κ(r)
∂ri
| < U is assumed along with (1.2), then∥∥∥∥∂H(r ′, ·)∂ri

∥∥∥∥
W0,∞
r′,1

≤

(
1+

U
max(1, n− 2)L

)
1
ωnL

, (2.24)

and further, if L < | ∂
2κ(r)
∂ri∂rj
| < U is assumed along with the above conditions, then∥∥∥∥∂2H(r ′, ·)∂ri∂rj

∥∥∥∥
W0,∞
r′,0

≤

(
n+

2U
L
+
3U2

L2

)
n
ωnL

. (2.25)

2.2. Levi function and Robin function

In this subsection, we provide precise definitions of the Robin function and investigate the properties of the Robin
function. To do that, the definitions and properties of the Levi function will be introduced following the approaches
in [35].

Definition 2.1 (Levi Function). A function L(r, r ′), r, r ′ ∈ Ω is called a Levi function if L(·, r ′) ∈ C2(Ω \ {r ′}), and L(·, r ′) −
H(·, r ′) ∈ W 2,∞r ′,2+λ for some constant λ > 0, where λ is the order of the Levi function.
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Note that H(r, r ′) is a Levi function and H(r ′, r) is also a Levi function of order 1 if κ ∈ W 2,∞. Thus, if L(r, r ′) is a Levi
function of order λ, then L(r ′, r) a Levi function of order min(λ, 1). Before introducing the properties of the Levi function in
the following lemmas, let us state some known results.
Let K(r, ·) ∈ W 0,∞r,α , α > 0 and

u(r) =
∫
Ω

K(r, r ′)φ(r ′)dr ′. (2.26)

If K is a Levi function, then α ≤ 2 for n ≥ 3 and α < 2 for n = 2, and if K is a derivative of a Levi function, α ≤ 1. However,
if K is a second derivative of a Levi function, we must choose α ≤ 0 and hence cannot use (2.27).
Then the following facts are known [17]:

• There exists a constant C1 = C1(α, p, q) such that:

‖u‖Lq ≤ C1(α, p, q) sup
r∈Ω
‖K(r, ·)‖W0,∞r,α ‖φ‖Lp for 0 < α <

n
p
≤ α +

n
q
. (2.27)

• The maximum value of q in (2.27) is taken as follows :

‖u‖
L
np
n−αp
≤ C1(α, p) sup

r∈Ω
‖K(r, ·)‖W0,∞r,α ‖φ‖Lp for p <

n
α
, (2.28a)

‖u‖
L
n
ε
≤ C̃1(ε)dε sup

r∈Ω
‖K(r, ·)‖W0,∞r,α−ε

‖φ‖Lp for p =
n
α
, (2.28b)

where ε is some constant between 0 and α, C1(α, p) = C1
(
α, p, np

n−αp

)
, and C̃1(ε) = C1(α − ε, nα ,

n
ε
).

• We also have the following inequality:

‖u‖C0 ≤ C2(p) sup
r∈Ω
‖K(r, ·)‖W0,∞r,α ‖φ‖Lp , for p >

n
α
, (2.29)

where C2(p) is a constant depending on p.

• When K = ∂2H
∂ri∂rj

, there exists a constant C3 [16] such that:

‖u‖Lp ≤
C3
L
‖φ‖Lp . (2.30)

By summing up the results (2.27)–(2.29), the integral operator defined in (2.26) is a bounded linear operator fromW 1,p
intoW 1,p.
Although the constants in this paper may depend on n, we will neglect this dependence on n unless it is needed. Using

(2.27) and (2.30), we obtain the following lemma about the properties of the Levi function.

Lemma 2.2. Let L(·, r ′) be a Levi function of order λ > 0 and assume κ ∈ C0,λ and ∂Ω ∈ C1,λ. Let ψ ∈ Lp, where p ≥ 1 and
define v as

v(r) =
∫
Ω

L(r, r ′)ψ(r ′)dr ′. (2.31)

Then, ∂v
∂ri
, where i = 1, . . . , n are absolutely continuous on one-dimensional line parallel to the ri-axis, ∂

2v
∂ri∂rj
∈ Lp, i, j = 1, . . . , n,

and the following bounds hold:

‖v‖Lp ≤ C1

(
min

(
n
p
, 2
)
, p, p

)
sup
r∈Ω
‖L(r, ·)‖W0,∞r,2

‖ψ‖Lp n ≥ 3, (2.32a)

‖v‖Lp ≤ C1

(
min

(
2
p
, 2
)
− ε, p, p

)
sup
r∈Ω
‖L(r, ·)‖W0,∞r,2

‖ψ‖Lp n = 2, 0 < ε < 2, (2.32b)∥∥∥∥ ∂v∂ri
∥∥∥∥
Lp
≤ C1

(
min

(
n
p
, 1
)
, p, p

)
sup
r ′∈Ω

∥∥∥∥∂L(r ′, ·)∂ri

∥∥∥∥
W0,∞
r′,2

‖ψ‖Lp i = 1, . . . , n, (2.32c)

∥∥∥∥ ∂2v∂ri∂rj

∥∥∥∥
Lp
≤

[
C1(λ, p, p) sup

r ′∈Ω

∥∥∥∥∂2(L− H)(r ′, ·)∂ri∂rj

∥∥∥∥+ C3L + 1nL
]
‖ψ‖Lp i, j = 1, . . . , n, (2.32d)
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where C1 and C2 are introduced in (2.27) and (2.29), respectively. Furthermore, the following equations hold:

∂v

∂ri
(r) =

∫
Ω

∂L
∂ri
(r, r ′)ψ(r ′)dr ′, (2.33a)

∂2v

∂ri∂rj
(r) = −

1
nκ(r)

ψ(r)+ lim
ε→0

∫
Ω\B(x,ε)

∂2L
∂ri∂rj

(r, r ′)ψ(r ′)dr ′, (2.33b)

Mrv(r) = −ψ(r)+
∫
Ω

MrL(r, r ′)ψ(r ′)dr ′. (2.33c)

If v ∈ W 2,p, then

v(r) =
∫
Ω

v(r ′)Mr ′L(r, r ′)−Mv(r ′)L(r, r ′)dr ′ +
∫
∂Ω

(N v(r ′)L(r, r ′)− v(r ′)NrL(r, r ′))dS(r ′). (2.34)

Proof. See Appendix A. �

Definition 2.3 (Robin Function). A Levi function R of order λ > 0, which is a solution of the equations

MrR(r, r ′) = 0 for r ∈ Ω \ {r ′}, (2.35a)

NrR(r, r ′) = 0 for r ∈ ∂Ω \ {r ′}, (2.35b)

is called a Robin function. Note thatMr andNr are the complex conjugate operators forMr andNr , respectively.

A few existence theorems of Robin functions can be found in Section 19 and Section 22 in [35]. For the rest of the paper,
we assumed that the Robin function exists forΩ, κ , andµa. Note that if the Robin function exists, it is unique. A Levi function
which satisfies (2.35a) but not necessarily (2.35b) is called a fundamental solution. If κ ∈ C2,λ and µa ∈ C0,λ, there exists a
fundamental solution forM inΩ by Theorem 19.VIII and Section 22 in [35]. However, even though fundamental solutions
exists, these solutions are not unique. For example, H is a fundamental solution for (1.1) when µa = 0, ω = 0, and δκ = 0.
The properties of the Robin function is presented in the next Lemma 2.4.

Lemma 2.4. Let R(·, r ′) be a Robin function of order λ > 0, κ ∈ C0,λ, and ∂Ω ∈ C1,λ. Let ψ ∈ Lp, where p ≥ 1 and v be given
by

v(r) =
∫
Ω

R(r, r ′)ψ(r ′)dr ′. (2.36)

Then (2.32)–(2.34) hold, replacing the Levi function L with the Robin function R. Furthermore, we get the following equations for
v with the Robin function as the kernel:

Mrv(r) = −ψ(r), (2.37a)

v(r) = −
∫
Ω

R(r, r ′)Mv(r ′)dr ′ +
∫
∂Ω

R(r, r ′)N v(r ′)dS(r ′), if v ∈ W 2,p, (2.37b)

v(r) =
∫
Ω

R(r, r ′)q(r ′)dr ′, if v satisfies (2.18) and q ∈ Lp, (2.37c)

R(r, r ′) = R(r ′, r). (2.37d)

Proof. (2.32), (2.33), and (2.34) hold because a Robin function is also a Levi function. (2.37a) is derived by using the definition
of the Robin function and (2.33c). Using (2.34), we derive (2.37b) and (2.37c). (2.37d) is induced from the fact that the adjoint
operator ofM is the complex conjugate ofM and Theorem 10.I in [35]. �

3. Born expansion

In this section, we define Born expansion in the normed spaces introduced in Section 2.1, and discuss the validity of Born
expansion and compute the error between the infinite order Born expansion and the finite order Born approximation using
the inequalities developed in Section 2.2. In Section 3.1, we will analyze the Born expansion when both the absorption(µa)
and the diffusion(κ) coefficients are perturbed. In Section 3.2.,we analyzed the Born expansionwhen the diffusion coefficient
is fixed and only the absorption coefficient is perturbed.
Note that in the derivation of (1.12), (2.37c) was used. Thus (1.12) holds when Φ̃ ∈ Lp, since H1 ⊂ L2 and the Robin

function is contained in Lp for all p ≥ 1, (n = 2) and 1 ≤ p < n
n−2 , (n ≥ 3). (1.12) holds at least for the Robin function and

the H1 functions.
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The formal expansion (1.13) exists only if RkΦ , where k = 1, . . . ,m is defined. We provide the following definition
related to the definition ofRkΦ , where k = 1, . . . ,m.

Definition 3.1 (mth Order Representation, Infinite Order Representation with Index M). The integral operator R is called to
have anmth order representation

B0 → B1 → B2 → B3 → · · · → Bm. (3.38)

if there are normed spaces Bk, where k = 0, 1, . . . ,m such thatR(Bk−1) ⊂ Bk for all k = 1, . . . ,m. And the operatorR is
called to have an infinite order representation with an indexM

B0 → B1 → B2 → B3 → · · · → BM → BM → · · · , (3.39)

if there areM + 1 normed spaces B0, B1, . . . , BM such thatR(Bk−1) ⊂ Bk for all k = 1, . . . ,M .
IfR hasmth order representation, we define EmΦ and FmΦ as follows:

EmΦ = Φ +RΦ +R2Φ + · · · +Rm−1Φ +RmΦ̃, (3.40a)

FmΦ = Φ +RΦ +R2Φ + · · · +Rm−1Φ +RmΦ. (3.40b)

If the operatorR hasmth order representation, then

E1 = E2 = · · · = Em, EmΦ = Φ̃. (3.41)

by (1.13). IfR has infinite order representation with an indexM , then (3.41) holds for allm ≥ 1. If we define E∞Φ as

E∞Φ = Φ(0)
+ Φ(1)

+ Φ(2)
+ · · · + Φ(m−1)

+ Φ(m)
+ · · · , (3.42)

then E∞Φ ∈ BM and we can easily show that

E∞ = E1 = · · · = Em = · · · , E∞Φ = Φ̃. (3.43)

Further3.2more, if the operatorR has an infinite order representation, we have the following proposition:

Proposition 3.2. Assume that the operator R has an infinite order representation with an index M. If {FmΦ}m=M,M+1,...
converges, the limit is E∞Φ ∈ BM . The necessary and sufficient condition for FmΦ,m = M,M + 1, . . . to converge to E∞Φ is

lim
k→∞

∥∥RM+kΦ̃
∥∥
BM
= 0. (3.44)

The sufficient condition for (3.44) is

‖R‖BM→BM < 1. (3.45)

Proof. Since E∞Φ−FmΦ = Em+1Φ−FmΦ = Rm+1Φ̃ , (3.44) is the necessary and sufficient condition for FmΦ to converge
to E∞Φ . If ‖R‖BM→BM < 1, then∥∥RM+kΦ

∥∥
BM
≤
∥∥Rk

∥∥
BM→BM

∥∥RMΦ
∥∥
BM

≤ ‖R‖kBM→BM

∥∥RMΦ
∥∥
BM
→ 0 as k→∞. � (3.46)

Definition 3.3 (mth Order Born Approximation, (mth Order, Infinite Order) Born Expansion). If R has an mth order
representation, EmΦ and FmΦ defined in (3.40) are called themth order Born approximation andmth order Born expansion,
respectively. If R has an infinite order representation, E∞Φ defined in (3.42) is an infinite order Born expansion. Since
EmΦ = E∞Φ,m ≥ 1 by (3.43), E∞ and Em are just called Born expansion without any discrimination of orders.

Using Proposition 3.2,we investigate the following three questions about Born expansion and Born approximation,which
corresponds to the questions raised in the introduction:

• When does the infinite order Born expansion E∞ exist? In other words, is there an infinite order representation with an
indexM for the operatorR such that

B0 → B1 → B2 → B3 → · · · → BM → BM → · · · , (3.47)

as in (3.39).
• Assume that there exists an infinite order representation with an indexM (3.47) for the operatorR. By Proposition 3.2,
(3.44) and (3.45) are the equivalent condition and the sufficient condition, respectively, for the Born approximations Fm
converge to the Born expansion E∞. Then, what are the conditions on δµ for the operatorR to satisfy (3.45)?
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• Assume that Fm converges to E∞. Then, what is the error between Fm and E∞? In other words, what is the norm bound
of Φ̃(m+1)

= E∞ − Fm?

Although it is possible to compute the error of the Born approximation when E∞ does not exist or Fm does not converge
to E∞, we will only treat the case when E∞ exists and Fm converges to E∞. In the following subsections, we first relateR
with infinite order representation, then we argue about the condition on the optical coefficients for the norm ofR to be less
than 1. Finally, we compute the error in themth order Born approximation and the Born expansion.

3.1. The Born expansion when both the diffusion and absorption coefficients are perturbed

In this subsection, we treat the Born expansion when both the diffusion and absorption coefficients are perturbed. By
Proposition 3.2, we need to define the operator R recursively to define Born expansion, which requires the behavior of
∇R near the singular point. The kernel of the integral operator ∇R1 is the derivative of Robin function, which is a weakly
singular kernel contained in W 0,∞r0,1 . However, the kernel of ∇R2 is the second derivative of the Robin function, which is
classified to hyper singular kernel and the inter integral operator with hyper singular kernel is not necessarily integrable.
Note that the treatment of the integral operator with hyper singular kernels is more difficult as compared to the treatment
of the integral operator with weak singular kernels [42].
To do a quantitative analysis, let us define the following bounds for the Robin function:
S(n) := sup

r∈Ω
‖R(r, ·)‖W1,∞r,2

, n ≥ 3, (3.48a)

S(n) := sup
r∈Ω
‖R(r, ·)‖W1,∞r,log

, n = 2, (3.48b)

T (n) := sup
r∈Ω
‖(R− H)(r, ·)‖W2,∞r,2

. (3.48c)

Lemma 3.4. R1 andR2 are bounded with respect to the W 1,p norm:

‖R1‖W1,p→W1,p ≤ C4 ‖δµa‖L∞ , (3.49a)

‖R2‖W1,p→W1,p ≤ C5 ‖δκ‖L∞ , (3.49b)

where

C4 = S(n)max
(
C1

(
min

(
n
p
, 2
)
, p, p

)
, C1

(
min

(
n
p
, 1
)
, p, p

))
, n ≥ 3, (3.50a)

C4 = S(n)max
(
C1(2− ε, p, p), C1

(
min

(
2
p
, 1
)
, p, p

))
, n = 2, 0 < ε < 2, (3.50b)

C5 = C1(min
(
n
p
, 1
)
, p, p)S(n)+ C1(λ, p, p)T (n) +

C3n2

L
+
n
L
. (3.50c)

Proof. Let ψ ∈ W 1,p, then by (2.32a)–(2.32c),∥∥∥∥∫
Ω

R(r, r ′)δµa(r ′)ψ(r ′)dr ′
∥∥∥∥
Lp
≤ C1(min(n/p, 2), p, p) ‖R(r, ·)‖Lp ‖δµa‖L∞ ‖ψ‖Lp , n ≥ 3, (3.51a)∥∥∥∥∫

Ω

R(r, r ′)δµa(r ′)ψ(r ′)dr ′
∥∥∥∥
Lp
≤ C1(2/p− ε, p, p) ‖R(r, ·)‖Lp ‖δµa‖L∞ ‖ψ‖Lp , n = 2, 0 < ε < 2, (3.51b)∥∥∥∥∫

Ω

∂R(r, r ′)
∂ri

δµa(r ′)ψ(r ′)dr ′
∥∥∥∥
Lp
≤ C1(min(n/p, 1), p, p)

∥∥∥∥∂R(r, ·)∂ri

∥∥∥∥
Lp
‖δµa‖L∞ ‖ψ‖Lp , i = 1, . . . , n. (3.51c)

(3.49a) is derived from (3.51) by defining C4 as in (3.50a) and (3.50b). Using (2.32c), (2.32d), and (2.37d), we obtain∥∥∥∥∫
Ω

∂R(r, r ′)
∂r ′i

δκ(r ′)
∂ψ(r ′)
∂r ′i

dr ′
∥∥∥∥
Lp
=

∥∥∥∥∥
∫
Ω

∂R(r ′, r)
∂r ′i

δκ(r ′)
∂ψ(r ′)
∂r ′i

dr ′
∥∥∥∥∥
Lp

≤ C1(min(n/p, 1), p, p)
∥∥∥∥∂R(r, ·)∂ri

∥∥∥∥
Lp
‖δκ‖L∞ ‖ψ‖W1,p , n ≥ 3, i = 1, . . . , n, (3.52a)∥∥∥∥∫

Ω

∂R(r, r ′)
∂r ′i

δκ(r ′)
∂ψ(r ′)
∂r ′i

dr ′
∥∥∥∥
Lp

≤ C1(2/p− ε, p, p) ‖R(r, ·)‖Lp ‖δκ‖L∞ ‖ψ‖W1,p , n = 2, 0 < ε < 2, i = 1, 2, (3.52b)
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∫
Ω

∂2R(r, r ′)
∂r ′i ∂r

′

j
δκ(r ′)ψ(r ′)dr ′

∥∥∥∥∥
Lp

=

∥∥∥∥∫
Ω

∂2R(r, r ′)
∂ri∂rj

δκ(r ′)ψ(r ′)dr ′
∥∥∥∥
Lp

≤ ‖δκ‖L∞ ‖ψ‖W1,p ·

(
C1

(
min

(
n
p
, 1
)
, p, p

)
S(n)+ C1(λ, p, p)T (n)+

C3n2

L
+
n
L

)
. (3.52c)

Using (3.52) and defining C5 as in (3.50c), we obtain (3.49b). �

Using Lemma 3.4, we state and prove the following results about Born expansion and Born approximation when both
the absorption and reduced scattering coefficients are perturbed.

Theorem 3.5. The integral operator R has an infinite order representation with the index M = 1 as follows:

W 1,p → W 1,p → W 1,p → · · · . (3.53)

If
C4 ‖δµa‖∞ + C5 ‖δκ‖∞ < 1 (3.54)

holds, then E∞Φ exists for the representation given in (3.53) and the mth order Born approximation FmΦ converges to E∞Φ for
Φ ∈ W 1,p. Furthermore, the error between Φ̃ = E∞Φ and Fm−1Φ is given as follows:∥∥Φ̃ − FmΦ∥∥W1,p ≤ (C4 ‖δµa‖∞ + C5 ‖δκ‖∞)m ∥∥Φ̃∥∥W1,p . (3.55)

Proof. From (3.49), we can derive

‖R‖W1,p→W1,p ≤ C4 ‖δµa‖L∞ + C5 ‖δκ‖L∞ . (3.56)

Hence (3.53) holds, and (3.54) is the sufficient condition for the existence of E∞ by Proposition 4.2. (3.55) holds using (3.56)
and the following inequality:

Φ̃ − Fm−1Φ = Φ̃(m)
= RmΦ. � (3.57)

3.2. Born expansion when only the absorption coefficient is perturbed

In this subsection, we will study the Born expansion and the Born approximation when δκ = 0 and δµa 6= 0. Since
R = R1 due to δκ = 0, we do not need to treat the second or first derivatives of the Robin function as the kernel of the
integral operatorR. That is to say, we do not need to handle integral operators with hyper singular kernel.
Before analyzing the Born expansion in the normed spaces in Lp, where p ≥ 1, L∞,W 0,∞r0,logV (n = 2), andW

0,∞
r0,2

(n ≥ 3)
for r0 ∈ Ω , we first state some inequalities:

Lemma 3.6. Let 0 < α1, α2 < n and r1, r2 ∈ Ω , then

(i)
∫
Ω

log(2d/|r1 − r ′|)dr ′ ≤ (log(2)+ 1)ω2d, n = 2, (3.58a)

(ii)
∫
Ω

|r1 − r ′|α1−ndr ′ ≤ ωn
dα1

α1
, (3.58b)

(iii)
∫
Ω

log(2d/|r1 − r ′|) log(2d/|r2 − r ′|)dr ′ ≤ C6ω2d2, n = 2, (3.58c)

(iv)
∫
Ω

|r1 − r ′|α1−n|r ′ − r2|α2−ndr ′,≤ C7(α1, α2)ωn|r1 − r2|α1+α2−n if α1 + α2 < n, (3.58d)

≤ C8(α1, α2)ωn log(2d/|r1 − r2|) if α1 + α2 = n, (3.58e)

≤ C7(α1, α2)ωndα1+α2−n if α1 + α2 > n, (3.58f)

(v)
∫
Ω

|r1 − r ′|α1−n log(2d/|r ′ − r2|)dr ′ ≤ C9(α1)ωndα1 , (3.58g)

where

C6 ≤
1
4
(6(log 2)2 + 2 log 2 log 3+ log 3− log 2− 1) < 1,

C7(α1, α2) = 2n−α1−α2
[
3n−max(α1,α2)

n− α1 − α2
+
1
α1
+
1
α2

]
,
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C8(α1, α2) =
[
3n−max(α1,α2) +

1
α1 log 2

+
1

α2 log 2

]
,

C9(α1) =
log 4
α12α1

+
log 4+ 1

n

n2α1
+

log 6+ 1
α1

α1
.

Proof. See Appendix B. �

To do a quantitative analysis, let us define the following bounds for the Robin function

U(n) := sup
r∈Ω
‖R(r, ·)‖W0,∞r,2

, n ≥ 3, (3.59a)

U(n) := sup
r∈Ω
‖R(r, ·)‖W0,∞r,log

, n = 2, (3.59b)

U(n, ε) := sup
r∈Ω
‖R(r, ·)‖W0,∞r,2−ε

, n ≥ 3, 0 < ε < 2. (3.59c)

With the aid of Lemma 3.6, we are able to state and prove the following inequalities for the integral operatorR1.

Lemma 3.7. We have the following norm bounds for the integral operator R1:

(i) ‖R1‖Lp→Lp ≤ C1

(
min

(
n
p
, 2
)
, p, p

)
U(n) ‖δµa‖L∞ , n ≥ 3, (3.60a)

(ii) ‖R1‖Lp→Lp ≤ C1

(
2
p
− ε, p, p

)
U(n) ‖δµa‖L∞ , n = 2, 0 < ε < 2, (3.60b)

(iii) ‖R1‖L∞→L∞ ≤ C10ωnU(n) ‖δµa‖L∞ , (3.60c)

(iv) ‖R1‖W0,∞r,2 →W
0,∞
r,2
≤ C7(2, 2)ωnU(n) ‖δµa‖∞ n = 3, 5, 6, . . . , (3.60d)

(v) ‖R1‖W0,∞r,2 →W
0,∞
r,2
≤ C8(2, 2)ω4U(4) ‖δµa‖∞ n = 4, (3.60e)

(vi) ‖R1‖W0,∞r,log→W
0,∞
r,log
≤ C6 log 2ω2U(2) ‖δµa‖∞ n = 2, (3.60f)

where the constant C10 is given by

C10 = (log 2+ 1)d, n = 2, (3.61a)

C10 =
d2

2
, n ≥ 3. (3.61b)

Proof. (3.60a) and (3.60c) result from (2.32a) and (2.32b), respectively. (3.60c) is derived from (3.58a) for two dimensions,
and (3.58b) for n dimensions (n ≥ 3) with α1 = 2. (3.60d) is obtained from (3.58d), (3.58f), and by using |r1 − r2| ≤ d for
all r1, r2 ∈ Ω . Similarly, (3.60e) and (3.60d) are derived from (3.58e) and (3.58g), respectively. �

By using Lemma 3.7, we give the following theorem about Born expansion and Born approximation :

Theorem 3.8. The integral operator R = R1 has the following infinite order representation with an index M = 1 such that

Lp → Lp → Lp → Lp → · · · , p ≥ 1, (3.62a)

L∞ → L∞ → L∞ → L∞ → · · · , (3.62b)

W 0,∞r,2 → W 0,∞r,2 → W 0,∞r,2 → · · · , n ≥ 3, (3.62c)

W 0,∞r,log → W 0,∞r,log → W 0,∞r,log → W 0,∞r,log → · · · n = 2. (3.62d)

Let us define a constant C11 = C11(B) depending on the normed space B = Lp(p ≥ 1), L∞,W
0,∞
r,2 , or W

0,∞
r,log as follows:

C11 = C11(B) =



C1

(
min

(
n
p
, 2
)
, p, p

)
U(n), if B = Lp and n ≥ 3,

C1

(
2
p
− ε, p, p

)
U(2), if B = Lp, n = 2,

C10ωnU(n), if B = L∞,
C7(2, 2)ωnU(n), if B = W 0,∞r,2 and n = 3, 5, 6, . . . ,
C8(2, 2)ω4U(4), if B = W 0,∞r,2 and n = 4,
C6 log 2ω2U(2), if B = W 0,∞r,log and n = 2,
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where 0 < ε < 2 and r ∈ Ω . If the following condition

‖δµa‖∞ <
1

C11(B)
(3.63)

holds, then E∞Φ exists for each representation given in (3.62) and the mth order Born approximation FmΦ converges to E∞Φ
for Φ ∈ B. Furthermore, the error between Φ̃ = E∞Φ and Fm−1Φ is given by:∥∥Φ̃ − Fm−1Φ∥∥B ≤ (C11(B) ‖δµa‖∞)m ∥∥Φ̃∥∥B . (3.64)

The proof of Theorem 3.8 is obtained by Proposition 3.2 and Lemma 3.7, which is similar to the proof of Theorem 3.5. In
Theorems 3.5 and 3.8, the same normed space is used for the infinite order representations with indicesM = 1. However,
the following theorem is another kind of infinite order representation for the operatorR with an indexM 6= 1.

Theorem 3.9. The operator R has the following infinite order representations with indices M ≥ 2 and BM = C0, where C0 is the
normed space of continuous functions having the norm ‖·‖L∞ :

L∞ → C0 → C0 → C0 → C0 → C0 → · · · , for n = 2, 3, 4, . . . , (3.65a)

L
n
2k → L

n
2(k−1) → · · · → Ln/2 → L

n
ε → C0 → C0 → · · · , for 1 ≤ p =

n
2k
and k is a positive integer, (3.65b)

Lp → L
np
n−2p → · · · → L

np
n−2lp → C0 → C0 → · · · ,

for l =
[
n− 2p
2p

]
≥ 0, 1 ≤ p 6=

n
2k
, and k is a positive integer, (3.65c)

W 0,∞r0,2 → W 0,∞r0,4 → · · · → W 0,∞r0,n−2 → W 0,∞r0,log → C0 → C0 → · · · , for n = 2, 4, 6, . . . , (3.65d)

W 0,∞r0,2 → W 0,∞r0,4 → · · · → W 0,∞r0,n−1 → C0 → C0 → · · · , for n = 3, 5, 7, . . . . (3.65e)

Let the normed space B = L∞, Lp(p ≥ 1),W 0,∞r0,2 (n ≥ 3),W
0,∞
r0,log

(n = 2). If the condition

‖δµa‖L∞ <
1

C10ωnU(n)
(3.66)

holds, then E∞Φ exists for each representation given in (3.65), and FmΦ converges to E∞Φ for Φ ∈ B.

Proof. From (3.58a), (3.58b), (2.29), and using L∞ ⊂ Lp for all p ≥ 1, we get the sequence of function spaces (3.65a).
From (2.28) and (2.29), we obtain (3.65b) and (3.65c). From (3.58c)-(3.58g), (3.65d) and (3.65e) are derived. The sufficient
condition (3.66) results from (3.60c). �

Thus, by Theorems 3.8 and 3.9, we have answered the three questions related to the Born expansion and the Born
approximation when δκ = 0.
Let us investigate conditions (3.63) and (3.66) in more detail. C6, C7(2, 2)(n = 3, 5, 6, . . .), C8(2, 2)(n = 4), and C10 can

be estimated by

C6 ≤ 1, (3.67a)

C7(2, 2) ≤ 2n−4
[
3n−2

n− 4
+ 1

]
, n = 3, 5, 6, 7, . . . , (3.67b)

C8(2, 2) ≤ 9+
1
log 2

≤ 11, n = 4, (3.67c)

C10 ≤ 1.7d, n = 2, (3.67d)

C10 ≤
d2

2
, n ≥ 3. (3.67e)

If we neglect the lower order term R− H , then the approximation of U(n) is as follows:

U(n) ≈ sup
r∈Ω
|r − r0|n−2|H(r, r0)| ≤

1
(n− 2)ωnL

, n ≥ 3, (3.68)

U(n) ≈ sup
r∈Ω
|H(r, r0)|/ log(|r − r0|/2d) ≤

1
ωnL

, n = 2. (3.69)
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Using (3.67) and (3.68), the conditions (3.63) and (3.66) for the mth order Born approximation to converge to the Born
expansion can be changed as follows :

‖δµa‖L∞ ≤
L
1.7d

, n = 2 for (3.62b) and (3.65),

‖δµa‖L∞ ≤
2(n− 2)L
d2

, n ≥ 3 for (3.62b) and (3.65),

‖δµa‖L∞ ≤
(n− 2)(n− 4)L
2n−4(3n−2 + n− 4)

, n = 3, 5, 6, . . . , for (3.62c),

‖δµa‖L∞ ≤
2L
11
, n = 4 for (3.62c),

‖δµa‖L∞ ≤
L
log 2

, n = 2 for (3.62d). (3.70)

Note that all the condition in (3.70) depend on L, which is the lower bound of κ . Given the bound of C1, a similar analysis
can be obtained for the representation of the Born expansion in (3.62a).

4. The Fréchet derivatives

In this section, we derive the Fréchet derivatives of the coefficient-to-solution and the coefficient-to-measurement
operators in Sections 4.1 and 4.2, respectively. In Section 4.3, we will argue some applications of the Fréchet derivative to
DOT imaging. We consider the cases where the Born expansion has the infinite order representation with an indexM = 1
such that

B→ B→ B→ · · · , (4.71)

where B = W 1,p when both the diffusion and absorption coefficients are perturbed (Theorem 3.5) and B = Lp, L∞,W 0,∞r,2 ,
orW 0,∞r,log when δκ = 0 (Theorem 3.8).
We first state the definition of the Fréchet derivative for operators defined on Banach spaces.
Let B1 and B2 be Banach spaces and BL(B1, B2) be the Banach space of the bounded linear operators from B1 to B2 with a

norm of

‖Q‖BL(B1,B2) = sup
µ∈B1\{0}

‖Qµ‖B2
‖µ‖B1

, Q ∈ BL(B1, B2). (4.72)

Definition 4.1 (The (First Order) Fréchet Derivative). Let S be an open set contained in B1 and P : S ⊂ B1 → B2 be an
operator from S into B2. Then, P is considered to be Fréchet differentiable for µ ∈ S, if there is a continuous linear operator
Q : B1 → B2 such that

lim
‖δµ‖B1→0

‖P(µ+ δµ)− P(µ)− Q (δµ)‖B2
‖δµ‖B1

= 0. (4.73)

The linear operator Q is called the first order Fréchet derivative of P and denoted by P ′(µ).

Before moving to the mth order Fréchet derivative, we will introduce the second order Fréchet derivative to familiarize
the reader with the idea of higher order derivatives.

Definition 4.2 (The Second Order Fréchet Derivative). Let P ′(µ) : B1 → B2 be the Fréchet derivative of P : S ⊂ B1 → B2 at
µ ∈ S. Then P ′ : S ⊂ B1 → BL(B1, B2). If P ′ is Fréchet differentiable at µ, we denote it by

P ′′(µ) : B1 → BL(B1, B2). (4.74)

And P ′′(µ) is called the second order Fréchet derivative or Hessian of P at µ ∈ S. The operator P ′′ is defined as P ′′ : S →
BL(B1, BL(B1, B2)).
Let us denote that BL(Bm1 , B2) = BL(B1, BL(B

m−1, B2)), wherem = 2, 3, 4, . . . and
BL(B11, B2) = BL(B1, B2). Then P

′′ is defined as an operator from S ⊂ B1 to BL(B21, BL(B1, B2)).

Definition 4.3 (The mth Order Fréchet Derivative).Higher order Fréchet derivatives are defined recursively form = 3, . . . by
P (m)(µ) : B1 → BL(Bm−11 , B2) such that

lim
‖δµ‖B1→0

∥∥P (m−1)(µ+ δµ)− P (m−1)(µ)− P (m)(µ)δµ∥∥BL(Bm−11 ,B2)

‖δµ‖B1
= 0. (4.75)
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We can also view P (m)(µ) as a mapping from Bm1 (the Cartesian product of B1 with itself m times) to B2. Let us
denote the image of P (m)(µ) at m-tuples (δµ1, δµ2, . . . , δµm) ∈ Bm1 by P

(m)(µ)[δµ1, δµ2, . . . , δµm]. Let P (m)(µ; δµ) :=
P (m)(µ)[δµ, δµ, . . . , δµ] and ∂mP

∂µm (δµ) = P
(m)(µ; δµ).

4.1. The Fréchet derivatives of the coefficient-to-solution operator

In Section 3,Rm
= Rm(δµ)(·) is treated as a bounded linear operator in BL(B, B)mappingΦ ∈ B toRm(δµ)Φ ∈ Bwith

a given δµ. However, in this section, we will interpretRm
= Rm

[µ](·)Φ as an operator in BL(Gm, B) such that

Rm
[µ](δµ1, δµ2, . . . , δµm)Φ = R[µ](δµ1)R[µ](δµ2) · · ·R[µ](δµm)Φ. (4.76)

The notationR[µ] is used instead ofR to clarify the Robin function R(r, r ′), the kernel ofR[µ], is defined with respect to
the optical coefficient µ.
Then, by a similar analysis as in Theorems 3.5 and 3.8, we can show that the operatorRmΦ is bounded for the operator

norm from Gm into B such that∥∥Rm
[µ](δµ1, . . . , δµm)Φ

∥∥
Gm→B ≤ C14 ‖δµ1‖G · · · ‖δµm‖G ‖Φ‖B . (4.77)

where C14 = max(C4, C5), C5, and C11(B) depending on G and B defined in (1.14a), (1.14b), and (1.14c), respectively. Note
that C14 remains fixed whenµ is replaced by µ̃ = µ+ δµ = (κ+ δκ, µa+ δµa), if µ̃ satisfies (1.2) with the same constants
L and U . The second equation in (1.13) is interpreted as follows:

R[µ+ δµ] −R[µ] = R2
[µ]δµ+R2

[µ]R[µ+ δµ]δµ2, (4.78)
where the equation holds for all q ∈ H−1(Ω) or q is a Dirac delta function. Using (4.77), we obtain

R[µ+ δµ] −R[µ] = R2
[µ]δµ+ o(‖δµ‖G). (4.79)

Here ψ = o(‖δµ‖G) for a bounded linear function ψ ∈ BL(Gk, B)means that lim‖δµ‖G→0
‖ψ‖BL(Gk,B)
‖δµ‖G

= 0.
Note that in the Born expansion, the mth order term is given by Rm

[µ](δµ)Φ . The mth order Fréchet derivative
corresponds tomth term of the Born expansion via Theorem 1.1. The proof of Theorem 1.1 will be given in this section:
Proof of Theorem 1.1. We will prove that

Rm
[µ+ δµ] −Rm

[µ] = mRm+1
[µ]δµ+ o(‖δµ‖G), (4.80)

for a positive integer m. We already proved that (4.80) for m = 1 at (4.79). Suppose that (4.80) hold for all positive integers
i < m, then

Rm
[µ+ δµ] −Rm

[µ] =

m−1∑
i=0

Ri
[µ+ δµ] [R[µ+ δµ] −R[µ]]Rm−1−i

[µ]

=

m−1∑
i=0

Ri
[µ+ δµ]Rm+1−i

[µ]δµ+ o(‖δµ‖G)

=

m−1∑
i=0

[
Ri
[µ] + iRi+1δµ+ o(‖δµ‖G)

]
Rm+1−i

[µ] + o(‖δµ‖G)

= mRm+1
[µ]δµ+ o(‖δµ‖G). (4.81)

Therefore, we proved (4.80) by induction argument. Using (4.81), we obtain

∂m−1Ψ

∂µm−1
(µ+ δµ)−

∂m−1Ψ

∂µm−1
(µ) = (m− 1)!

[
Rm−1

[µ+ δµ]Φ̃ −Rm−1
[µ]Φ

]
= (m− 1)!

[
Rm
[µ+ δµ] −Rm

[µ]
]
q

= (m− 1)!mRm+1[µ]δµ q+ o(‖δµ‖G)

= m!Rm[µ]δµΦ + o(‖δµ‖G). (4.82)

Using the definition of the higher order derivatives in (4.75), we obtained (1.15a). With a similar argument and noting that R1 is
independent of δκ and that R2 is independent of δµa, we can prove (1.15b). �

If P ism-times continuously differentiable on S, and P (m)(µ) is integrable between any two points in S, then the Taylor’s
theorem holds: For any µ,µ+ δµ ∈ S, we have

P(µ+ δµ) = P(µ)+
m−1∑
i=1

P (i)(µ)
i!

δµi + Em(µ+ δµ,µ; P), (4.83)
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where

‖Em(µ+ δµ,µ; P)‖B2 ≤
‖δµ‖mB1

m!
sup
θ∈[0,1]

∥∥P (m)(µ+ θδµ)∥∥BL(B(m)1 ,B2)
. (4.84)

Although the statement and proof are similar to the Taylor’s theorem in Euclidean space, we must consider each term
with respect to the operators between Banach spaces. For the proof of (4.83), see [43]. If another operator Q is m-times
differentiable, Em(µ+ δµ,µ;Q ) ≤ C ‖δµ‖mB1 , and P(µ) = Q (µ), then we can show that

P (i)(µ) = Q (i)(µ), i = 0, . . . ,m− 1. (4.85)

Let Tm := P(µ)+
∑m
i=1

P(i)(µ)
i! δµi be themth order Taylor expansion. Then from Lemma 4.3 and (4.85), we conclude that

the mth order Born approximation is the same as the mth order Taylor expansion, i.e. Tm = Fm. This fact can be used as
another proof of Theorem 1.1 under the condition that Taylor order expansion is possible.

4.2. The Fréchet derivatives of the coefficient-to-measurement operator

In this subsection, we compute the Fréchet derivatives of the coefficient-to-measurement operator Γ .
Given the photon density functionΦ , which is the solution of (1.1), different types of boundary data can bemeasured. Let

f be any function from complex spaceC to complex spaceC and let Γ = f (Ψ ). The Fréchet derivatives of the coefficient-to-
measurement operator Γ can be computed using the Fréchet derivatives of the coefficient-to-solution operator Ψ by using
a change of variables as follows:

Γ ′ = f ′(Ψ )Ψ ′ = f ′(Ψ )RΦ,
Γ ′′ = f ′′(Ψ )(Ψ ′)2 + f ′(Ψ )Ψ ′′ = f ′′(Ψ )(RΦ)2 + 2f ′(Ψ )R2Φ,

and

f (Ψ )(m) =
m∑
i=1

f (i)(Ψ )Am,i(RΦ,R2Φ, . . . ,R(m)Φ), m ≥ 3, (4.86)

where Am,i is a polynomial of degreem and Am,i(x1, . . . , xm) is a linear combination of monomialsΠml=1x
jl
l with

∑m
l=1 ljl = m,

if f ism times differentiable.
The most widely used functions for f are

f (x) = R(x), (4.87a)
f (x) = R(log x), (4.87b)

where R(x) is the real part of complex number x. (4.87a) is called the Born measurement and (4.87b) is called the Rytov
measurement.
In the case of the Born measurements, Γ (m)

= m!R(RmΦ), and in the case of Rytov measurement, the first and second
order Fréchet derivatives are given by

Γ ′ = R

(
RΦ

Φ

)
, (4.88a)

Γ ′′ = R

(
−(RΦ)2

Φ2
+
2R2Φ

Φ

)
. (4.88b)

4.3. Applications

In [25], we proved the local convergence of a method which we call Two-level Multiplicative Space Decomposition
Method for DOT image reconstruction. In the proof of the convergence, we assumed that the second order Fréchet derivative
of the coefficient-to-measurement operator is bounded, when Rytov measurements are used. By using (4.77) and (4.88b),
the second order Fréchet derivative is bounded by∥∥Γ ′′∥∥G2→B ≤ 3C214, (4.89)

when both the absorption and diffusion coefficients are perturbed.
In [7], inverse scattering series is used to invert Born expansion to consider higher order terms. (By Theorem 1.1 the Born

expansion is the same as (1.7).) Then the idea of the inverse scattering series is as follows:

1. Find µ+ by solving the first order Born approximation :

Υ − Γ (µ0) = RΦ(δµĎ). (4.90)
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Let us assume that there exists a bounded operator (RΦ)Ď from B to G such that (RΦ)Ď(RΦ) = idG. We will call (RΦ)Ď
the left inverse ofRΦ . Then we get the following expression for δµĎ

δµĎ
= (RΦ)Ď

[
Υ − Γ (µ0)

]
. (4.91)

2. If we operate (RΦ)Ď on both sides of (1.13), we obtain

δµ = δµĎ
− (RΦ)ĎR2(δµ)2Φ − (RΦ)ĎR3(δµ)3Φ − · · · . (4.92)

3. If we further approximate δµ in the right hand side of (4.92) as δµĎ, then we approximate δµ in the left hand side of
(4.92) as δµi. As a result, the implicit Eq. (4.92) is changed into the following explicit equation:

δµi = δµĎ
− (RΦ)ĎR2(δµĎ)2Φ − (RΦ)ĎR3(δµĎ)3Φ − · · · , (4.93)

where we will call δµi an inverse scattering series solution.

By (4.92), we get∥∥δµ− δµĎ
∥∥
G ≤

∥∥(RΦ)Ď∥∥B→G ‖Φ‖B (C14 ‖δµ‖G)21− C14 ‖δµ‖G
≤ CĎ ‖δµ‖2G , (4.94)

where

CĎ = 2C214
∥∥(RΦ)Ď∥∥B→G ‖Φ‖B ,

and we assumed that ‖δµ‖G ≤
1
2C14
. By subtracting (4.93) from (4.92) and using (4.92), we get

δµ− δµi = (RΦ)+
[(

R2(δµĎ)2Φ −R2(δµ)2Φ
)
+
(
R3(δµĎ)3Φ −R3(δµ)3Φ

)]
(4.95)

The multilinear operatorR satisfies the following equation:

Rq(δµĎ)qΦ −Rq(δµ)qΦ ≤
[
Rq(δµĎ, . . . , δµĎ, δµĎ)Φ −Rq(δµĎ, . . . , δµĎ, δµ)Φ

]
+
[
Rq(δµĎ, . . . , δµĎ, δµ)Φ −Rq(δµĎ, . . . , δµ, δµ)Φ

]
+ · · ·

+
[
Rq(δµĎ, . . . , δµ, δµ)Φ −Rq(δµ, . . . , δµ, δµ)Φ

]
. (4.96)

By (4.94), (4.96), and the multilinear property ofRΦ , we obtain the following bound:∥∥Rq(δµĎ)qΦ −Rq(δµ)qΦ
∥∥
B ≤ ‖R‖G→B ‖Φ‖B

∥∥δµĎ
− δµ

∥∥
G ·

[
‖δµ‖

q−1
G + ‖δµ‖

q−2
G

∥∥δµĎ
∥∥
G + · · · +

∥∥δµĎ
∥∥q−1
G

]
≤ ‖R‖G→B ‖Φ‖B C

Ď
‖δµ‖

q+1
G

[
1+ (1+ CĎ)+ · · · + (1+ CĎ)q−1

]
≤ ‖R‖G→B ‖Φ‖B ‖δµ‖

q+1
G (1+ CĎ)q. (4.97)

Using (4.95)–(4.97), the error of the inverse scattering solution is given by∥∥δµ− δµi∥∥G ≤ ∥∥(RΦ)+∥∥B→G ‖R‖G→B ‖Φ‖B CĎ ‖δµ‖3G (1+ CĎ)2 · [1+ (1+ CĎ) ‖δµ‖G + (1+ CĎ)2 ‖δµ‖2G + · · ·]
≤
∥∥(RΦ)+∥∥B→G ‖R‖G→B ‖Φ‖B ‖δµ‖3G (1+ CĎ)2 1

1− (1+ CĎ) ‖δµ‖G

≤ C̃ ‖δµ‖3G , (4.98)

where ‖δµ‖G ≤
1

2(1+CĎ) and C̃ := 2(1+C
Ď)2
∥∥(RΦ)+∥∥B→G ‖R‖G→B ‖Φ‖B. The error of the inverse scattering series solution

δµi in (4.98) is of the orderO(‖δµ‖3G), which is a higher order than the order of the error of the linearized solutionO(‖δµ‖
2
G).

5. Conclusion

In this paper, we derived the Born expansion and Fréchet derivatives for the Diffuse Optical Tomography for arbitrary
domains with Robin type boundary conditions. To analyze the Born expansion, we introduced sequences of appropriate
normed spaces such as Lebesgue spaces, Sobolev spaces, and weighted Sobolev spaces. We derived sufficient conditions on
the perturbation in the diffusion and absorption coefficients for the convergence of the Born expansion in n dimensions,
(n ≥ 2). We computed bounds for the error in the mth order Born approximation. Next, we showed that the mth order
Fréchet derivatives of the coefficient-to-solution operator is equal to m! times the mth corresponding term in the Born
expansion. This analysis is applied to the inverse scattering series [7] and the convergence of domain decompositionmethod
in DOT [25].
Although we only consider the boundary value problem (2.1) with Robin boundary conditions, the analysis introduced

in this paper can be easily extended to the general second order elliptic partial differential equations with other boundary
conditions.
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Appendix A. Proof of Lemma 2.2

Using W 0,∞r,α ⊂ W
0,∞
r,α−ε for all 0 ≤ ε < α, L(r, ·) ∈ W 0,∞r,2−ε and inserting q = p into (2.27), we get (2.32a) with a

constant C1(min
(
n
p − ε, 2− ε

)
, p, p). Using ∂L(r

′,·)

∂ri
∈ W 0,∞r ′,1 and inserting q = p, we get (2.33a) and (2.32c)with a constant

C1(min
(
n
p , 1

)
, p, p).

We can start to prove (2.32d) and (2.33b) by defining

vi,δ(r) :=
∫
Ω\B(r,δ)

∂H(r, r ′)
∂ri

ψ(r ′)dr ′. (A.99)

Taking the derivative of vi,δ , we get

∂vi,δ

∂rj
(r) =

∫
Ω\B(r,δ)

∂2H(r, r ′)
∂ri∂rj

ψ(r ′)dr ′ −
∫
∂B(r,δ)

∂H(r, r ′)
∂ri

ψ(r ′)νδj dS(r
′)

= ψ(r)
∫
∂B(r,δ)

∂H(r, r ′)
∂ri

νδj dS(r
′)+

∫
Ω\B(r,δ)

∂2H(r, r ′)
∂ri∂rj

ψ(r ′)dr ′

−

∫
∂B(r,δ)

[
∂H(r, r ′)
∂ri

ψ(r ′)+
∂H(r ′, r)
∂ri

ψ(r)
]
νδj dS(r

′), (A.100)

where νΩj and ν
δ
j are the jth component of the outer normal vector with respect to ∂Ω and ∂B(r, δ), respectively. Let us

assume ψ ∈ C0,λ. Using ∂(H(r
′,·)+H(·,r ′))
∂ri

rj ∈ W
0,∞
r ′,1+λ the integral in the last line of (A.100) is bounded by∣∣∣∣∫

∂B(r,δ)

[
∂H(r, r ′)
∂ri

ψ(r ′)+
∂H(r ′, r)
∂ri

ψ(r)
]
νδj dS(r

′)

∣∣∣∣ ≤ ∫
∂B(r,δ)

∣∣∣∣∂(H(r, r ′)+ H(r ′, r))∂ri
ψ(r ′)

∣∣∣∣ dS(r ′)
+

∫
∂B(r,δ)

∣∣∣∣∂H(r ′, r)∂ri

∣∣∣∣ ∣∣ψ(r ′)− ψ(r)∣∣ dS(r ′) ≤ δλ

λ
ωn ‖ψ‖C0,λ

[
‖κ‖C0,λ

nL2
+
1
nL

]
. (A.101)

Thus, by (A.101), the integral in the last line of (A.100) goes to zero as δ goes to zero for ψ ∈ C0,λ. And the first integral in
the second last line (A.100) is−ψ(r) 1

nκ(r) . Letting δ go to zero, we get

∂2v

∂ri∂rj
(r) =

∫
Ω

∂2(L− H)(r, r ′)
∂ri∂rj

ψ(r ′)dr ′ + lim
δ→0

∂vi,δ

∂rj
(r)

=

∫
Ω

∂2(L− H)(r, r ′)
∂ri∂rj

ψ(r ′)dr ′ +
∫
Ω

∂2H(r, r ′)
∂ri∂rj

ψ(r ′)dr ′ −
ψ(r)
nκ(r)

. (A.102)

The second integral of the right hand side of (A.102) is bounded in the sense of (2.30). Thus we have proved (2.33b). Let us
prove (2.32d) using (2.27), (2.30) and (A.102).∥∥∥∥ ∂2v∂ri∂rj

∥∥∥∥
Lp
≤ C1(λ, p, p) ‖ψ‖Lp sup

r ′∈Ω

∥∥∥∥∂2(L− H)(r ′, ·)∂ri∂rj

∥∥∥∥+ C3L ‖ψ‖Lp + 1nL ‖ψ‖Lp . (A.103)

Thus, we proved (2.32d) for ψ ∈ C0,λ. An extension of (2.32d) when φ ∈ Lp can be found in [16,35]. (2.33c) follows from
(2.33a) and (2.33b). To prove (2.34), using Stokes theorem inΩ \ B(r, δ), we get∫

Ω\B(r,δ)

[
v(r ′)Mr ′L(r, r ′)− L(r, r ′)Mr ′v(r ′)

]
dr ′ =

∫
∂Ω

[
v(r ′)Nr ′L(r, r ′)− L(r, r ′)Nr ′v(r ′)

]
dS(r ′)

−

∫
∂B(r,δ)

[
v(r ′)κ(r ′)

∂L(r, r ′)
∂νr ′

− L(r, r ′)κ(r ′)
∂v(r ′)
∂ν

]
dS(r ′). (A.104)
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Since v ∈ W 2,p(Ω), v ∈ W 2−
1
p ,p(∂Ω) by trace formula, each term of the second integral of the right hand side of (A.104)

has the following asymptotic behavior:∣∣∣∣∫
∂B(r,δ)

L(r, r ′)κ(r ′)
∂v

∂ν
(r ′)dS(r ′)

∣∣∣∣ ≤ U ‖L(r, ·)‖W0,∞r,2 ‖v‖W2,p , (A.105a)∣∣∣∣∫
∂B(r,δ)

v(r ′)κ(r ′)
∂(L− H)(r, r ′)

∂ν
(r ′)dS(r ′)

∣∣∣∣ ≤ U ‖v‖W2,p ∥∥∥∥∂(L− H)(r, ·)∂r ′i

∥∥∥∥
W0,∞r,1+λ

δλ, (A.105b)

∫
∂B(r,δ)

v(r ′)κ(r ′)
∂H(r, r ′)
∂ν

(r ′)dS(r ′) =
∫
∂B(r,1)

v

(
δ
r ′ − r
|r ′ − r|

)
dS
(
r ′ − r
|r ′ − r|

)
. (A.105c)

(A.105a) and (A.105b) go to 0 as δ goes to 0 and (A.105c) goes to v(r) as δ goes to 0 by the mean value theorem. Thus, letting
δ→ 0 and combining (A.104) and (A.105), we get (2.34), where the first term in (A.104) is interpreted in the same manner
as in (2.30). �

Appendix B. Proof of Lemma 3.6

(3.58a) and (3.58b) are obtained easily using spherical coordinates with respect to r1. Let us divideΩ into three regions,
depending on the two points r1 and r2:

Ωr1 =

{
r ′ ∈ Ω||r ′ − r1| ≤

|r1 − r2|
2

}
,

Ωr2 =

{
r ′ ∈ Ω||r ′ − r2| ≤

|r1 − r2|
2

}
,

Ωc =

{
r ′ ∈ Ω||r ′ − r1| >

|r1 − r2|
2

, |r ′ − r2| >
|r1 − r2|
2

}
.

Consider the Eq. (3.58c), which is decomposed as∫
Ω

log(2d/|r1 − r ′|) log(2d/|r2 − r ′|)dr ′ =
∫
Ωr1

log(2d/|r1 − r ′|) log(2d/|r2 − r ′|)dr ′

+

∫
Ωr2

log(2d/|r1 − r ′|) log(2d/|r2 − r ′|)dr ′ +
∫
Ωc

log(2d/|r1 − r ′|) log(2d/|r2 − r ′|)dr ′. (B.106)

Next, consider the first term in the right hand side of (B.106). If r ′ ∈ Ωr1 , then |r
′
− r2| ≥ |r1−r2|

2 . Then, by a change of
variables with respect to the spherical coordinates centered at r1, we get∫

Ωr1

log(2d/|r1 − r ′|) log(2d/|r ′ − r2|)dr ′ ≤ ω2 log(4d/|r1 − r2|)
∫ |r1−r2 |

2

0
ρ log(2d/ρ)dρ

≤
ω2

16
log(4d/|r1 − r2|)|r1 − r2|2[2 log(4d/|r1 − r2|)+ 1]. (B.107)

Likewise,∫
Ωr2

log(2d/|r1 − r ′|) log(2d/|r ′ − r2|)dr ′ ≤
ω2

16
log(4d/|r1 − r2|)|r1 − r2|2[2 log(4d/|r1 − r2|)+ 1]. (B.108)

If r ′ ∈ Ωc , then |r1− r ′| ≥
|r ′−r2|
3 . Then, by a change of variables with respect to spherical coordinates centered at r2, we get∫

Ωc

log(2d/|r1 − r ′|) log(2d/|r ′ − r2|)dr ′ ≤
∫
Ωc

log(6d/|r ′ − r2|) log(2d/|r ′ − r2|)dr ′

≤ ω2

∫ d

0
(log 3 log(2d/ρ)+ (log(2d/ρ))2)ρdρ

≤ ω2d2
[
1
2
(log 2)2 +

1
4
(log 3− 1)(2 log 2+ 1)

]
. (B.109)

Inserting (B.107), (B.108), and (B.109) into (B.106), we get (3.58c).
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Returning to (3.58b), (3.58d), and (3.58e), we get∫
Ω

|r1 − r ′|α1−n|r ′ − r2|α2−ndr ′ =
∫
Ωr1

|r1 − r ′|α1−n|r ′ − r2|α2−ndr ′

+

∫
Ωr2

|r1 − r ′|α1−n|r ′ − r2|α2−ndr ′ +
∫
Ωc

|r1 − r ′|α1−n|r ′ − r2|α2−ndr ′, (B.110)

where each term in the right hand side of (B.110) is bounded by∫
Ωr1

|r1 − r ′|α1−n|r ′ − r2|α2−ndr ′ ≤ 2n−α2 |r1 − r2|α2−n
∫
Ωr1

|r1 − r ′|α1−ndr ′

≤ 2n−α2 |r1 − r2|α2−n
∫
|r1−r2|/2

0
ρα1−nρn−1ωndρ

=
ωn

α1
2n−α1−α2 |r1 − r2|α1+α2−n. (B.111)

Likewise∫
Ωr2

|r1 − r ′|α1−n|r ′ − r2|α2−ndr ′ ≤
ωn

α2
2n−α1−α2 |r1 − r2|α1+α2−n. (B.112)

Suppose that α1 + α2 < n, then∫
Ωc

|r1 − r ′|α1−n|r ′ − r2|α2−ndr ′ ≤ 3n−α1
∫
Ωc

|r ′ − r2|α1+α2−2ndr ′

≤ 3n−α1
∫
∞

|r1−r2|/2
ρα1+α2−2nρn−1ωndρ

≤ 3n−α12n−α1−α2 |r1 − r2|α1+α2−n
ωn

n− α1 + α2
. (B.113)

By inserting (B.111), (B.112), and (B.113) into (B.110) and considering the symmetry of r1 and r2 for (B.113), we get (3.58d).
(3.58e) and (3.58f) are derived by modifying the integral area for the third integral in (B.113) into {r ′

∣∣|r1 − r2| ≤ |r ′| ≤ d }
and {r ′

∣∣0 ≤ |r ′| ≤ d }, respectively, instead ofΩ . Finally, (3.58g) is computed in a similar way as follows:∣∣∣∣∫
Ω

|r1 − r ′|α1−n log(2d/|r ′ − r2|)dr ′
∣∣∣∣ ≤ ∫

Ωr1

|r1 − r ′|α1−n| log(2d/|r ′ − r2|)|dr ′

+

∫
Ωr2

|r1 − r ′|α1−n| log(2d/|r ′ − r2|)|dr ′ +
∫
Ωc

|r1 − r ′|α1−n| log(2d/|r ′ − r2|)|dr ′

≤ ωn log(4d/|r1 − r2|)
|r1 − r2|α1

α12α1
+ ωn
|r1 − r2|α1

2α1n

(
log(4d/|r1 − r2|)+

1
n

)
+ωn

dα1

α1

(
log(6)+

1
α1

)
≤ ωndα1C7(α1).
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