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Abstract
We develop a new passive image formation method capable of exploiting
information about multiple scattering in the environment, as well as statistics
of the objects to be imaged, additive noise and clutter, using measurements
from a sparse array of receivers that rely on illumination sources of opportunity.
The array of receivers can be distributed spatially in an arbitrary fashion with
several hundred wavelengths apart. We use a physics-based approach to model
a multiple-scattering environment and develop a statistical model that relates
measurements in a given receiver to measurements in other receivers. The
model is based on back-propagating measurements in a given receiver to a
hypothetical target location and then forward propagating to another receiver
location based on the Green’s function of the background environment. We next
address the imaging problem as a generalized likelihood ratio test (GLRT) for
an unknown target location. The GLRT framework allows a priori scene, clutter
and noise information to be incorporated into the problem formulation, as well
as non-Gaussian data likelihood and a priori models. We address the spatially
resolved hypothesis testing problem by constraining the associated discriminant
functional to be linear and by maximizing the signal-to-noise ratio of the test
statistics. We use the resulting spatially resolved test statistic to form the image.
We present the resolution analysis of our imaging algorithms for free-space
and a multiple-scattering environment model. Our analysis demonstrates the
improvements in the point spread function and the signal-to-noise ratio of the
reconstructed images when multiple scattering is exploited, as well as
the potential artifacts and limitations. We present numerical experiments to
demonstrate the performance of the resulting algorithms and to validate the
theoretical findings.

(Some figures in this article are in colour only in the electronic version)
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1. Introduction

1.1. Motivations and overview of our approach

Passive imaging is performed by using a single or multiple receivers measuring the scattered
wave field from an object to be imaged due to illumination sources of opportunity. The
illumination sources of opportunity could be cooperative where the information regarding the
location, waveform or the bandwidth of the sources is available or non-cooperative where no
such information is available. Passive imaging covers a wide range of applications including
acoustic, seismic and radar imaging.

Most passive imaging techniques with the exception of [1, 2] implicitly assume a
single-scattering environment and do not explicitly address the additive noise and clutter in
measurements. In this paper, we develop a new passive imaging method capable of exploiting
information about multiple scattering in the environment, statistics of the objects to be imaged
and statistics (possibly non-stationary) of the additive noise and clutter. Our approach is
applicable to both cooperative and non-cooperative sources of opportunity. We analyze the
resolution of the images formed under different assumptions and present numerical simulations
to demonstrate the performance of the resulting algorithms. While we focus specifically on
passive radar imaging, our approach is also applicable to passive microwave, seismic or
acoustic imaging.

Passive radar imaging is of particular interest in urban areas due to the increasing number
of broadcasting stations, mobile phone base stations, communication and navigation satellites.
However, single-scattering assumption, on which classical received signal-processing methods
are based, is not valid in urban areas. In this paper, we develop a new passive image formation
method capable of exploiting information about multiple scattering in the environment using
measurements from a sparse array of receivers that rely on illumination sources of opportunity.
The array of receivers can be distributed spatially in an arbitrary fashion with several hundred
wavelengths apart. Such an array is referred to as a distributed aperture [3]. We use a physics-
based approach to model wave propagation in multiple-scattering environments and develop
a statistical model that relates measurements in a given receiver to measurements in other
receivers. The model is based on back-propagating measurements in a given receiver to a
hypothetical target location and then forward propagating to another receiver location based
on the Green’s function of the medium. We next formulate the imaging problem as a spatially
resolved binary hypothesis testing problem using the model between the measurements at
different receivers, statistics of the objects to be imaged and statistics of the additive noise
and clutter. We address the spatially resolved hypothesis testing problem by constraining the
associated discriminant functional to be linear and by maximizing the signal-to-noise ratio of
the test statistic. We use the resulting spatially resolved test statistics to form the image. Under
these design constraints, the image formation involves correlations of filtered and transformed
measurements at different receivers where the filtering is determined by the statistics of the
object to be imaged, clutter and noise; transformation is determined by the underlying Green’s
function of the background environment. While the present work is mainly focused on
non-cooperative sources of opportunity, the results are extendible to passive imaging using
cooperative sources of opportunity.

We perform the resolution analysis in terms of the point spread function (PSF) of the
imaging operator and signal-to-noise ratio (SNR) of the resulting images. We first consider
the PSF and SNR of the resulting images for two receivers and a single transmitter. This allows
us to distill the important aspects of the analysis that can be readily generalized. We next
extend our results to the case where there are multiple transmitters and more than two receivers.
For the propagation medium, we first consider the single-scattering and next a multi-bounce,
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multiple-scattering environment model. For the multiple-scattering environment, we assume
that all multi-path bounces are specular reflections and therefore model the environment as
a collection of mirror planes. This allows us to readily compare the PSF and SNR of the
imaging operator obtained for the single-scattering environment to those for the multiple-
scattering environment. For each scenario we identify the components of the PSF and SNR
due to a point scatterer as well as the artifact component and analyze how each of these
components varies with respect to the number of transmitters, receivers, as well as the number
of multi-path bounces.

We present numerical simulations to verify the analysis and to demonstrate the
performance of the passive imaging algorithms using non-cooperative sources of opportunity.
We consider scenarios involving both point and extended targets in single-scattering and
multiple-scattering environments.

1.2. Related work and advantages of our approach

There are two classes of passive imaging or detection approaches in the literature. The
first class of works either assumes a priori knowledge of the transmitter-related information or
estimate this information from measurements and address the passive imaging in the framework
of bi-static imaging [4–16]. These works fundamentally rely on cross-correlating received
measurements with a known or estimated transmitted waveform. The second class of works
relies on cross-correlating the received measurements at one location with measurements at
other locations [1, 2, 17–25]. This approach eliminates the need for knowledge about the
transmitter location and waveform. As a result it is applicable to passive imaging using
non-cooperative sources of opportunity. Our work falls into the second class of approaches.

The works in [4–10] rely on an additional receiver channel or a dedicated receiver with
a direct line-of-sight to the transmitter to estimate transmitted waveforms. For example, in
[11], the carrier frequency of the transmitters of opportunity is assumed to be known; in [12],
the transmitted waveform is estimated from the measurements using the specific nature of the
illuminator considered. In [13–16], the ground reflectivity is reconstructed within the bi-static
synthetic aperture radar framework using either a ground-based or an airborne receiver. These
works assume that the locations and the waveforms of the transmitters of opportunity are
known. Additionally, they require receivers with high directivity.

In [18], passive imaging of stationary and moving targets based on cross-correlation of
measurements from two different locations over a temporal window is considered. Several
limitations of the approach including difficulties due to noise and clutter and selection of the
temporal window are presented. In [19], a passive seismic (or acoustic) imaging algorithm
based on cross-correlation of measurements at different pairs of geophones is developed. The
cross-correlated measurements are then backprojected to reconstruct an image of the source
intensity distribution. In [21] a spatio-temporal correlation-based passive synthetic aperture
imaging method is presented. This method first correlates the received signals measured at
different locations on the receiver flight trajectory(ies) and then applies a microlocal based
filtered-backprojection method to obtain an image of the scene radiance.

In the field of seismic imaging, a coherent interferometric imaging method for random
media was presented in [1, 2, 26]. This approach uses the free-space Green’s function in which
the speed of wave propagation is modeled as a random variable due to the ‘cluttered’ nature of
the propagation medium. It is shown that the method provides statistically stable images for
sources and reflectors in cluttered environments by back-propagating the cross-correlations
of the traces computed over space-time windows. Recently, the method in [1] is applied to
passive imaging in [17]. In [25] a similar cross-correlation procedure was proposed for passive
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source localization which removes random components due to multiple scattering in randomly
layered media.

The technique of cross-correlation of measurements at different receivers was also used
in other problems. In [22–24], scattered wave fields recorded at two receivers are cross-
correlated to estimate the Green’s function between the two receiver locations. In [27–29],
a spatial correlation technique is used for the waveform design problem. In [30], the spatial
correlation of measurements of the radar clutter is used to develop a self-calibration technique
for systems with a large antenna array.

Our method has the following advantages as compared to the existing passive imaging
techniques: (1) unlike the previous approaches, we derive a data model suitable for passive
distributed sparse arrays which relates the statistics of measurements at a given receiver to
the statistics of the measurements at other receivers, as well as the Green’s function of the
background environment. This model allows us to exploit multiple scattering, as well as
a priori noise, clutter and target statistics. With the exception of [1] and [2], existing passive
imaging techniques rely on the single-scattering assumption [4–16, 18–24, 31]. (2) Unlike
the previous approaches in [1, 2, 32], our imaging method is formulated in an estimation-
theoretic framework, specifically as a generalized likelihood ratio test (GLRT). The GLRT is
a powerful framework for beamforming and imaging in the presence of unknown parameters
[33, 34]. We formulate the imaging problem as a binary hypothesis test with an unknown
target location. The GLRT is a particularly suitable framework for the sparse arrays due to
a limited aperture available. In the GLRT framework one attempts to extract a test statistic
(a sufficient statistics of the unknown quantity of interest) as opposed to reconstructing the
quantity itself since only a limited number of measurements is available. Furthermore, the
GLRT formulation allows incorporation of a priori information on the additive noise, clutter
and target, as well as non-Gaussian data likelihood and prior models. While the present
work is focused on linear discriminant functionals for detector design, our formulation along
with the statistical data model allows general design criteria to be considered. Furthermore,
the estimation-theoretic approach provides quantitative methods of evaluation in terms of the
PSF and the SNR of the resulting images. Note that the GLRT formulation is equivalent to
backprojection/migration under Gaussian and non-informative white noise prior models and
free-space propagation models. (See our prior work in [35] on the equivalence of the GLRT
and backprojection.) In general, the GLRT provides a powerful framework for detection
and imaging for scenarios involving limited apertures. For large or synthetic apertures, see
[21] for the filtered-backprojection type approach. (3) Unlike the passive radar detection
methods described in [4–16, 31], our approach does not necessarily require receivers with
high directivity. (4) Our approach can be used in the presence of both cooperative and
non-cooperative sources of opportunity.

1.3. Organization of the paper

The rest of our paper is organized as follows: in section 2, we present the measurement
model for the multiple-scattering environment based on the Lippman–Schwinger equation.
We define the statistical assumptions on the target, clutter and additive noise. In section 3,
we use the measurement model described in section 2 and develop a new model that relates
the statistics of the measurements at a given receiver to the statistics of the measurements
at other receivers for distributed passive arrays. In section 4, we use the model in section 3
and address the passive imaging problem within the GLRT framework. In section 5, we
provide specific examples of passive imaging for the free-space and a multi-bounce Green’s
function models. In section 6, we present the resolution analysis for different propagation
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Table 1. Definition of variables, operators and functions.

Symbol Designation Symbol Designation

g(x, y, t) Green’s function representing the
field generated at location x and
time t due to an impulsive source at
location y at time zero

s(x, t) Source at location x and time t

Ein The incident field Esc The scattered field
V Ground reflectivity function T Target reflectivity function

T Mean value of the target reflectivity
function T

RT Autocovariance function of the
target reflectivity function T

C Clutter reflectivity function nC Measurements due to clutter
n Additive white thermal noise ñ Sum of the measurements due to

clutter and noise
Rñ Autocovariance function of ñ(t) Ws Spatial windowing function centered

at a hypothetical target location

m̂
j

i Measurement at the ith receiver
modeled in terms of the
measurement at the j th receiver

ˆ̃ni Sum of the measurements due to
clutter and noise at the ith receiver

Gy,i Forward-propagation operator from
a hypothetical target location y to a
receiver i

G−1
y,j Back-propagation from the j th

receiver to a hypothetical target
location y

Gy Diagonal matrix with the elements
Gy,iG−1

y,j , i = 1, . . . , N and i �= j,
for some 1 � j � N

Si
n(ω) The power spectral density function

of the measurements due to clutter
and additive noise at the ith receiver

m Vector of the measurement model
(see (24))

mr Vector of reference measurements
(see (25))

RT Autocovariance matrix of m(0)
r

where m(0)
r is the vector of the noise-

and clutter-free reference
measurements (see (35))

n Vector of the sum of measurements
due to clutter and noise

Rn Autocovariance matrix of n λ(y) Test statistic at location y

w Template for a linear detector SNRλ Signal-to-noise ratio of the test
statistic

models and different number of receivers and transmitters. In section 7, we present numerical
simulations. Section 8 concludes our discussion. Appendix A includes the derivation of the
optimal linear discriminant functional used for passive image formation. Appendix B includes
the derivations of the PSF and SNR for a variety of scenarios considered in sections 5 and 6.

2. Models for incident and scattered field and target, clutter and noise in
multiple-scattering environments

2.1. Notational conventions

We reserve x to denote the location in 3D Euclidean space and x to denote the location in
2D space. We denote operators (K,G,R, etc) with calligraphic letters. For a function f , f̂

denotes its Fourier transform and f ∗ denotes its complex conjugate. The bold font denotes
vector quantities. The non-bold italic font denotes scalar quantities. For a vector m, mH

denotes its Hermitian transpose. For a detailed list of notation used throughout the paper, see
table 1.
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2.2. Models for the incident and scattered field in multiple-scattering environments

The propagation of electromagnetic waves in a medium due to the distribution of sources can
be adequately described by the scalar wave equation [36–38]:(

∇2 − 1

c2
∂2
t

)
E(x, t) = s(x, t) (1)

where c is the speed of electromagnetic waves in the medium, E(x, t) is the electric field and
s(x, t) is the source term, at location x ∈ R

3 and time t ∈ R
+. The propagation medium is

characterized by the Green’s function satisfying(
∇2 − 1

c2
∂2
t

)
g(x, y, t, τ ) = δ(x − y)δ(t − τ). (2)

In this paper, we assume that the medium is stationary, i.e. g is time-invariant eliminating the
fourth variable in (2). Thus, the incident field due to an arbitrary source distribution s(x, t)

can be modeled as

Ein(x, t) =
∫

g(x, y, t − τ)s(y, τ ) dy dτ. (3)

In radar applications, the source term is the time-varying current density over the physical
antenna aperture. For an isotropic point source located at x0, s(x, t) = p(t)δ(x − x0) where
p(t) is the transmitted waveform.

In the presence of inhomogeneities, the wave speed c is spatially varying. If a priori
knowledge about the background inhomogeneity is known, c can be expressed in terms of the
background propagation speed, cb, and the perturbation due to deviation from the background
reflectivity, V:

c2(x) =
(

1

c2
b(x)

+ V (x)

)−1

. (4)

For typical carrier frequencies used in surveillance radar the incident field decays rapidly
as it penetrates the ground [39]. We can then write V (x) in terms of a 2D function, as in

V (x) = V (x)δ(x3 − h(x)) (5)

where x = (x, x3), x ∈ R
2 and h : R

2 → R represents the known ground topography.
Let E denote the total field in the medium, i.e. E = Ein + Esc; then the scattered field can

be modeled by the Lippman–Schwinger equation:

Esc(x, t) =
∫

g(x,y, t − τ)V (y)∂2
τ E(y, τ ) dy dτ (6)

where we define g(x,y, t) as the 3D Green’s function of the background environment that is
equal to g(x, (y, h(y)), t), y = (y1, y2). Note that Esc appears on both sides of the equation.
Thus, Esc is nonlinear in V. This equation can be linearized by the first Born approximation,
resulting in

Esc(x, t) ≈
∫

g(x,y, t − τ)V (y)∂2
τ Ein(y, τ ) dy dτ, (7)

which is also known as the distorted wave Born approximation (DWBA). The DWBA is valid
as long as the scattering due to V is small as compared to the incident field, Ein [37, page 196].
We note that the DWBA is not necessary for our image formation method. However, we use
the DWBA for the resolution analysis in section 6.
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z0

x

V (y)

Background

g(x, y,t)g(y, z0, τ)

p(t)

Figure 1. An illustration of the propagation of waveform p(t) from the transmitter located at
z0 to the scatterer V (y) through the background medium characterized by the Green’s function
g(y, z0, t) and from V (y) to the location x via g(x, y, t).

Since Ein itself is a solution to the wave equation with s(x, t) as the source term, under
the isotropic point antenna assumption located at z0, (7) can be alternatively expressed as

Esc(x, t) =
∫

g(x,y, t − τ)V (y)∂2
τ g(y, z0, τ − τ ′)p(τ ′) dτ ′ dy dτ (8)

where g(y, z0, t) is the 3D Green’s function defined as g((y, h(y)), z0, t) and p denotes the
transmitted waveform. We note that the isotropic point antenna assumption is not necessary
for the rest of our development. However, the assumption is made to simplify the rest of our
discussion. If this assumption is dropped, then (8) will include an antenna beampattern term
which depends on both space and time variables. Figure 1 illustrates the propagation of the
transmitted signal through the background medium and scattering the incident field at y.

2.3. Statistical models for target, clutter and noise

The above formalism allows us to utilize a physics-based model for the background, which
in principle can contain an arbitrary level of details. However, it is not realistic to assume
that the background model can account for arbitrarily fine scattering properties. Therefore,
we determine the Green’s function with respect to a known average background and model
random fluctuations and unaccounted fine details as a clutter random field. This suggests that
the reflectivity function V could be decomposed into two parts:

V = T + C (9)

where T denotes the objects of interest called the target and C denotes heterogeneities that are
neither target nor a part of the background medium, called the clutter. Such a clutter model
allows us to build model mismatch into our formulation and avoid computation of the Green’s
function for an arbitrarily detailed environment. Note that if the arbitrarily detailed scattering
properties of the background medium are known, this information can be included into the
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Green’s function of the background medium and the clutter model would not be needed.
However, often times, it is unrealistic to obtain such information.

Furthermore, we assume that the scattered field measurements at the receiver are
contaminated with additive thermal noise n(t) with autocovariance function Rn. Thus, we
model measurements at x0 as

m(t) =
∫

g(x0,y, t − τ)T (y)∂2
τ E(y, τ ) dy dτ + ñ(t) (10)

where

ñ(t) =

nC(t)︷ ︸︸ ︷∫
g(x0,y, t − τ)C(y)∂2

τ E(y, τ ) dy dτ + n(t) (11)

and nC(t) denotes measurements due to clutter.
Without loss of generality, we assume that the measurements due to clutter are zero mean

with the finite variance and autocovariance function RnC
.

We assume that the additive thermal noise, n(t), is white with variance σ 2
n and is

uncorrelated with nC(t). Thus, the covariance function of ñ(t) is equal to

Rñ(t, t
′) = RnC

(t, t ′) + Rn(t, t
′) (12)

= RnC
(t, t ′) + σ 2

n δ(t − t ′). (13)

In the Fourier domain, (10) becomes

m̂(ω) = −
∫

ĝ(x0,y, ω)T (y)ω2Ê(y, ω) dy + ˆ̃n(ω). (14)

In this paper, we consider both deterministic and random target models. For the random
target model, we assume that the target reflectivity function, T (y), has finite first- and second-
order statistics. The mean and the covariance functions of T (y) are denoted by

E[T (y)] =: T (y)

E[(T (y1) − T (y1))(T (y2) − T (y2))
∗] =: RT (y1,y2) (15)

where E denotes the expectation operator. Furthermore, we assume that the target and clutter
are mutually statistically uncorrelated.

3. A passive measurement model for distributed apertures

We define a distributed aperture as a finite collection of transmit and receive antennas that are
arbitrarily located with several hundred wavelengths apart with no assumption that transmitters
and receivers are colocated (see figure 2). The sparse spatial distribution of antenna elements
implies that the classic delay and sum beamforming technique [40] via array processing is not
applicable. Furthermore, the targets can be in the near field of the aperture. For imaging with
sparse active arrays, see [3, 32, 41] and a recent survey [42] and references therein.

In the analysis that follows, we consider a sparse distribution of M transmit elements and
N receive elements. In general, we assume that non-identical waveforms may be transmitted
from different transmit elements. We assume that the sources of opportunity (transmitters) are
non-cooperative where the location of the sources and the nature of the transmitted waveforms
are not known. Therefore, the incident and scattered field models described in the previous
section are not directly applicable to formulate a passive imaging method. In this section, we
use the incident and scattered field models described in the previous section and derive an

8
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Object of Interest

R1

R2

R3

R4

T1

T2

T3

Figure 2. A typical distributed aperture setup with receive and transmit antenna elements that
are several hundred wavelengths apart. The black antennas denote receive elements and the white
antennas denote transmit elements.

alternative model for passive distributed arrays that relates the statistics of the measured signal
at a given receiver to the statistics of the measurements at other receivers. We then use this
model to formulate the passive imaging problem in the next section.

Suppose there are M transmit elements, all modeled as a point source, i.e. s(x, t) =∑M
q=1 pq(t)δ(x − zq); then the incident field at y ∈ R

2 is given by

Ein(y, t) =
∫ M∑

q=1

g(y, zq, t − τ)pq(τ ) dτ. (16)

For passive detection and imaging applications, the incident field Ein is not known, since the
information on the transmitted waveforms and the location of the transmitters may not be
available. Here, we develop an alternative measurement model that expresses measurements
at each receiver in terms of the measurements at a different receiver. The model involves
back-propagating the measurement at a receiver location to a hypothetical target location and
then forward propagating the resulting field to another receiver location. This is illustrated in
figure 3.

The forward-propagation operator is an integral operator that maps the total field and the
target at a hypothetical target location y to the scattered field at the ith receiver, i.e.

[Gy,iu](ω) =
∫

Ws(y
′,y)ĝ(xi ,y

′, ω)u(y′, ω) dy′ (17)

=
∫

DW (y)

ĝ(xi ,y
′, ω)u(y′, ω) dy′. (18)

where u(y, ω) = −T (y)ω2Ê(y, ω) and Ws(y
′,y) is a spatial windowing function of unit

amplitude centered at a hypothetical target location y. Note that the forward-propagation
operator is y dependent due to the spatial windowing function Ws. We define the back-
propagation operator as the inverse of Gy,i , and denote it with G−1

y,i . Since the operator Gy,i is

9
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xj
xi

Gy ,iG−1
y ,j

Gy ,iG−1
y ,j

T

Ein

Figure 3. An illustration of the back-propagation of the scattered field at the j th receive element
to a hypothetical target location and forward propagation of the total field and the target reflectivity
from the hypothetical target location to the ith receive element.

applied only at a single spatial location xi , its inverse may not exist for all locations y′ ∈ DW(y).
Thus, we replace G−1

y,i with its pseudoinverse G†
y,i given by

G†
y,i = G∗

y,i (Gy,iG∗
y,i + σ I)−1 (19)

where σ > 0 is a suitably chosen regularization parameter.
In an ideal scenario, where there is no noise or clutter in the measurements, we can express

the ith measurement in terms of the j th measurement as follows:

m̂
j (0)

i (ω) = Gy,iG−1
y,j m̂

(0)
j (ω) (20)

where m̂
(0)
j (ω) and m̂

j (0)

i are the noise- and clutter-free measurements at the j th and ith
receivers, respectively. In the presence of noise and clutter, ˆ̃nj is also back-propagated along
with m̂

(0)
j (ω). Therefore, if we denote m̂j = m̂

(0)
j + ˆ̃nj , the full expression for an alternative

measurement model at the ith receiver in terms of the j th measurement, i.e. m̂
j

i (ω), becomes

m̂
j

i (ω) = Gy,iG−1
y,j m̂

(0)
j (ω) + Gy,iG−1

y,j
ˆ̃nj (ω) + ˆ̃ni(ω) (21)

= Gy,iG−1
y,j

(
m̂

(0)
j (ω) + ˆ̃nj (ω)

)
+ ˆ̃ni(ω) (22)

= Gy,iG−1
y,j m̂j (ω) + ˆ̃ni(ω). (23)

Suppose there are N receive antennas located at x1, . . . , xN , indexed by 1, . . . , N . A
vector measurement model can be formed by taking one of the receivers as a reference.
Without loss of generality, we take the j th receiver as a reference and form the following
measurement vector:

m = [
m̂

j

1 m̂
j

2 · · · m̂
j

N

]T
(24)

where m̂
j

i , i = 1, . . . , N and i �= j , denotes the measurement m̂i modeled in terms of the
reference measurement m̂j . Similarly, we can vectorize the ‘reference measurements’, m̂j ’s,
and the measurements due to noise and clutter:

10
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mr = [m̂j m̂j · · · m̂j ]T (25)

n = [ ˆ̃n1 ˆ̃n2 · · · ˆ̃nN ]T (26)

where in ˆ̃ni , i �= j as defined in (11) and (14). Note that m, mr and n are all vectors of length
(N − 1).

The composition of the back-propagation and forward-propagation operators can be
represented as a diagonal matrix. For non-cooperative sources of opportunity, this matrix
is given by

Gy = diag
[
Gy,1G−1

y,j Gy,2G−1
y,j · · · Gy,NG−1

y,j

]
(27)

where i �= j and Gy is (N − 1) × (N − 1).
Using (21), (24)–(27), we form the vectorized passive measurement model as follows:

m(ω) = Gymr(ω) + n(ω) (28)

for some range of ω. Note that in (28), all the operations are understood to be elementwise.

4. Passive target imaging as a spatially resolved binary hypothesis testing problem

We formulate the imaging problem as a binary hypothesis testing problem which has its roots in
the generalized likelihood ratio test (GLRT) (see [33, 34]). The GLRT is a powerful framework
for beamforming and imaging in the presence of unknown parameters. The application of the
GLRT formalism to imaging involves modeling the scene as a collection of point targets with
unknown locations and setting up a spatially resolved hypothesis testing problem to evaluate
the presence or absence of a target [35]. The GLRT provides a particularly suitable framework
for the sparse aperture arrays due to limited data available. In this formalism, we extract a
spatially resolved test statistic (a sufficient statistic of the unknown quantity of interest) as
opposed to reconstructing the quantity itself due to the limited number of measurements
available. The image is then formed by the spatially resolved test statistic where the locations
and possibly the shapes of the targets can be identified by thresholding the reconstructed
image. Additionally, the GLRT framework allows us to incorporate a priori information on
noise, clutter and target into our problem formulation. In our subsequent development, we
limit ourselves to first- and second-order statistical information and constrain the discriminant
functional involved in the detector design to be linear. As a result, maximizing the SNR of
the test statistic gives the linear discriminant functional which is the optimal likelihood ratio
test under the Gaussian assumption. In [35], we show that the GLRT under the assumptions
of the free-space propagation model and white Gaussian distribution for the noise, clutter and
target becomes equivalent to the backprojection approach. However, in general, the GLRT
formalism can accommodate arbitrary data likelihood and prior models and can result in a
nonlinear functional of the measurements.

In this section, we first set up a spatially resolved binary hypothesis testing and next
determine a test statistic for each location (y, h(y)) ∈ R

3 of the scene using the measurement
model developed in (28). We determine the test statistic by maximizing the SNR of the test
statistic while constraining the associated discriminant functional to be linear.

The passive target detection or imaging problem can be formulated as the following
spatially resolved binary hypothesis test:

H0 : m = n ⇒ target absent
H1 : m = Gymr + n ⇒ target present

(29)

where Gy, mr, m and n are as defined in (24)–(28).

11
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The solution of a binary hypothesis testing problem involves design of a discriminant
functional, which produces a test statistic of measurements, and a thresholding scheme [38].
To design a discriminant functional, one first needs to determine the statistics of the random
processes involved under the two hypothesis. Recall that the clutter is a zero-mean random field
and the target reflectivity function is a random field with the mean T (y) and autocovariance
function RT. Note that the discriminant functional for a deterministic target model can be
obtained by simply setting the second-order statistics of the target reflectivity function to
zero. The assumption of random reflectivity is justified for a distributed aperture array as the
scattering properties of a typical target vary with the angle of incidence and scattering.

Using (15), (20), (25), (26) and (29), we obtain

E[m|H0] = 0 (30)

Cov[m|H0] = Rn =: R0 (31)

E[m|H1] = GyE[mr|H1] = Gymr (32)

Cov[m|H1] = Gy(RT + Rn)GH
y + Rn =: R1 (33)

where mr denotes E[mr|H1] and GH
y denotes the Hermitian transpose of Gy . Using (14) and

(17), for statistical targets, each component of mr is

E[m̂j (ω)|H1] = m̂j (ω) 
 −Gy,j T (y)ω2 ¯̂Ein(y, ω) (34)

where T and ¯̂Ein are the mean value of the target T and the incident field Êin, respectively.
RT in (33) denotes the autocovariance of the noise- and clutter-free reference

measurements in the presence of a statistical target, which is given by1

RT (ω, ω′) = E
[(

m(0)
r (ω) − m̂r(ω)

)(
m(0)

r (ω′) − m̂r(ω
′)
)H ]

(35)

where m(0)
r = [

m̂
(0)
j , m̂

(0)
j , . . . , m̂

(0)
j

]T
is the vector of the noise- and clutter-free reference

measurements.
Rn in (33) and (33) is the autocovariance of the measurements due to clutter and noise,

i.e.

Rn(ω, ω′) = E[n(ω)nH (ω′)]. (36)

We wish to determine a linear discriminant functional which maximizes the SNR of the
output of the discriminant functional, which we call the test statistic, and denote it with λ.
The linear discriminant functional involved in our problem has the form

λ = 〈m, w〉 :=
∫

wH m dω =
∑
i,i �=j

∫
w∗

i (ω)m̂
j

i (ω) dω (37)

where w is a template given by

w = [w1 w2 · · · wN ]T . (38)

(37) is a general form for the linear discriminant functional and can be applied to both single
and multiple frequency measurements. For single frequency measurements, the integral can
simply be omitted.

The expression for the SNR of λ for processes with finite first- and second-order statistics
is given as [34, 43]

SNRλ = |E[λ|H1] − E[λ|H0]|√
1/2(Var[λ|H1] + Var[λ|H0])

. (39)

3 Note that RT (ω, ω′) can be obtained from a priori statistical target information where E[m̂(0)
j (ω)m̂∗(0)

j (ω)] 
∫ ∫
g(xj , y, ω)g∗(xj , y′, ω′)E[T (y)T ∗(y′)]ω2ω′2E[Êin(y, ω)Êin∗

(y′, ω′)] dy dy′.

12
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Each term in (39) can be determined using (30)–(33). The numerator is given by

E[λ|H1] − E[λ|H0] = 〈Gymr, w〉. (40)

The variance of λ can be expressed as

Var[λ|Hk] = E[|〈m, w〉|2|Hk], k = 0, 1, (41)

=
∫

wH Rkw dω dω′ (42)

=: 〈Rkw, w〉, k = 0, 1, (43)

where Rk , k = 0, 1, is a symmetric non-negative definite integral operator with the matrix
kernel Rk . Note that the integration in (41) should be understood to be elementwise. Plugging
(41) into (39), we obtain

Var[λ|H1] + Var[λ|H0] =
∫

wH [R1 + R0] w dω dω′ (44)

=
∫

wH
[
Gy(RT + Rn)GH

y + 2Rn
]︸ ︷︷ ︸

2R

w dω dω′ (45)

=: 〈2Rw, w〉 (46)

where R is a symmetric, non-negative definite operator with the matrix kernel R. Using (39),
(40) and (44), the SNR2

λ can be expressed in terms of the unknown template as follows:

J (w) = SNR2
λ = |〈Gymr, w〉|2

1/2〈(R1 + R0)w, w〉 . (47)

The optimal linear template maximizing J (w) is then

wopt = R−1
Gymr. (48)

Equation (48) shows that the optimal template is location dependent. A detailed derivation of
the optimal linear template can be found in appendix A.

Note that for deterministic targets, the optimal template can be obtained from the one
derived for statistical targets by simply setting RT = 0. For deterministic targets, further
simplifications can be obtained when the measurements due to clutter and noise are wide-
sense stationary and uncorrelated. In this case, Rn reduces to a diagonal matrix. Without loss
of generality, if the first receiver is the reference, then

Rii
n (ω, ω′) = Si+1

n (ω)δ(ω − ω′), i = 1, . . . , N − 1, (49)

where Si
n(ω) is the power spectral density function of the measurements at the ith receiver due

to clutter and noise. From (45) and (27), the kernel of R also reduces to a diagonal matrix.
We define

S(ω) =
∫

R(ω, ω′) dω′. (50)

Thus, under the deterministic target and wide-sense stationarity assumptions, (48)
becomes

wopt = S
−1

(ω)Gy(ω)mr(ω) (51)

where S is a diagonal matrix with elements Si(ω), i = 1, . . . , N and i �= j , which is a function
of Si

n(ω) and the kernel of Gy .
Note that one can form a different vectorized measurement model and obtain a different

template and a test statistic λj for each reference measurement m̂j , j = 1, . . . , N . The
final image can be formed by the coherent sum of all the spatially resolved test statistics λj ,
j = 1, . . . , N .

13
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5. Optimal template examples for the free-space and a multi-pathing environment
model

In this section, we focus on two specific examples of Green’s function, namely the free-space
and shoot-and-bounce models, and describe the optimal templates for passive image formation
for a point target model.

In many applications, the target model can be simplified to a point scatterer, i.e.

T (y) = T δ(y − y0). (52)

Thus, the forward-propagation operator in (17) reduces to ĝ(xi ,y0, ω) and its inverse becomes
1/ĝ(xi ,y0, ω) for some range of ω. For a moving target, (21) simplifies to

m̂
j

i (ω) = ĝ(xi ,y0, ω)

ĝ(xj ,y0, ω)
m̂j (ω) + ˆ̃ni(ω). (53)

Note that if ĝ(xj ,y0, ω) has zeros in the range of frequencies considered, it can be
replaced by its pseudo-inverse given in (19).

5.1. Passive imaging in free-space

The 3D free-space Green’s function is given by

ĝ0(x, y, ω) = e−ik‖x−y‖

4π‖x − y‖ (54)

where k = ω/c is the wavenumber and c denotes the speed of wave propagation in free-space.
The above equation indicates that in free-space, the Green’s function is a delay operator with
a geometric spreading factor ‖x − y‖. Under the point target assumption, the measurement at
the ith receiver can be expressed in terms of the measurement at the j th receiver as follows:

m̂
j

i (ω) = ‖xj − y0‖
‖xi − y0‖ e−ik(‖xi−y0‖−‖xj −y0‖)m̂j (ω) + ˆ̃ni(ω) (55)

where y0 = (y0, h(y0)).
For a single pair of receivers, the point target approximation simplifies the detection

template so that the matrix Gy consists of diagonal elements, ĝ(xi ,y, ω)/ĝ(xj ,y, ω).
Under the wide-sense stationary clutter assumption, and for the deterministic point target,

it is straightforward to show that the diagonal elements Si(ω) of S are given by

Si(ω) =
(

1

2

‖xj − y‖2

‖xi − y‖2
+ 1

)
Si

n(ω). (56)

Each component of the optimal template is then given by

wi =
((

1

2

‖xj − y‖2

‖xi − y‖2
+ 1

)
Si

n(ω)

)−1 ‖xj − y‖
‖xi − y‖ e−ik(‖xi−y‖−‖xj −y‖)E[m̂j (ω)] (57)

where i = 1, . . . , N and i �= j .
The first term in (57) is a filter which involves scaling due to geometric spreading factors

and prewhitening due to colored noise and clutter measurements. Thus, the output of the linear
discriminant functional can be viewed as a summation of correlations between the delayed,
scaled and filtered replica of the reference measurement m̂j and the measurement m̂i , i �= j ,
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which is given by

λ(y) =
∑
i,i �=j

∫ ‖xj − y‖
‖xi − y‖ E∗[m

′
j (τ − (‖xi − y‖ − ‖xj − y‖)/c)]mi(τ) dτ (58)

where m
′
j (τ ) is the filtered version of mj(τ) where the filtering is as described in (57).

5.2. Passive imaging in multiple-scattering environments

For high frequencies, the Green’s function of a smoothly varying background cb(x) can be
approximated by the ray-theoretic Green’s function [44]

ĝ(x, y, ω) 
 a(x, y) e−iωτ(x,y) (59)

where τ denotes the travel time from x to y and a(x, y) is the corresponding ray-theoretic
amplitude that is derived by solving the eikonal and the (first) transport equations. This model
can be iteratively updated by considering point scatterers embedded in smoothly varying
background and Born series [45, 46].

A more useful approximation to Green’s function can be obtained from the Foldy–Lax
and T-matrix equations [47, 48]. Assuming that there are L point scatterers located at yl ,
l = 1, . . . , L, together with the assumption that the scattered field from an individual point
scatter is proportional to the free-space Green’s function, ĝ0, the scattered field from L scatterers
is given by

Êsc(x, ω) =
L∑

l=1

ĝ0(x, yl , ω)alÊl(yl , ω) (60)

Êl(yl , ω) = Êin(yl , ω) +
∑

p,p �=l

ĝ0(yl , yp, ω)apÊp(yp, ω). (61)

Equation (60) says that the scattered field is the sum of the fields scattered from each scatterer;
moreover, the field scattered from the lth scatterer is proportional to the field Êl that is incident
upon the lth scatterer. (61) says that the lth local incident field is the overall incident field plus
the field scattered from all other scatterers. If the scattering strength al, and the positions yl ,
l = 1, . . . , L are known, (61) can be solved for the Êl ; then the total field Ê = Êin + Êsc can
be found from (60).

When the scatterers are well separated, the background Green’s function can be written
in the form

ĝ(x, y, ω) =
∑

s∈paths

ãs(x, y, ω) e−iωτs (x,y) (62)

where τs denotes the travel time along the path s and ãs is an amplitude factor that depends on
geometric spreading factors, and the strength of the scatterers al.

An approximation to (62) can be obtained by considering only the paths originating from
the target to a background scatterer and from the background scatterer to the receiver. This
results in L multi-path bounces between the target and background medium for L scatterers
embedded in a homogenous medium. In this case, the Green’s function of the background can
be approximated by

ĝ(x, y, ω) = e−ik‖x−y‖

4π‖x − y‖ +
L∑

l=1

al

e−ik(‖yl−y‖+‖x−yl‖)

4π‖yl − y‖‖x − yl‖ (63)

where yl for l = 1, . . . , L denotes the location of the scatterers and al are the corresponding
attenuation coefficients. The Green’s function above is referred to as the shoot-and-bounce
model.
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The passive measurement model then becomes

m̂
j

i (ω) = Hj(ω)

[
α0β0 e−ikrij

+
L∑

l=1

(
alβlα0 e−ikr

ij

l + alβlα0 e−ikr̄
ij

l

)

+
L∑

l,p=1

alapβlαp e−ikr̄
ij

lp

]
m̂j (ω) + ˆ̃ni(ω) (64)

where

Hj(ω) =
⎡
⎣α2

0 +
L∑

l=1

(
a2

l α
2
l + 2alα0αl cos kr̄

jj

l

)
+ 2

L∑
l �=p

alapαlαp cos kr̄
jj

lp

⎤
⎦−1

, (65)

rij = ‖xi − y0‖ − ‖xj − y0‖, (66)

r
ij

l = ‖xi − yl‖ + ‖yl − y0‖ − ‖xj − y0‖, (67)

r̄
ij

l = ‖xi − y0‖ − ‖xj − yl‖ − ‖yl − y0‖, (68)

r̄
ij

lp = ‖xi − yl‖ + ‖yl − y0‖ − ‖xj − yp‖ − ‖yp − y0‖, (69)

al(p) is the attenuation coefficient of the lth (or pth) multi-path bounce, α0 = 1/4π‖xj − y0‖
and β0 = 1/4π‖xi − y0‖, which correspond to the geometrical spreading factors of
the direct-path propagation with respect to the j th and ith element, respectively, and
αl(p) = 1/4π‖xj − yl(p)‖‖yl(p) − y0‖ and βl = 1/4π‖xi − yl‖‖yl − y0‖, which represent the
geometric spreading factors corresponding to multi-path propagation.

As shown in (66)–(69), rij corresponds to the range difference between the two direct-path
measurements at the ith and j th elements; r

ij

l and r̄
ij

l correspond to the range differences
between the lth multi-path measurement at the ith element and the direct path delay
measurement at the j th element and vice versa; r̄

ij

lp corresponds to the range differences
between the two multi-path measurements at the ith and j th elements. The Hj(ω) can be
viewed as a deconvolution filter. The above equation shows that the measurement at the ith
element is modeled as a sum of the appropriately delayed and filtered versions of the reference
measurement m̂j .

Using the passive measurement model for a multi-path propagation medium given in (64)
and the wide-sense stationary clutter model, each element of the optimal template becomes

wi =
((

1

2
|Dij (ω)|2 + 1

)
Si

n(ω)

)−1

Dij (ω)E[m̂j (ω)] (70)

where

Dij (ω)= Hj(ω)

⎡
⎣α0β0 e−ik rij

+
L∑

l=1

(
alβlα0 e−ik r

ij

l + alβ0αl e−ik r̄
ij

l

)
+

L∑
l,p=1

alapβlαp e−ik r̄
ij

lp

⎤
⎦ .

(71)

The template in (70) and (71) shows that the resulting test-statistic value is the sum of the
correlations between appropriately delayed and filtered reference measurement, mj, and the
measurement mi. The delays in each term in (71) are as described in (64).
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6. Resolution analysis

We focus our analysis on the deterministic point target model given by

T (y) = T δ(y − y0) (72)

and analyze how point targets are resolved in the image λ(y). We analyze the resolution in
terms of the PSF and the SNR of the spatially resolved test-statistic image for both free-space
and multi-path propagation models described in the previous section.

The PSF, K(y, y0), of an imaging operator is defined as the image of a point object
represented by the Dirac-delta function, δ(y − y0), with y serving as the spatial index of the
image and y0 as the location of the point target in the scene [38]. Since the test statistic is a
random variable, the expected value of the spatially varying test statistic for a point target can
be interpreted as the PSF, i.e.

K(y, y0) := E [λ(y)] (73)

= 〈E[m], R−1
Gymr〉. (74)

Note that for a deterministic point target model given by (72)

E[m̂j (ω)] = −ĝ(xj , y0, ω)T ω2 ¯̂Ein(y0, ω) (75)

with

Êin(y0, ω) =
M∑

q=1

ĝ(y0, zq, ω)p̂q(ω) (76)

where ¯̂Ein is the mean value of the incident field Êin, pq is the transmitted waveform from the
qth transmitter located at zq , q = 1, . . . , M , and M is the number of transmitters illuminating
the scene.

The SNR of λ(y) as defined in (39) can be interpreted as the contrast-to-noise ratio of the
resulting image [38].

Without loss of generality, we first assume that there is a single pair of receivers and a
single transmitter present in the scene. This allows us to simplify the analysis and distill the
important aspects that can readily be generalized. We next extend our results to the case where
there are multiple pairs of receivers and multiple transmitters.

6.1. Resolution analysis for the free-space model

6.1.1. PSF and SNR for two receivers and a single transmitter. We assume that there are
two receivers located at x1 and x2, and a single transmitter located at z1 illuminating the scene.
Thus, from (37), (54)–(57), the expression for the mean value of the spatially varying test
statistic is

K(y, y0) = E[λ(y)] = β

∫
S

−1
2 (ω)ω4 e−ikr21(y,y0) |p̂1(ω)|2 dω (77)

where

rh
21(y, y0) = ‖x2 − y‖ − ‖x1 − y‖ + ‖x1 − y0‖ − ‖x2 − y0‖ (78)

β = T 2‖x1 − y‖
(4π)4‖x2 − y‖‖x1 − y0‖‖x2 − y0‖‖y0 − z0‖2

(79)

and S2(ω) is given by (56) for i = 2, j = 1; p1 is the transmitted waveform. (77) defines

the correlation of
∣∣S−1/2

2 (ω)ω2p̂1(ω)
∣∣ with itself in the time domain. Clearly, the correlation

peaks when r12(y, y0) = 0. In other words, for a point target located at y0, the peak correlation
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Figure 4. Hyperbolic isorange contours associated with a single transmitter and two receivers in
free-space. The blank circle shows the transmitter location and the cross shows receiver locations.
The solid circle shows the target location.

value occurs wherever

‖x2 − y‖ − ‖x1 − y‖ = ‖x2 − y0‖ − ‖x1 − y0‖. (80)

(80) specifies a hyperbola on the plane defined by h(y) = h with foci located at x1 and x2.
Thus, the test statistic due to a point target located at y0 is constant along this hyperbola. We
shall refer to these hyperbolas along which the test-statistic values are constant as hyperbolic
isorange contours. These isorange contours are illustrated in figure 4.

Note that if the measurements due to noise and clutter are white, under the narrowband
assumption, (77) defines the auto-ambiguity function of the transmitted waveform p1

[49, 50]. When the measurements due to noise and clutter are colored, (77) can be interpreted
as a generalized auto-ambiguity function in which the contributions of the transmitted pulse
at every frequency to the classical auto-ambiguity function is downweighted with the power
of the noise and clutter measurements. The shape of this generalized auto-ambiguity function
determines the intensity of the hyperbolas in the test statistics as shown by (77). More
specifically, the support of the generalized auto-ambiguity function determines the set of
hyperbolic paths that contribute to the width of the spread along the hyperbolas in the test-
statistic image. In other words, delay due to rh

12 identifies the position in the auto-ambiguity

function of
∣∣S−1/2

2 (ω)ω2p̂1(ω)
∣∣ and selects the nearby hyperbola associated with that delay and

with the amplitude proportional to the amplitude of the generalized auto-ambiguity function
at that delay. This, in turn, forms a collection of hyperbolas with amplitudes related to the
auto-ambiguity function and thus results in a ‘spreading’ in the image along these hyperbolas.
Figure 5 illustrates this spreading in the PSF. The figure on the left is an example of an auto-
ambiguity function. The figure on the right shows the PSF due to this auto-ambiguity function.
The spreading was shown limited to the dotted lines on the auto-ambiguity function plot. It is
clear from figure 5 that the spreading along the hyperbolas also depends on the range. As the
target y0 is further away from the receivers, the spreading increases. This is due to the fact
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Figure 5. An illustration of the relationship between the auto-ambiguity function of the waveform
(left) and the point spread function of the test-statistic image (right). The blank circle shows
the transmitter location and the cross shows receiver locations. The solid circle shows the target
location.

that the angular difference between x1 − y0 and x2 − y0 is smaller as the distance from y0 to
the receivers becomes larger; therefore, nearby hyperbolic isorange curves deviate more from
each other as y0 is further away from the receivers.

We performed a point target simulation to confirm our analysis. The simulation setup
is as follows: there are two receivers located at x1 = [36.6 0 6]T and x2 = [20 0 6]T , all
in meters. The transmitter is located in the middle of the two receivers at z1 = [28.3 0 6]T

m and the point target is located at y0 = [45 70 0.3]T m. The transmitted pulse, p(t), is a
10 nanosecond (ns) continuous wave at 900 MHz. Figure 6 shows the resulting PSF. Note
that the image of the point target is smeared along the hyperbolic path as the width widens
with increasing range consistent with the above analysis. Additionally, since the test statistics
have the same intensity along the hyperbolic isorange contours, one pair of receivers can only
locate a target up to the isorange contour passing through the target location y0.

The SNR2
λ at each location of the image is given by

SNR2
λ = T 2‖x1 − y‖2

(4π)4‖x1 − y0‖2‖x2 − y‖2‖y0 − z1‖2

∫
S

−1
2 (ω)ω4|p̂1(ω)|2 dω. (81)

For the derivation of (81), see appendix B.2. We see from (81) that the SNR2
λ is directly related

to the power of the transmitted waveform and inversely related to the power of measurements
due to noise and clutter.

6.1.2. PSF and SNR for multiple receivers and multiple transmitters. The PSF of the imaging
operator for N � 2 and for M � 1 is given by

K(y, y0) = T 2
M∑

q=1

N∑
i �=j

C1

∫
S

−1
i (ω)ω4 e−ik rh

ij (y,y0)|p̂q(ω)|2 dω + T 2
M∑

q �=q ′

N∑
i �=j

C2

×
∫

S
−1
i (ω)ω4 e−ik rh

ij (y,y0) e−ik(‖y0−zq‖−‖y0−zq′ ‖)p̂q(ω)p̂∗
q ′(ω) dω (82)
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Figure 6. The PSF for the free-space propagation model resulting from using two receivers located
at [36.6 0 6]T and [20 0 6]T , and a single transmitter located at [28.3 0 6]T . The blank circle
shows the transmitter location and the cross shows receiver locations. The solid circle shows the
target location.

where

rh
ij (y, y0) = ‖xi − y‖ − ‖xj − y‖ + ‖xj − y0‖ − ‖xi − y0‖, (83)

and C1, C2 are i, j, q, q ′ dependent scaling terms due to geometric spreading factors. (For a
detailed derivation of (82) and the explicit forms of C1 and C2, see appendix B.1.)

Equation (82) shows that the PSF of the imaging operator is defined by the generalized
auto-ambiguity and generalized cross-ambiguity functions of the transmitted waveforms pq,
q = 1, . . . ,M , where the generalized auto-ambiguity function is interpreted as discussed in
the previous subsection. The first summation in (82) is due to the auto-ambiguity functions and
the second summation is due to the cross-ambiguity functions of the transmitted waveforms.

Note that if there is a single transmitter illuminating the scene, i.e. M = 1, the second
summation in (82) vanishes. Clearly for M = 1 and N � 3, there are multiple pairs of receivers
generating multiple hyperbolic isorange contours, all intersecting at y0. The resulting image
is the summation of these intersecting hyperbolas forming a bright spot at the location of
the target, y0. Figure 7 illustrates the PSF of the image using three receivers and a single
transmitter.

If there are multiple transmitters illuminating the scene, i.e. M � 2, (82) shows that the
generalized cross-ambiguity functions of the transmitted waveforms have peaks occurring at

rh
ij (y, y0) = ‖xi − y‖ − ‖xj − y‖ + ‖xj − y0‖ − ‖xi − y0‖ (84)

= ‖y0 − zq‖ − ‖y0 − zq ′ ‖. (85)

(84) defines additional hyperbolas with the same foci, but different radii than the hyperbolas
in the first summation. Clearly, for arbitrary transmitted waveforms, these hyperbolas do not
intersect at the target location when zq �= zq ′ leading to artifacts in the image. These artifacts
can be avoided if the transmitted waveforms have cross-ambiguity functions with a relatively
low amplitude.
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Figure 7. The PSF for the free-space propagation model resulting from using three receivers
located at [0 0 6]T , [35 0 6]T and [70 0 6]T , and a single transmitter located at [28.3 0 6]T .
The intersection of the two hyperbolas, i.e. the bright spot indicated by a solid circle, shows the
target location.

The impact of having more than two receivers and more than one transmitter can also be
observed in the SNR of the image. The SNR2

λ is given by the following equation:

SNR2
λ = T 2

M∑
q=1

N∑
i �=j

C ′
1

∫
S

−1
i (ω)ω4|p̂q(ω)|2 dω

+ T 2
M∑

q �=q ′

N∑
i �=j

2C ′
2 Re

[∫
S

−1
i (ω)ω4 e−ik(‖y0−zq‖−‖y0−z′

q‖)p̂q(ω)p̂∗
q ′(ω) dω

]
(86)

where C ′
1 and C ′

2 are i, j, q, q ′ dependent scaling terms due to geometric spreading factors.
(See appendix B.2 for the definitions of these quantities and the derivation of (86).)

Note that the first summation in (86) is the SNR2
λ of the true target image, which results

from the auto-ambiguity functions of the transmitted waveforms, while the second summation
is the SNR2

λ of the artifact component in the image, which results from the cross-ambiguity
functions of the transmitted waveforms.

Compared to the SNR2
λ of the two-receiver and a single-transmitter scenario given in (81),

(86) shows that for each additional receiver, the SNR2
λ of the true target image increases by

T 2C ′
1

∫
S

−1
i (ω)ω4|p̂(ω)|2 dω. For M transmitters, the SNR2

λ of the true target image increases
roughly by a factor of M. However, we see that the SNR2

λ of the artifact component also
increases with the increasing number of transmitters with the worse case occurring when
the same waveforms, i.e. p̂q(ω) = p̂q ′(ω) for all ω and q �= q ′, are transmitted from all
transmitters.

6.2. Resolution analysis for a multi-path model

We consider the shoot-and-bounce multi-path Green’s function model described in
section 5 and further assume that all multi-path bounces are specular reflections. This allows
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us to model the environment as a collection of mirror planes. Each plane is characterized by
its normal vector a, and affine plane equation, A defined as

A := {v : v · a = υ} (87)

where υ is a scalar that determines the location of the wall. This allows us to express the
multi-path components of the Green’s function given in section 5 using the mirror antenna
element locations as follows:

ĝ(x, y, ω) = e−ik‖x−y‖

4π‖x − y‖ +
L∑

l=1

al

e−ik‖xl−y‖

4π‖xl − y‖ (88)

=
L∑

l=0

al

e−ik‖xl−y‖

4π‖xl − y‖ , a0 = 1, x0 = x (89)

where

xl = x − 2
x · al − υ

‖al‖2
al , l = 1, . . . , L, (90)

is the reflection of x about the plane, Al that is defined by the normal al associated with the
lth (l = 1, . . . , L) multi-path bounce and al is the corresponding attenuation coefficient.

The optimal linear template for the multi-path propagation model is given by

wi = −S
−1
i (ω)D̃ij (ω)T ω2

M∑
q=1

L∑
p,ν=0

apaν e−ik(‖xp

j −y0‖+‖y0−zν
q‖)

(4π)2
∥∥xp

j − y0

∥∥∥∥y0 − zν
q

∥∥ p̂q(ω) (91)

where

Si(ω) = (
1
2 |D̃ij (ω)|2 + 1

)
Si

n(ω) (92)

with Si
n(ω) being the power spectral density function of the measurement due to clutter and

noise at the ith receiver;

D̃ij (ω) = ĝ(xi , y, ω)

ĝ(xj , y, ω)

= H̃j (ω)

L∑
l,p=0

alap

e−ik(‖xl
i−y‖−‖xp

j −y‖)

(4π)2
∥∥xl

i − y
∥∥∥∥xp

j − y
∥∥ (93)

with

H̃j (ω) =
⎛
⎝ L∑

p=0

a2
p

(4π)2
∥∥xp

j − y
∥∥2 +

L∑
p �=p′

2apap′ cos ω
c

(∥∥xp

j − y
∥∥ − ∥∥xp′

j − y
∥∥)

(4π)2
∥∥xp

j − y
∥∥∥∥xp′

j − y
∥∥

⎞
⎠−1

. (94)

al, ap, a′
p in the above equations are the attenuation coefficients associated with the

corresponding multi-path bounces. Note that x0
i = xi , x0

j = xj ; and xl
i , xp

j , l, p = 1, . . . , L,
are the reflections of the receivers located at xi and xj about the planes Al and Ap, respectively.
We refer to these receivers as mirror receivers. In (91), z0

q = zq , q = 1, . . . ,M , denotes the
location of the qth transmitter. zν

q , ν = 1, . . . , L, are the reflections of the transmitters located
at zq about the plane Aν . We refer to these transmitters as mirror transmitters.
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6.2.1. PSF and SNR for two receivers and a single transmitter. We assume that there are
two receivers located at x1 and x2 and a single transmitter located at z1. In this scenario, we
can show that the PSF of the imaging operator is given by

K(y, y0) = T 2
L∑

l,l′,p,p′,ν,ν ′=0

C

∫
S

−1
2 (ω)H̃1(ω)ω4

× e−ik [rhm
21 (y,y0;l,p;l′,p′)+(‖y0−zν

1‖−‖y0−zν′
1 ‖)]|p̂1(ω)|2 dω (95)

where

rhm
21 (y, y0; l, p, l′, p′) = ∥∥xl

2 − y
∥∥ − ∥∥xp

1 − y
∥∥ +

∥∥xp′
1 − y0

∥∥ − ∥∥xl′
2 − y0

∥∥ (96)

and C is an l, l′, p, p′, ν, ν ′ dependent scaling term due to geometric spreading factors and
multi-path attenuation coefficients. (For an explicit form of C and the derivation of (95), see
appendix B.3.)

Similar to the free-space case, (95) can be interpreted as a generalized auto-ambiguity
function of the transmitted waveform p1 which attains its maximum whenever

rhm
21 (y, y0; l, p, l′, p′) +

∥∥y0 − zν
1

∥∥ − ∥∥y0 − zν ′
1

∥∥ = 0. (97)

Clearly, for all the points y on the intersection of the ground topography and the hyperboloid,∥∥xl
2 − y

∥∥ − ∥∥xp

1 − y
∥∥ = ∥∥xl′

2 − y0

∥∥ − ∥∥xp′
1 − y0

∥∥ +
∥∥y0 − zν ′

1

∥∥ − ∥∥y0 − zν
1

∥∥, (98)

(97) becomes zero. Thus, (95) shows that the test-statistic image is the sum of hyperbolas
with foci located at xl

2 and xp

1 , l, p = 0, . . . , L, corresponding to the locations of the real and
mirror receivers. The hyperbolas corresponding to l = l′, p = p′ and ν = ν ′ intersect at
the correct target location and increase the test-statistic value at the correct target location by
roughly a factor of (L + 1)3, where L being the number of multi-path bounces. However, the
hyperbolas where l �= l′, or p �= p′, or ν �= ν ′ may peak at incorrect locations in the image
resulting in artifacts.

Figure 8 illustrates the increase in the target detectability and artifacts due to multi-path
bounces.

The SNR2
λ for this scenario is given by

SNR2
λ = T 2

⎛
⎝C ′

1 +
L∑

l,p,ν �=0

C ′
2

⎞
⎠∫

S
−1
2 (ω)|H̃1(ω)|2ω4|p̂1(ω)|2 dω

+ T 2
L∑

α �=α′
2C ′

3 Re

[ ∫
S

−1
2 (ω)|H̃1(ω)|2ω4 e−ik rhm

21 (y,y; l,p; l′,p′)

× e−ik(‖xp′′
1 −y0‖−‖xp′′′

1 −y0‖+‖y0−zν
1‖−‖y0−zν′

1 ‖)|p̂1(ω)|2 dω

]
(99)

where rhm
21 (y, y; l, p, l′, p′) is as defined in (96); α and α′ are multi-indices defined by

α = (l, p, p′′, ν), p �= p′′, α′ = (l′, p′, p′′′, ν ′), p′ �= p′′′; and C1, C2, C3 are α, α′ dependent
scaling terms due to geometric spreading factors and multi-path attenuation coefficients.
(For the explicit definitions of C ′

1, C
′
2, C

′
3 and the derivation of (99), see appendix B.4 for

i = 2, j = 1 and q = 1.)
Note that the first summation in (99) corresponds to the SNR2

λ of the true target image
due to the direct-path propagation, the second summation in the SNR2

λ corresponds to the true
target image due to the multi-path propagation and the third summation is the SNR2

λ of the
artifacts in the image.
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Figure 8. The PSF for the shoot-and-bounce multi-path propagation model. The shoot-and-bounce
model includes a perfectly reflecting wall at x = 0. The bright spot, indicated by a solid circle,
shows the target location and the two bright spots in the upper left corner, indicated by the solid
squares, are the artifacts due to multi-path. The location of the transmitters and receivers and the
transmitted pulse parameters are as described in figure 6.

As compared to (81), the SNR2
λ of the image obtained with two receivers and a single

transmitter operating in free-space, the SNR2
λ of the true target image in a multi-path

environment increases by roughly a factor of (L+ 1)3, where L is the number of the multi-path
bounces. However, there are also additional artifacts in the image in multi-path environments
as shown by the third summation in (99). The number of summands in the third summation
is roughly [L(L + 1)/2]4. Note that although the number of summands in the SNR2

λ of the
artifact component is much larger than that of the true target image, their strength is relatively
low, because the transmitted waveform is auto-correlated with a delayed version of itself, i.e.
the energy of the transmitted waveforms are not coherently integrated, as indicated by the
non-zero phase terms in the third summation of (99).

6.2.2. PSF and SNR for multiple receivers and multiple transmitters. The PSF of the
test-statistic image for N � 2 and M � 1 is given by

K(y, y0) = T 2
M∑

q=1

N∑
i �=j

L∑
l,p,ν=0

C1

∫
S

−1
i (ω)H̃j (ω)ω4 e−ik rhm

ij (y,y0;l,p;l,p)|p̂q(ω)|2 dω

+ T 2
M∑

q �=q ′

N∑
i �=j

L∑
l �=l′,p �=p′,ν �=ν ′

C2

∫
S

−1
i (ω)H̃j (ω)ω4

× e−ik [rhm
ij (y,y0;l,p,l′,p′)+(‖y0−zν

q‖−‖y0−zν′
q′ ‖)]p̂q(ω)p̂∗

q ′(ω) dω (100)

where

rhm
ij (y, y0; l, p; l, p) = ∥∥xl

i − y
∥∥ − ∥∥xp

j − y
∥∥ +

∥∥xp

j − y0

∥∥ − ∥∥xl
i − y0

∥∥ (101)

and C1, C2 are q, q ′, i, j, l, p, ν, l′, p′, ν ′ dependent scaling terms due to geometrical spreading
factors and multi-path attenuation coefficients. (For explicit definitions of C1, and C2 and the
derivation of (100), see appendix B.3.)
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Note that the first summation in (100) contributes to the reconstruction of the true target
image, while the second summation contributes to the reconstruction of the artifact component
in the image.

When there is only a single transmitter illuminating the scene, multiple hyperbolic isorange
contours with foci at the real and mirror receiver locations intersect at the correct target
location, y0, as indicated by the first term in (100). As a result the PSF of the imaging
operator increases roughly by a factor of (N − 1) (the number of multi-path bounces) as
compared to the two-receiver scenario described in (95). However, similar to the two-receiver
and a single-transmitter scenario operating in multi-path environments, additional hyperbolic
isorange contours with the same foci but different radii than the ones in the first summation in
(100) contribute to the reconstructions of artifacts in the image.

For the multiple-transmitter scenario, the PSF at the correct target location increases
roughly by a factor of M as compared to the PSF for the single-transmitter scenario in (100).
However, (100) shows that unless the transmitted waveforms have good cross-ambiguity
functions, such as pseudo-orthogonality, the cross-ambiguity terms due to the following
hyperbolas,

rhm
ij (y, y0; l, p, l′, p′) = ∥∥y0 − zν ′

q ′
∥∥ − ∥∥y0 − zν

q

∥∥ (102)

for q �= q ′ and l �= l′, p �= p′ or ν �= ν ′ may intersect at y �= y0, resulting in additional
artifacts in the image.

The effect of having multiple receivers and transmitters in a multi-path environment can
be also observed in the SNR2

λ:

SNR2
λ = T 2

M∑
q=1

N∑
i �=j

C ′
1

∫
S

−1
i (ω)|H̃j (ω)|2ω4|p̂q(ω)|2 dω

+ T 2
M∑

q=1

N∑
i �=j

L∑
l,p,ν �=0

C ′
2

∫
S

−1
i (ω)|H̃j (ω)|2ω4|p̂q(ω)|2 dω

+ T 2
M∑

q �=q ′

N∑
i �=j

L∑
α �=α′

2C ′
3 Re

[ ∫
S

−1
i (ω)|H̃j (ω)|2ω4 e−ik rhm

ij (y,y;l,p;l′,p′)

× e−ik(‖xp′′
j −y0‖−‖xp′′′

j −y0‖+‖y0−zν
q‖−‖y0−zν′

q′ ‖)p̂q(ω)p̂∗
q ′(ω) dω

]
(103)

where rhm
ij (y, y; l, p, l′, p′) is as defined in (101), α and α′ are multi-indices as defined

above and C ′
1, C

′
2, C

′
3 are i, j, q, q ′, α, α′ dependent scaling terms due to geometric spreading

factors and multi-path attenuation coefficients. (For explicit definitions of C ′
1, C

′
2, C

′
3 and the

derivation of (103), see appendix B.4.)
Similar to (99), the first two terms correspond to the SNR2

λ of the true target image due to
the direct-path propagation and the multi-path propagation, respectively, while the third term
represents the SNR2

λ of the artifact component in the reconstructed image.
For M � 2 transmitters and two receivers, the SNR2

λ of the true target image increases
roughly by a factor of M as compared to the SNR2

λ of the two-receiver and a single-transmitter
scenario described in (99). As for the SNR2

λ of the artifact component, for M � 2 transmitters,
the number of summands in the SNR2

λ increases roughly by a factor of M(M + 1)/2.
Nevertheless, the strength of the artifact component may be lower than that of the true
target, because each summand in the third term is an incoherent (delayed) summation of the
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Figure 9. The 2D view of the simulation setup with three receivers and a single transmitter. The
gray region denotes the scene considered in all the numerical simulations. The squares along the
x-axis show the location of the receivers, and the diamond indicates the location of the transmitter.
The black circle indicates the location of the point target and the solid black square shows the
extended target.

cross-correlation and auto-correlation of the transmitted waveforms due to the phase term in
the summation.

7. Numerical simulations

7.1. Settings

We conducted numerical simulations to verify the theory and to demonstrate the performance
of our algorithms using both a point target and an extended target model. For each target
model, we conducted simulations for the free-space and multiple-scattering environments
with different number of receivers and transmitters.

We assumed that the transmitted signal is continuous wave (CW) with 900 MHz carrier
frequency and 10 ns duration. The sampling rate of the signal was chosen to be 5 GHz. For
the multiple-transmitter scenario, we assumed that all transmitters are transmitting the same
waveform. Note that this corresponds to the least favorable condition due to perfect correlation
between the transmitted waveforms.

We consider a scene of size [0, 70] × [0, 100] m2 with flat topography. We discretized
the scene into 140 × 200 pixels, where [0 0 0]T m and [70 100 0]T m correspond to the
pixels (1, 1) and (140, 200), respectively. Figure 9 shows the 2D view of the scene with the
point target and the extended target projected onto the flat topography. The point target was
assumed to be at [45.34 45 1]T m with unit reflectivity. The extended target was a square of
size 3×3 m2, which consists of a 7×7 pixel target centered at [35 60 1]T m with the uniform
reflectivity of 0.1. The squares along the x-axis denote the location of the receivers and the
diamond denotes the location of the transmitter. Both the receivers and transmitters were
assumed to be located on the same z-plane, z = 6, and lie on a straight line, equidistant from
each other. The three receivers were located at [58.8 0 6]T , [28.3 0 6]T and [−2.1 0 6]T , all
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in meters. The transmitter was located at [28.3 70 6]T m for the single-transmitter case, and
[36.6 0 6]T m and [20.1 0 6]T m for the two-transmitter case.

For the multiple-scattering propagation environment, we considered a specular reflecting
wall located at x = 0. Thus, the Green’s function of the background environment was modeled
with the shoot-and-bounce model with one extra path.

In all the experiments, the thermal noise was simulated as the additive white Gaussian
process.

For the point target model, we considered the following number of receivers and
transmitters: (a) a single transmitter and 3, 5, 10, 20 receivers; (b) 3 receivers and 2, 5
transmitters. 5, 10 and 20 receivers were all assumed to be colinear and evenly distributed
on the straight line shown in figure 9 with the x coordinate ranging from −2.1 m to 58.8 m
and y = 0, z = 6. For the extended target model, we only consider the three-receiver and
two-transmitter scenario.

For each scenario, we considered both the free-space and multiple-scattering
environments. For the point target simulation, we set DW to a single pixel and for an extended
target to a 7 × 7 pixel window. Note that the regularization of the back-propagation operator
was not needed in the simulations due to the nature of the underlying Green’s functions.

We define the signal-to-noise ratio of the reconstructed image, SNRI , as follows:

SNRI = 20 log10
|E[I |H1] − E[I |H0]|√
Var[I |H1] + Var[I |H0]

(104)

where I denotes the reconstructed target image. We define the signal-to-noise ratio of the
received signal, SNRm, as

SNRm = 20 log10
|E[m]|

σn

(105)

where σn denotes the standard deviation of the measurements due to additive noise and clutter.
We evaluated the performance of the reconstruction algorithms with respect to the SNRI

of the reconstructed images given the SNRm of the received signal for different number of
transmitters and receivers. We estimated the SNRI using 20 images, each reconstructed using
a different realization of the received signal at a fixed SNRm. We estimated E[I |H1] by taking
a small square area around the target location and averaging the values over all the pixels in
the square and over 20 different reconstructions. Similarly, E[I |H0] was estimated by taking
a small square section of the background where no target was present. The same method was
used to estimate the variances. Note that the SNRI measures the signal-to-noise ratio of the
overall image whereas the SNR2

λ measures the signal-to-noise ratio of each pixel.
We computed the SNRI for different noise levels corresponding to the SNRm value ranging

from −23 dB to 17 dB.
We used a sample average over 20 realizations of measurements to obtain the mean value

of the reference measurements.

7.2. Results

Figures 10 and 11 show the reconstructed images for the point target model in free-space
and multi-path environments, respectively. Figure 12 shows the reconstructed images for the
extended target model in both free-space and multi-path environments.
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(a) (b)

Figure 10. The reconstructed images of a point target in free-space with three receivers and: (a)
a single transmitter, and (b) two transmitters. The solid circle shows the true location of the point
target.

(a) (b)

Figure 11. The reconstructed images of a point target in multi-path propagation environments
with three receivers and: (a) a single transmitter, and (b) two transmitters. The solid circle shows
the true location of the point target.

Comparing figure 10(b) with figure 10(a), and figure 11(b) with figure 11(a), we see that
in both free-space and multi-path propagation environments, the strength of the image at
the target location increases with the increasing number of transmitters. However, multiple
transmitters also induce artifacts in the images due to perfect cross-correlation between the
transmitted waveforms as predicted by the theory.

Note that looking at figure 11, we see that the strength of the target increased by almost
an order-of-magnitude when we exploited the multi-path effect as compared to the image
reconstructed in a free-space propagation environment shown in figure 10. However, there
are also additional artifacts as predicted by our discussion in section 6.
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(a) (b)

Figure 12. The reconstructed images of an extended target with three receivers and two transmitters
in (a) free-space, and (b) multi-path propagation environments. The solid square shows the true
location of the extended target.

(a) (b)

Figure 13. SNRI versus SNRm in free-space for different number of receivers and transmitters:
(a) a single transmitter and different number of receivers, and (b) three receivers and different
number of transmitters.

Figure 12 shows that the extended target was reconstructed at the correct location in
both free-space and multi-path propagation environments. Similar to the analysis of the point-
target case, we see that while multi-path scattering and multiple transmitters improve the target
strength, they also induce artifacts. Figures 13 and 14 show the SNRI of the reconstructed
images versus the SNRm for different number of the receivers and transmitters for a point
target in free-space and multi-path propagation environments, respectively.

We see that in both free-space and multi-path propagation environments, the SNRI

increases with the increasing number of receivers and transmitters as predicted by the theory.
For a low SNRm, we observe that the SNRI for the multi-path propagation environments is
lower than that of the free-space case even though. Thus, our simulation indicates that the
additive noise can have a strong detrimental effect in taking advantage of multi-path scattering
in passive imaging.
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(a) (b)

Figure 14. SNRI versus SNRm in multi-path propagation environments for different number of
receivers and transmitters: (a) a single transmitter and different number of receivers, and (b) three
receivers and different number of transmitters.

8. Conclusion

In this work, we presented a new passive image formation method using sparse distributed
apertures operating in multiple-scattering environments. The method exploits the multiple
scattering and the statistics of the object to be imaged, additive noise and clutter. We first
developed a model to relate measurements at a given receiver location to measurements at other
receiver locations. This measurement model relies on back-propagating the measurements at
a receiver location to a hypothetical target location via the Green’s function of the medium and
then forward propagating the resulting signal to another receiver location. We next addressed
the passive imaging problem within a GLRT framework where we set up a test of binary
hypothesis using the measurement model. We designed a linear discriminant functional by
maximizing the SNR of the test statistic at each location in the region of interest. The resulting
discriminant functional correlates the transformed and filtered measurements from one receiver
location with the measurements in another receiver location. The transformation involves the
Green’s function of the multiple-scattering environment and a spatial windowing function.
The filtering involves the statistics of the object to be imaged as well as the additive noise and
clutter. We presented the discriminant functional as well as the resulting test statistics for the
deterministic and statistical point targets in free-space and multi-path scattering environments
for measurements corrupted by noise.

We presented the resolution analysis of our passive imaging algorithm in free-space and
multi-path environments. Our analysis shows that in free-space, for a single transmitter and
multiple receivers, the PSF of the imaging operator is artifact-free and that the SNR of the
image increases linearly with the number of the receivers. However, for multiple transmitters,
the PSF of the imaging operator has an artifact component. The strength of the artifact depends
on the cross-ambiguity functions of the transmitted waveforms. Using two receivers, the target
can be localized up to a certain hyperbola passing through the target location. Using more than
two receivers, the target can be localized at the intersection of multiple hyperbolas generated
by each pair of receivers.

For the multiple-scattering environment, even for a single transmitter, the reconstructed
image is bound to have artifacts due to mirror transmitters. Nevertheless, the strength of the
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PSF for the true target location increases by roughly a factor of (L + 1)3 where L denotes
the number of multi-path bounces. Although the strength of the artifacts increases with
the increasing number of background scatterers, due to incoherent summation of the cross-
correlation and auto-correlation of the transmitted waveforms, the strength of the resulting
artifacts is expected to be smaller than that of the target.

The SNR2
λ at the true target location increases cubically with the number of background

scatterers, and linearly with the the number of the receivers and transmitters, while the SNR2
λ

of the artifact components increases linearly with the number of the receivers, but quadratically
with the number of the transmitters.

While in this work, we limit ourselves to linear discriminant functionals, the GLRT
framework can accommodate non-Gaussian data likelihood and prior models resulting in
nonlinear discriminant functionals which may more appropriately represent the probability
distribution of the underlying random fields. Within the linear framework, it is also possible
to explore alternative design criteria to account for additional constraints or to suppress
undesirable artifacts. The investigation of these approaches will be the focus of our future
work.

Finally, we note that the passive imaging method introduced in this paper is not limited to
radar, and can easily be adapted to similar passive imaging problems in acoustics, geophysics
or microwave imaging.
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Appendix A. Derivation of the optimal linear template

We begin with the objective functional in (47). The numerator of (47) can be expressed as

|〈Gmr, w〉|2 = 〈Gmr, w〉 〈w, Gmr〉 (A.1)

=
∫

wH GmrmH
r GH︸ ︷︷ ︸

RG

w dω dω′ (A.2)

=: 〈RGw, w〉 (A.3)

where RG is a non-negative definite symmetric operator with kernel RG. J (w) is maximized
by taking the Fréchet derivative of (47) with respect to w. To do so we apply the chain rule.
The Fréchet derivative of 〈Rw, w〉, where R is some symmetric non-negative definite bounded
linear operator, can be obtained by a straightforward application of Gateaux derivative:

Df (w) = lim
t→0

〈R(w + th), w + th〉 − 〈Rw, w〉
t

(A.4)

= 〈Rw, h〉 + 〈Rh, w〉 = 〈Rw, h〉 + 〈Rw, h〉 (A.5)

= 2 Re{〈Rw, h〉}. (A.6)

The above holds for all h ∈ L2 × R
M ; thus by the Riez–Fréchet theorem, Df (w) =

2�{〈Rw, ·〉} is a linear functional on the function space L2 × R
M . For simplicity of notation,

〈Rw, ·〉 will be denoted as Rw.
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Using (A.4), the Fréchet derivative of (47) is given by

DJ(w) = 2 Re{RGw}
〈Rw, w〉 − 2 Re{Rw}〈RGw, w〉

(〈Rw, w〉)2
(A.7)

= 2 Re{RGw} − 2 Re{Rw}J (w)

〈Rw, w〉 . (A.8)

By setting DJ(w) = 0 and manipulating, we get the following generalized eigenvalue
problem:

RGw = J (w)Rw. (A.9)

By the form of RG, defined in (A.2), the eigenfunction of RG is proportional to Gmr and so,
assuming R is invertible, the optimal linear detector is proportional to

wopt = R−1
Gmr. (A.10)

Appendix B. Resolution analysis

B.1. The PSF in free-space for multiple receivers and multiple transmitters

We assume there are N � 2 receivers and M � 1 transmitters in the scene. From (75), (76)
and (54), we obtain

E[m̂i(ω)] = −T ω2 e−ik‖xi−y0‖

‖xi − y0‖
M∑

q=1

e−ik‖y0−zq‖

‖y0 − zq‖ p̂q(ω) (B.1)

where xi (i = 1, . . . , N) is the location of the ith receiver and pq is the transmitted waveform
of a transmitter located at zq, (q = 1, . . . ,M).

Using (37), (57) and (B.1), we obtain

K(y, y0) =
N∑

i �=j

∫
wiE[m̂∗

i (ω)] dω

= T 2
M∑

q,q ′=1

N∑
i �=j

‖xj − y‖
(4π)4‖xj − y0‖‖xi − y‖‖xi − y0‖‖y0 − zq‖‖y0 − zq ′ ‖

×
∫

S
−1
i (ω)ω4 e−ik [rh

ij (y,y0)+(‖y0−zq‖−‖y0−zq′ ‖)]p̂q(ω)p̂∗
q ′(ω) dω

= T 2
M∑

q=1

N∑
i �=j

‖xj − y‖
(4π)4‖xj − y0‖‖xi − y‖‖xi − y0‖‖y0 − zq‖2︸ ︷︷ ︸

C1

×
∫

S
−1
i (ω)ω4 e−ik rh

ij (y,y0)|p̂q(ω)|2 dω

+ T 2
M∑

q �=q ′

N∑
i �=j

‖xj − y‖
(4π)4‖xj − y0‖‖xi − y‖‖xi − y0‖‖y0 − zq‖‖y0 − zq ′ ‖︸ ︷︷ ︸

C2

×
∫

S
−1
i (ω)ω4 e−ik [rh

ij (y,y0)+(‖y0−zq‖−‖y0−zq′ ‖)]p̂q(ω)p̂∗
q ′(ω) dω (B.2)
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where

rh
ij (y, y0) = ‖xi − y‖ − ‖xj − y‖ + ‖xj − y0‖ − ‖xi − y0‖ (B.3)

and xj is the location of the reference receiver.

B.2. SNRλ in free-space for multiple receivers and multiple transmitters

The SNRλ is calculated according to (39). From (40) and (27), we obtain

E[λ|H1] − E[λ|H0] =
N∑

i �=j

∫
w

j

i

(
Gy,iG−1

y,j

)∗
E[m̂∗

j (ω)] dω. (B.4)

From (54), for a point target model, we can obtain

Gy,iG−1
y,j = ĝ(xi ,y, ω)

ĝ(xj ,y, ω)
= ‖xj − y‖

‖xi − y‖ e−ik(‖xi−y‖−‖xj −y‖). (B.5)

Using (51) and (B.5), we obtain

wi = S
−1
i (ω)

‖xj − y‖
‖xi − y‖ e−ik(‖xi−y‖−‖xj −y‖)E[m̂j (ω)]. (B.6)

Inserting (B.6) and (B.5) into (B.4), we obtain

E[λ|H1] − E[λ|H0] =
N∑

i �=j

‖xj − y‖2

‖xi − y‖2

∫
S

−1
i (ω)|E[m̂j (ω)]|2 dω. (B.7)

From (44) and (B.5), for the deterministic point target and under the assumption that the
measurements due to clutter and noise are wide-sense stationary and uncorrelated, we can
obtain

Var[λ|H1] + Var[λ|H0] =
∫

wH
(
GyRnGH

y + 2Rn
)
w dω

= 2
N∑

i �=j

∫
Si(ω)|wi(ω)|2 dω. (B.8)

Inserting (B.6) into (B.8) and using (56), (B.8) is expressed as

Var[λ|H1] + Var[λ|H0] = 2
N∑

i �=j

‖xj − y‖2

‖xi − y‖2

∫
S

−1
i (ω)|E[m̂j (ω)]|2 dω. (B.9)

Thus, inserting (B.7) and (B.9) into (39), the square of the SNRλ is given by

SNR2
λ =

N∑
i �=j

‖xj − y‖2

‖xi − y‖2

∫
S

−1
i (ω)|E[m̂j (ω)]|2 dω. (B.10)

Using (B.1) for the measurement at the ith receiver, (B.10) can be expressed by

SNR2
λ = T 2

M∑
q,q ′=1

N∑
i �=j

‖xj − y‖2

(4π)4‖xj − y0‖2‖xi − y‖2‖y0 − zq‖‖y0 − zq ′ ‖

×
∫

S
−1
i (ω)ω4 e−ik(‖y0−zq‖−‖y0−z′

q‖))p̂q(ω)p̂∗
q ′(ω) dω

= T 2
M∑

q=1

N∑
i �=j

‖xj − y‖2

(4π)4‖xj − y0‖2‖xi − y‖2‖y0 − zq‖2︸ ︷︷ ︸
C ′

1

∫
S

−1
i (ω)ω4|p̂q(ω)|2 dω
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+ T 2
M∑

q �=q ′

N∑
i �=j

‖xj − y‖2

(4π)4‖xj − y0‖2‖xi − y‖2‖y0 − zq‖‖y0 − zq ′ ‖︸ ︷︷ ︸
C ′

2

×
∫

S
−1
i (ω)ω4 e−ik(‖y0−zq‖−‖y0−z′

q‖))p̂q(ω)p̂∗
q ′(ω) dω. (B.11)

B.3. The PSF in multi-path environments for multiple receivers and multiple transmitters

Assuming that there are N � 2 receivers and M � 1 transmitters, from (75), (76) and (89),
we obtain

E[m̂i(ω)] = −T ω2
M∑

q=1

L∑
l,ν=0

alaν

e−ik(‖xl
i−y0‖+‖y0−zν

q‖)

(4π)2
∥∥xl

i − y0

∥∥∥∥y0 − zν
q

∥∥ p̂q(ω) (B.12)

where z0
q = zq (q = 1, . . . ,M), which denote the location of the real transmitter, and

zν
q (ν = 1, . . . , L) denote the location of the mirror transmitters corresponding to the qth

transmitter for the νth multi-bounce. L denotes the number of the multi-bounces in the
environments.

Using (37), (91), (93) and (B.12), we obtain

K(y, y0) =
N∑

i �=j

∫
wiE[m̂∗

i (ω)] dω

= T 2
M∑

q,q ′=1

N∑
i �=j

L∑
l,p,l′,p′,ν,ν ′=0

× alapal′ap′aνaν ′

(4π)6
∥∥xl

i − y
∥∥∥∥xp

j − y
∥∥∥∥xl′

i − y0

∥∥∥∥xp′
j − y0

∥∥∥∥y0 − zν
q

∥∥∥∥y0 − zν ′
q ′
∥∥

×
∫

S
−1
i (ω)H̃j (ω)ω4 e−ik [rhm

ij (y,y0;l,p,l′,p′)+(‖y0−zν
q‖−‖y0−zν′

q′ ‖)]p̂q(ω)p̂∗
q ′(ω) dω

(B.13)

= T 2
M∑

q=1

N∑
i �=j

L∑
l,p,ν=0

a2
l a

2
pa2

ν∥∥xl
i − y

∥∥∥∥xp

j − y
∥∥∥∥xl

i − y0

∥∥∥∥xp

j − y0

∥∥∥∥y0 − zν
q

∥∥2︸ ︷︷ ︸
C1

×
∫

S
−1
i (ω)H̃j (ω)ω4 e−ik rhm

ij (y,y0;l,p;l,p)|p̂q(ω)|2 dω + T 2
M∑

q �=q ′

N∑
i �=j

L∑
l �=l′,p �=p′,ν �=ν ′

× alapal′ap′aνaν ′

(4π)6
∥∥xl

i − y
∥∥∥∥xp

j − y
∥∥∥∥xl′

i − y0

∥∥∥∥xp′
j − y0

∥∥∥∥y0 − zν
q

∥∥∥∥y0 − zν ′
q ′
∥∥︸ ︷︷ ︸

C2

×
∫

S
−1
i (ω)H̃j (ω)ω4 e−ik [rhm

ij (y,y0;l,p,l′,p′)+(‖y0−zν
q‖−‖y0−zν′

q′ ‖)]p̂q(ω)p̂∗
q ′(ω) dω

(B.14)

where

rhm
ij (y, y0; l, p; l′, p′) = ∥∥xl

i − y
∥∥ − ∥∥xp

j − y
∥∥ +

∥∥xp′
j − y0

∥∥ − ∥∥xl′
i − y0

∥∥ (B.15)
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and

rhm
ij (y, y0; l, p; l, p) = ∥∥xl

i − y
∥∥ − ∥∥xp

j − y
∥∥ +

∥∥xp

j − y0

∥∥ − ∥∥xl
i − y0

∥∥. (B.16)

For the case there are only two receivers and a single transmitter, (B.13) reduces to

K(y, y0) = T 2
L∑

l,p,l′,p′,ν,ν ′=0

alapal′ap′aνaν ′

(4π)6
∥∥xl

2− y
∥∥∥∥xp

1 − y
∥∥∥∥xl′

2− y0

∥∥∥∥xp′
1 − y0

∥∥∥∥y0− zν
1

∥∥∥∥y0 − zν ′
1

∥∥︸ ︷︷ ︸
C

×
∫

S
−1
2 (ω)H̃1(ω)ω4 e−ik [rhm

21 (y,y0;l,p,l′,p′)+(‖y0−zν
1‖−‖y0−zν′

1 ‖)]|p̂1(ω)|2 dω. (B.17)

B.4. SNRλ in multi-path environments for multiple receivers and multiple transmitters

From (40), (44), (51), (27) and (89), for the deterministic point targets and under the assumption
that the measurements due to clutter and noise are wide-sense stationary and uncorrelated, we
can obtain

E[λ|H1] − E[λ|H0] =
N∑

i �=j

∫
S

−1
i (ω)|D̃ij (ω)|2|E[m̂j (ω)]|2 dω, (B.18)

1

2
[Var[λ|H1] + Var[λ|H0]] =

N∑
i �=j

∫
S

−1
i (ω)|D̃ij (ω)|2|E[m̂j (ω)]|2 dω (B.19)

where D̃ij (ω) is given by (93).
Inserting (B.18) and (B.19) into (39), the square of the SNRλ is then given as follows:

SNR2
λ =

N∑
i �=j

∫
S

−1
i (ω)|D̃ij (ω)|2|E[m̂j (ω)]|2 dω. (B.20)

Using (93) and (B.12) for the measurement at the j th receiver, (B.20) is expressed by

SNR2
λ = T 2

M∑
q,q ′=1

N∑
i �=j

L∑
α,α′=0

alapal′ap′

(4π)8‖xl
i − y‖‖xp

j − y‖‖xl′
i − y‖‖xp′

j − y‖

× ap′′ap′′′aνaν ′∥∥xp′′
j − y0

∥∥∥∥xp′′′
j − y0

∥∥∥∥y0 − zν
q

∥∥∥∥y0 − zν ′
q ′
∥∥

∫
S

−1
i (ω)|H̃j (ω)|2ω4

× e−ik [rhm
ij (y,y;l,p;l′,p′)+‖xp′′

j −y0‖−‖xp′′′
j −y0‖+‖y0−zν

q‖−‖y0−zν′
q′ ‖]

p̂q(ω)p̂∗
q ′(ω) dω

(B.21)

where α = (l, p, p′′, ν), α′ = (l′, p′, p′′′, ν ′) and rhm
ij (y, y; l, p; l′, p′) is given by (B.15). It

can be further written as

SNR2
λ = T 2

M∑
q=1

N∑
i �=j

1

(4π)8‖xi − y‖2‖xj − y‖2‖xj − y0‖2‖y0 − zq‖2︸ ︷︷ ︸
C ′

1

×
∫

S
−1
i (ω)|H̃j (ω)|2ω4|p̂q(ω)|2 dω
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+ T 2
M∑

q=1

N∑
i �=j

L∑
l,p,ν �=0

a2
l a

2
pa2

ν∥∥xl
i − y

∥∥2∥∥xp

j − y
∥∥2∥∥xp

j − y0

∥∥2∥∥y0 − zν
q

∥∥2︸ ︷︷ ︸
C ′

2

×
∫

S
−1
i (ω)|H̃j (ω)|2ω4|p̂q(ω)|2 dω

+ T 2
M∑

q �=q ′

N∑
i �=j

L∑
α �=α′

2 C ′
3 Re

[∫
S

−1
i (ω)|H̃j (ω)|2ω4

× e−ik [rhm
ij (y,y;l,p;l′,p′)+‖xp′′

j −y0‖−‖xp′′′
j −y0‖+‖y0−zν

q‖−‖y0−zν′
q′ ‖]

p̂q(ω)p̂∗
q ′(ω) dω

]
where

C ′
3 = alapal′ap′ap′′ap′′′aνaν ′

(4π)8
∥∥xl

i− y
∥∥∥∥xp

j − y
∥∥∥∥xl′

i − y
∥∥∥∥xp′

j − y
∥∥∥∥xp′′

j − y0

∥∥∥∥xp′′′
j − y0

∥∥ 1∥∥y0− zν
q

∥∥∥∥y0− zν ′
q ′
∥∥ .

(B.22)

Note that the first two terms of (B.22) correspond to the case where α = α′ and p = p′′, and
the third term corresponds to that where α �= α′ and p �= p′′.
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