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Image reconstruction in fluorescence diffuse optical tomography (FDOT) is a highly ill-posed inverse problem due
to a large number of unknowns and limited measurements. In FDOT, the fluorophore distribution is often sparse in
the imaging domain, since most fluorophores are designed to accumulate in relatively small regions. Compressive
sensing theory has shown that sparse signals can be recovered exactly from only a small number of measurements
when the forward sensing matrix is sufficiently incoherent. In this Letter, we present a method of preconditioning
the FDOT forward matrix to reduce its coherence. The reconstruction results using real data obtained from a
phantom experiment show visual and quantitative improvements due to preconditioning in conjunction with
convex relaxation and greedy-type sparse signal recovery algorithms. © 2012 Optical Society of America
OCIS codes: 170.6960, 170.3880, 170.3010.

Fluorescence diffuse optical tomography (FDOT) is an
imaging modality that uses near infrared light to measure
3D fluorophore activity inside biological tissue [1]. The
FDOT inverse problem involves recovering the unknown
fluorophore yield μ in a domain Ω from the measure-
ments obtained on the domain boundary ∂Ω based on
the following integral equation [1]:

Γi; j �
Z
Ω
g
�j�
m �r�ϕ�i�

x �r�μ�r�; (1)

where Γi; j is the emission light field measured by the
jth detector, j � 1;…; Nd, due to the ith source,
i � 1;…; Ns, ϕ

�i�
x is the excitation field, g� j�m is the Green’s

function of the diffusion equation, and Ns and Nd denote
the number of sources and detectors, respectively.
Under the weak fluorophore assumption, we linearize

(1) by assuming that the contribution of the fluorophore
absorption to the total absorption is negligible. We dis-
cretize the imaging domain into N voxels, and organize
all the measurements Γi; j into a vector Γ of length
M � Ns × Nd. Taking into account the additive noise ϵ,
the discretized form of (1) becomes

y � Γ� ϵ � Ax� ϵ; (2)

where y is the noisy measurement, A is the forward ma-
trix, and x is the discretized fluorophore yield.
Most optical fluorophores are designed to accumulate

in relatively small, specific regions in tissue, such as tu-
mors. As a result, the fluorophore yield in the imaging
domain is often very sparse. Compressive sensing (CS)
theory shows that sparse signals can be recovered ex-
actly from an underdetermined system when the under-
lying forward matrix is incoherent [2,3]. (See [4–6], for
the recent applications of the sparse signal recovery
techniques to optical tomography.) In many applications,
a preconditioning matrix can be applied to the forward

matrix to improve the recovery of sparse signals
[2,3,7]. In [7], we decomposed the FDOT forward matrix
into the Kronecker product of two underlying matrices: a
matrix that depends on ϕ�i�

x , i � 1;…; Ns and another
matrix that depends on g

�j�
m , j � 1;…Nd. We designed

two preconditioners to reduce the coherence of these
two matrices, which, in turn, reduces the coherence of
the FDOT forward matrix.

In this Letter, we use an alternative approach that di-
rectly preconditions the forward matrix A. LetMA be the
preconditioning matrix. Then, (2) becomes

MAy � MAAx�MAϵ � Apre �MAϵ; (3)

where Apre denotes the preconditioned forward matrix.
To minimize the coherence of Apre, we seek to determine
MA such that the Gramm matrix AT

pre Apre approximates
the identity matrix. Let UAΣAVT

A be the singular value de-
composition of A. Following an approach similar to the
one described in [3,7], the preconditioning matrix MA is
given by

MA � �ΣAΣT
A�−1 ∕2UT

A: (4)

In practice, A is usually ill-conditioned with a large
number of singular values equal or close to 0. Therefore,
MA in (4) is also ill-conditioned. To mitigate this, we reg-
ularize (4) and write

MA � �ΣAΣT
A � λI�−1 ∕2UT

A; (5)

where λ ≪ 1 is a constant.
We next solve the following minimization problem to

reconstruct the fluorophore yield

min
x
∥x∥ such that ∥ypre − Apre x∥2 ≤ ε; (6)

4326 OPTICS LETTERS / Vol. 37, No. 20 / October 15, 2012

0146-9592/12/204326-03$15.00/0 © 2012 Optical Society of America



where ∥x∥ denotes either the ℓ0- or ℓ1-norm of x. The op-
timization problem in (6) can be addressed by greedy-
type or convex relaxation algorithms [2].
We evaluate the performance of FDOT image recon-

struction due to the preconditioned forward matrix in
conjunction with a variety of sparsity promoting algo-
rithms using real data obtained in a phantom experiment.
Figure 1(a) shows an illustration of the cylindrical phan-
tom used in the experiment. The phantom was made of
silicone rubber with about 2 cm in diameter, and 4 cm in
length and had homogeneous absorption coefficient
μa � 0.2 cm−1 and scattering coefficient μ0s � 12 cm−1

(D � 1 ∕3�μa � μ0s�) at both the excitation and emission
wavelengths (743 and 767 nm). It contained a hollow
cylindrical tube in the middle with approximately
3 mm in diameter, which was filled with intralipid and
ink to mimic the same optical properties as the back-
ground. The intralipid and ink contained 1 μM of Cy7
as the fluorophore. The cross section of the fluorophore
yield at z � 1 cm is shown in Fig. 1(b).
The measurements were collected using the FDOT

imaging system reported in [8]. Specifically, focused col-
limated laser beams were used as point light sources to
excite the fluorophore. We had 60 point sources in total.
The fluorescence measurements were collected by an
electrically cooled CCD camera. The reading of the de-
tector was recorded as the mean value of a subregion
with 5 × 5 pixels around each detector location. We se-
lected 60 detector locations. We discretized the imaging
domain into 20 × 20 × 20 voxels. Thus, the resulting for-
ward sensing matrix was of dimension 3600 by 8000.
We evaluated the coherence of the forward matrix with

and without the preconditioning matrix MA. The normal-
ized inner product is a measure of the orthogonality
(incoherence) of two different columns. It is defined as

rAp;q
� jhap; aqij

∥ap∥2∥aq∥2
; (7)

where ap�q� denotes the p�q�th column ofA. In general, the
pth and qth columns are incoherent if rAp;q

has a small va-
lue. Figure 2 shows the normalized inner products
between different pairs of columns arranged in a descend-
ing order. The largest 40% of the normalized inner pro-
ducts are presented, the rest 60% are close to 0, and
thus omitted in the plot. Clearly, the application ofMA re-
duces the large correlations between different columns of
A. To quantify the improvement,we computed the relative
area under the curves (AUC), which is given in the box in
Fig. 2(a). We see that the preconditioning matrix reduces

rAp;q
(1 ≤ p, q ≤ N), and the resultant AUC reduces to

39.59%. We also used cumulative coherence as a measure
of the average coherence of A. This quantity is defined as

M1�k;A� � max
p

max
jQj�k;p∉Q

X
q∈Q

jhap; aqij
∥ap∥2∥aq∥2

; (8)

Fig. 1. (Color online) Configuration of (a) the silicon phantom
and (b) the cross section of the fluorophore yield at z � 1 cm
(middle) of the silicon phantom.

Fig. 2. (Color online) (a) Top 40% values of all the normalized
inner products between different pairs of columns in A and
(b) the cumulative coherence of A as a function of k.

Fig. 3. (Color online) Cross sections at z � 1 cm (middle) of
the reconstructed phantom using greedy algorithms.
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where Q is a subset of k columns in A. M1�k;A� is an
monotonically nondecreasing function in k. If M1�k;A�
increase slowly, A is said to be quasi-incoherent [5].
Figure 2(b) shows the plot of the cumulative coherence.
WhenMA is applied, the cumulative coherence increases
much slower. The average slope of each curve is provided
in the box in Fig. 2(b).
To reconstruct the fluorophore yield, we used six dif-

ferent sparsity promoting reconstruction methods avail-
able in the CS literature [7]. Specifically, we used:
stagewise orthogonal matching pursuit (StOMP), regular-
ized orthogonal matching pursuit (ROMP), acrostic
compressive sampling matching pursuit (CoSaMP),
BP-interior, iterative shrinkage/thresholding (IST), and
gradient projection for sparse reconstruction (GPSR).
The first three are greedy-type algorithms, and the last
three are convex relaxation based algorithms.
The cross sections of the reconstructed fluorophore

yield maps using greedy-type algorithms are shown in
Fig. 3, and those using convex relaxation techniques
are shown in Fig. 4. We observe that the application of
the preconditioning matrix results in reconstructed
images that are in better agreement with the original
fluorophore yield map. However, some background
noise is also visible in the reconstructed images due to
the large condition number of MA. The visual improve-
ments are most obvious for the greedy-type algorithms.
In simple greedy-type algorithms, the support of the sig-
nal is determined by selecting the columns of the forward
matrix that have the greatest correlation with the

measurements. The reduction of the coherence in the
forward matrix has a direct effect on the column selec-
tion procedure at each iteration.

To quantitatively assess the reconstruction results, we
calculated the signal to background noise ratio (SBNR)
of the reconstructed fluorophore yield map. SBNR is de-
fined as the ratio between the mean value of the fore-
ground fluorophore region and the standard deviation
of the background. The results, summarized in Table 1,
indicate the improvements in the image contrasts due to
application of the preconditioning matrix using different
sparse signal recovery algorithms.

In this Letter, we presented a method of precondition-
ing the FDOT forward matrix to reduce its coherence and
demonstrated its performance in image reconstruction
using real data. The results showed that the application
of the preconditioning matrix reduces the coherence of
the forward matrix and improves the visual and quanti-
tative quality of the reconstructed images in conjunction
with different sparse signal recovery algorithms. While
we presented our approach for the linearized FDOT in-
verse problem, it can be easily extended to the nonlinear
FDOT inverse problem within an iterative perturbation
approach [9].

References

1. L. Zhou and B. Yazici, IEEE Trans. Image Process. 20, 1094
(2011).

2. M. Elad, IEEE Trans. Signal Process. 55, 5695 (2007).
3. J. Duarte-Carvajalino and G. Sapiro, IEEE Trans. Image

Process. 18, 1395 (2009).
4. P. Mohajerani, A. Eftekhar, J. Huang, and A. Adibi, Appl.

Opt. 46, 1679 (2007).
5. M. Suzen, A. Giannoula, and T. Durduran, Opt. Express 18,

23676 (2010).
6. O. Lee, J. M. Kim, Y. Bresler, and J. C. Ye, IEEE Trans. Med.

Imag. 15, 13695 (2011).
7. A. Jin, B. Yazici, and V. Ntziachristos, “Light illumination

and detection patterns for fluorescence diffuse optical to-
mography based on compressive sensing,” IEEE Trans. Im-
age Process. (to be published).

8. N. Deliolanis, T. Lasser, D. Hyde, A. Soubret, J. Ripoll, and
V. Ntziachristos, Opt. Lett. 32, 382 (2010).

9. S. Davis, H. Dehghani, J. Wang, S. Jiang, B. Pogue, and
K. Paulsen, Opt. Express 15, 4066 (2007).

Fig. 4. (Color online) Cross sections at z � 1 cm (middle) of
the phantom using convex relaxation techniques.

Table 1. SBNR of the Reconstructed Images Using

Preconditioning and Different Sparsity Promoting

Reconstruction Algorithms

Greedy StOMP ROMP CoSaMP

MA 20.9 28.6 32.3
No MA 16.5 18.8 26.7
Relaxation BP-interior IST GPSR
MA 23.8 19.8 22.1
No MA 14.9 17.1 12.3
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