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Abstract

This paper presents an analytic inversion method for a polarimetric synthetic-
aperture radar (SAR) in the case of an extended target embedded in
clutter. The measurements are also contaminated by thermal noise. We use
microlocal analysis in a statistical setting to develop a filtered-backprojection-
type reconstruction method. The inversion method accommodates arbitrary
waveforms and arbitrary flight paths. We model the antennas and scatterers
as dipoles; scatterers are thus characterized by a spatially varying scattering
matrix. We include directional scattering assumptions to distinguish a curve-
like extended target from clutter, which is assumed to scatter isotropically. For
the inversion we choose the backprojection filter which minimizes the mean-
square error between the reconstructed image and the actual target scattering
matrix. Our work differs from standard polarimetric SAR imaging in that we
do not perform channel-by-channel image reconstruction. We find that it is
preferable to use a coupled reconstruction scheme in which we use all sets of
collected data to form each element of the scattering matrix. We show in our
numerical experiments that the coupled reconstruction not only minimizes the
mean-square error but also improves the image target-to-clutter ratio in certain
scenarios.

(Some figures may appear in colour only in the online journal)

1. Introduction

In synthetic-aperture radar (SAR) imaging [27], a moving antenna illuminates a scene, which
here is assumed to consist of both scatterers of interest (the target) and scatterers that are not
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of interest (clutter). The transmitted electromagnetic waves (generally microwaves) scatter
from the scene and are typically measured at the same (or a nearby) moving antenna; the
measurements are then used to form an image of the scene.

This paper focuses on the extension of a hybrid SAR image-formation technique that uses
both analytical and statistical theory in the framework of backprojection. The technique was
previously developed for the scalar case in [42], which found that incorporating the statistics of
the scene into the imaging algorithm leads to clutter mitigation and also minimizes the effect of
noise on the image. We extend these results for a full vector treatment of the transmission and
scattering of the electromagnetic waves. That is, we consider the case when a fully polarimetric
radar system is used. We present a technique that gives quantifiable improvements in image
quality, namely reduced mean-square error (MSE) and improved image target-to-clutter ratio,
which is commonly referred to as the signal-to-clutter ratio (SCR).

We note that most work in polarimetry has been based on estimation-theoretic approaches
[11, 12,8, 13,24, 14, 28, 4, 29, 26, 18, 31, 3, 19, 34, 40]. It is typically assumed that one can
reconstruct each element of the target scattering matrix from the corresponding data set. This
assumption stems from the idea that the sensor’s orientation, and therefore polarization, is fixed
with respect to the scene of interest [5]. Therefore, standard imaging schemes are applied to
each set of data separately. However, this assumption holds only when the antennas in question
have a narrow azimuthal beamwidth. One situation where this assumption does not hold is a
SAR system operating at lower frequency bands (i.e. L-band). In these systems, the antenna
polarization properties vary with azimuthal look angle. In [5], a subaperture data processing
approach is implemented to handle scenarios where the fixed orientation assumption does
not hold. SAR images are decomposed into subaperture data sets to visualize the different
responses under different azimuthal look angles. One drawback of using subaperture data sets
is a reduction in resolution.

In this paper, we avoid the narrow-beam assumption. For wide-beam synthetic-aperture
radars, we find that it is optimal (in the mean-square sense) to use a coupled image formation
technique, which uses every data set to reconstruct each element of the target scattering
matrix. This coupled reconstruction increases the computation time of the imaging algorithm,
but improves MSE and image SCR as stated above.

We stress that our work differs significantly from most of the studies in polarimetry. We
do not assume that we already have an accurate estimate of the scattering matrix and then
attempt to perform target decomposition as most researchers do in polarimetry [11, 19, 20].
We instead begin with Maxwell’s equations and derive a simplified, physics-based forward
scattering model (see below). For this model, we develop a novel reconstruction, or estimation,
of the scattering matrix.

In developing this polarimetric imaging scheme, we consider specifically extended targets
embedded in clutter. By ‘extended’, we mean one-dimensional targets such as fences and power
lines. Such targets not only affect the polarization of the incident field, but they also scatter
electromagnetic waves anisotropically.

Anisotropic scattering has been studied previously by a number of different researchers
[1, 6, 16]. For example in [1], the radar data are broken up into data received from different sets
of observation angles, or different intervals of the bandwidth. This does help to characterize
the different returns from different angles, but it leads to a reduction in resolution because the
data are restricted to smaller apertures or smaller bandwidths. In contrast, our approach is to
incorporate the anisotropy in the scattering model.

In order to incorporate both anisotropy and changes in polarization, we assume that all
scatterers in the scene are made up of non-interacting scattering elements consisting of short
dipoles. The dipole scatterers have an orientation and a location, and they display anisotropic
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scattering behavior. This dipole scattering model was previously considered in [16]. Our work
differs from [16] in that we make certain simplifying assumptions that allow us to obtain
an analytic expression for the image. The work [16], on the other hand, focuses on a purely
numerical approach.

We emphasize that, as usual for analytic models used for reconstruction or imaging, our
scattering model omits many physical effects. The key is always to develop a scattering model
that incorporates as much physics as possible, but is still simple enough to be inverted. We
feel that our model is an improvement over most existing models, which use non-interacting
scattering elements that are point-like. Of course, the ultimate test of the utility of this model
is in its success with real data, which is a study we leave for the future.

The remainder of the paper is organized as follows. In section 2, we give some preliminary
background information on polarimetry and the typical scattering model used in polarimetric
radar. In addition, we derive our dipole SAR forward model and highlight the differences
between our model and the standard models. In section 3, we discuss our image-formation
approach, in particular the method of backprojection, and define our imaging operator. In this
section, we derive the optimal filter (in the mean-square sense) for the case when the target and
clutter are statistically independent. Finally, in section 4, we include numerical simulations in
which we model the data received at the radar. We also include results of using our coupled
imaging scheme and compare with standard polarimetric SAR imaging.

We use the convention that vectors appear in bold font (e.g. x), and matrices are underlined

(e.g. 4).

2. Forward model

2.1. Polarimetry background

Itis well known [10, 17, 21, 36-38] that in free space, Maxwell’s equations for a time-harmonic
field simplify to the Helmholtz equation

(V2 +I*E(k,x) =0 (1)
whose simplest solution is a plane wave of the form
E(x) = E¢*, (2)

where E is a constant-amplitude field vector and k = kk € R where k = w/c with ¢ being
the speed of light, @ being angular frequency and k being the direction of propagation. We
define a right-handed coordinate system, denoted (k, 0, k), in which h and ¥ span the plane
perpendicular to k. From Maxwell’s equations we infer that E lies in this plane and therefore
may be written as the linear combination

E = Eh + E,b. 3)
In the typical polarimetric scattering scenario, the transmitting antenna is assumed to transmit
a monochromatic plane wave with the propagation direction k;. This field E* can be written as
E' =Eh; +E'd, 4)
where the basis vectors /; and 9; define the plane perpendicular to k;. When this wave interacts

with a scatterer, the polarization state and/or degree of polarization may change. We assume
that the wave which scatters from the target is received at the antenna which lies in the direction

~

ks, in the far field of the scatterer. We therefore express the scattered field vector in terms of
the basis vectors defining the plane perpendicular to k:

E® = E}h, + E’1,. 5)
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Note that the right-handed coordinate system (lAzx, Vg, IAcS) is not the same as the system
(il,-, ;, l%,-). The mapping from E’ to E* can be thought of as a transformation performed
by the scatterer. We describe this transformation mathematically as
s i Shh Shu i

E = §E N (Svh va>E ’ (6)
where S is known as the scattering matrix for the scatterer. This will be incorporated into the
quantity we reconstruct later when we discuss polarimetric imaging. Note that S depends on the
transmitted frequency, the scatterer, the scattering geometry and the basis we use to describe
the waves. In polarimetric SAR, we typically attempt to measure the scattering matrix by
transmitting two orthogonal polarizations, one after the other, and then receiving the scattered
waves in the same two orthogonal polarizations.

2.2. Dipole SAR forward model

To derive the dipole SAR model, we assume our SAR system is made up of two dipole
antennas, a and b, which travel along paths y,(s) and p,(s). Here s parametrizes the antenna
trajectories and is known as the slow time parameter and corresponds to the time scale on
which the antenna moves; in contrast, 7 is known as the fast time parameter and corresponds
to the time scale on which light propagates. We assume that dipole a transmits the waveform
pa(t), and the scattered field is received on both a and b. Similarly, dipole b transmits the
waveform p;(¢), and the scattered field is received on both a and b. We denote the Fourier
transforms of the waveforms by P, and P,. We also assume that the dipoles have directions’e,
and e, respectively.

We model scatterers as a collection of dipoles located at various pixels and with various
orientations. We denote by e7 (x) the orientation of the target dipole at location x and by ec (x)
the orientation of the clutter dipole. We also assume the measurements are corrupted by noise
n. Therefore our forward model in the frequency domain is of the form

D; j(k, s) = (FT[TDi k. s) + (FICDi (k. s) + nij(k, 5), (7

where i = a, b and j = a, b. We call D; ; the set of the data collected when we transmit on
the ith antenna and receive on the jth antenna. Here, T and C are the vector functions that
describe the target and clutter, respectively, to be described in more detail below, and n; ; is the
noise that corrupts the measurements when we transmit on i and receive on j. The ‘forward’
operators F7 and F€ map the target and clutter vector fields to the corresponding received
data. These operators are derived below, directly from solutions of Maxwell’s equations. We
now go into more detail to describe (a) the radiation from the transmitting dipole antenna, (b)
the scattering from the dipoles that make up the target and clutter and (c) the reception on the
receiving dipole antenna.

2.2.1. Radiation from the transmitting dipole antenna. In the frequency domain, the far-field
electric field due to a radiating dipole of length a, located at position y,(s) and pointing in the
direction’e,, is [21, 23, 7, 25]

ikR
=a =~a ~y T _sa
E,(k,x) =R, x (R, x ea)4nRgJF (kR , - €a)Pi(k), (8)
where Ry ( =x — p,(s), R} | = |R§,X| and
. ka
F?(kcos6) = a sinc 70059 )
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is the antenna pattern of the dipole a. This expression results from a method-of-potentials
solution of Maxwell’s equations. For more details on this solution of Maxwell’s equations, see
[10, 17,23, 25, 36, 37, 41].

In practice, SAR systems are side-looking: they use antenna beam patterns that illuminate
only parts of the scene to one side of the flight path. This is done to avoid the ‘left-right’
ambiguity, which is a certain image artifact [7]. Without further comment, we will assume that
the SAR system has in fact been designed to avoid such artifacts.

2.2.2. Interaction of the field with the scatterer. ~We assume that every scatterer in the scene
is modeled as a dipole located at the position x and pointing in the direction €. (x). Note we
use the subscript and superscript sc to indicate this scatterer may be part of the extended target
or a clutter scatterer. Each dipole making up the scatterer acts as a receiving antenna with
antenna pattern F*. We can calculate the current excited on the dipole at the position x and
pointing in the direction ey (x), due to the incident field E,,. We have

Isc OC?SC 'EaFSC(kﬁz’s '/ésc)

z?sc . [iéa

X,s

x (Re, x @) PO (RY, @) (KRS, @) ——Palh). (10)
X,

We assume that the current induced on the dipole radiates again as a dipole antenna, and in
this process has strength p(x) and again antenna pattern F*°.

2.2.3. Reception at the receiving dipole antenna. The measured data are given by the
current on the dipole located at the position y,(s) with orientation €,. We calculate this as in
equation (10). We have

ik(Re 4R,

1672Re Rb

X,57 X, 8

~a ~bh

Dy (k, s) ocey - E(k, p,(s)) = /p(x) F¥(kR) , - €s)F* (kR, - €)

x FP(IR. | - @) FO (KR, - @,) P, (k)
x B[R, x (RS, x@)]es - [R], x (RS, x @)]dx, (11)

where we have taken the additional step of integrating over all possible ground locations x in
the scene. Here, we have also suppressed the dependence of ;. on x for ease of notation. The
two subscripts on the left-hand side of (11) indicate that we transmit on dipole a and receive
on dipole b.

2.2.4. Vector formulation. We note that the vector expressions on the last line of (11) can
be rewritten with the help of the triple product, or BAC-CAB, identity as

B[R, x (R, x2)]er - [Ro, x (R, x2)]
=[RL, xe.) - RL, xe)][R], x o) - (R, x )]
xe)] e [Re, x (R, x@)] . (12)

X,

X,

‘(&

X,

In addition, we may rewrite (12) using tensor products:

X (ﬁz,s X?‘J)] ac[ﬁzs X (ﬁis X?b)] ./éSC = (Rj ®Rbl) : G‘,\SC ®/e\SC)’ (13)

[,

where Rt = R x (R x &), ® is the standard tensor product and : is the double dot product
(the matrix analogue to the vector dot product).
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"

Figure 1. Target-centered coordinate system.

If we receive on both a and b, we obtain the data vector

Da,a
Da,b
Db,a
Dy p

D(k,s) = (14)

The data vector D is dependent on a vector of quantities like those in equation (13) but
with different transmitting and receiving antenna pairs. This vector may be expressed as
the product of a matrix and vector as follows. If Rj = (X4, Ya» Za)> Rj = (xp, Y, 2») and
€ (x) = [cos O (x), sin b, (x), 0], then

(R; ®R;) : (€5 @) X2 XaYa XaYa Ve cos? b

(R[JJ_ ® RZJ;) : (ésc ®?sc) | XX XaYb  YaXb  YaYb €0S By sin Oy (15)
(RIJ;_ 02y Rj_) : (ésc ®2’\sc) - XaXb  YaXb  XaYb  YbYb sin Oy cos Oy

(RiJ;- ® RiJ;) : @sc ®?sc) xi XbYb  XbYb yi Sin2 Osc

Here, we use a scatterer-centered coordinate system where the angle 6. is defined with respect
to the x-axis as in figure 1. We again suppress the dependence of 6;. on x for ease of notation.
Note that the third coordinate of R* does not appear in (15) because in the double dot product,
the third coordinate is multiplied by the third coordinate of e;. which is always zero. Also note
that we now have expressed our forward model in terms of the quantity

cos? O,
€0s By sin O,
sin O, cos B

sin® Oc

S(Qsc) = s (16)

which we call the scattering vector, or the vectorized scattering matrix.

Our usage differs from that in the polarimetry literature, where the scattering matrix as in
equation (6) for a dipole scatterer [11, 18, 22, 30, 32, 35, 39] is given as the full expression
in equation (15). This definition depends on antenna parameters, whereas our model (16)
separates the antenna characteristics from that of the scatterer. In particular, the vectors R
and le may be written with the help of the BAC-CAB identity as

Rx Rxé&)=R®R-&)—eéR -R)=—[é—R(®R-&)]=—Pe, (17)
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where e is either e, or &, and where PI%- denotes the operator that projects a vector onto the plane
perpendicular to the direction of propagation R. In other words, we see that (17) projects the
antenna orientation e onto the plane perpendicular to the direction of propagation. Therefore the
vector on the right-hand side of (17) is the same as the transmitted field’s state in equation (3).
As is commonly done, we make the standard assumption that antenna polarization e remains
fixed as the antenna moves along its flight path. For systems in which the antenna beam is
very narrow, R can be assumed to be constant over the antenna footprint, and consequently the
entire expression (15) is typically regarded as the (target plus clutter) scattering vector field.
In this paper, we do not assume a narrow antenna beam, and consequently we address the
variation of R over the antenna footprint. In our case, it is not appropriate to consider the entire
expression (15) to be the scattering vector field. Instead, our (target plus clutter) scattering
vector field consists of only the quantity in equation (16). Note that both S(6;.) and p(x) are
unknown.

We now make the assumption that antennas a and b are collocated, that is, we assume a
monostatic system. Therefore, we have the following data expression for any dipole scatterer:

AU.ng 'Aﬂ,a‘xay(l Aa,axaya AU.Uyg
‘ Aapxaxp  AapXayy  AapYaXs AapYalp
D k,S — eZ1kRm a,bra a,bra a,b)a a,ba )S (6 dx, 18
( ) / Ab,axaxb Ab,a)’axb Ab,axa)’h Ab,aybyb Osc (X)S (Osc) (18)
Avpxz  Appxoys  Appxsys  Appyr

where we define
Aij = (1/167%R2,) (F* (kRy.; - €.))*F' (kRy.; - €)F/ (kRy., - €)P:(k) ~ (19)

fori=a,band j =a,b.
The SAR imaging problem is to determine the unknowns p(x) and S(fs(x)) from
measurements of D.

2.2.5. Simplifications. We ultimately aim to have a forward model that is of the form
D = FT[T]+ F€[C] + n, where T is a function describing the target, C describes clutter, the
operators 1 and F€ are linear operators and # is noise.

In the case when F7 and F€ are Fourier integral operators (which are linear), we can
write down an analytic expression for an approximate inverse operator [7].

The model (18) is linear in p, but nonlinear in 6. because the amplitudes A; ; of (19)
contain 6. In order to remove this nonlinearity, we will make assumptions about the radiation
patterns of the target and clutter [41].

2.3. Scattering model for the target

For an extended target, we assume that we obtain a strong return from the scatterer only when
the orientation of the target is perpendicular to the look direction:
1 ifReg-er~0

0 otherwise. (20)

PR, o) = |

We change the subscript and superscript to the letter T to indicate we are considering a target
scatterer.

Using this directional assumption, we can simplify expression (12):
[Rxﬁs S (Rx,s X?a)] '?T[Rx.s S (Rx,s X?b)] ’?T = (_?T '/e\a)(_?T ?b)

= [e, ®eyl:[er ®er]. 21
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Therefore, we write

(Rj‘ ® Ri‘) : (er @er) a% aja; apax a% cos? Or

(R(Jl' 024 RIJ,') : (éT ®’e\r) _ arby aiby axby axbs cos O sin O 22)
(R @R : (er@er) |~ |aiby aby aiby  azby || sinér cosor |

(R ®Ry) : (er ®er) b biby biby b3 sin” Oy

where we let'e, = (aj, as, 0) and'e;, = (b1, b>, 0). Note we have used the triple product, or
BAC-CAB, identity as in (12) and the tensor notation as in (13).
The assumption (20) converts (18) to the form

DT (k,s) = FT[T(x)] = / 2R AT (K, 5, x)T (x) dx, (23)

where we define T (x) = Pr (x)S(07) as the target vector field. The amplitude AT now depends
only on'e, and €, and not R, :

1 2 1 1 2
Aa,aal Aa,aalaZ Aa,aalaZ Aa,aaz

Aaparby  Agparby  Agparby Ay pashs

ATk, s,x) =" - - h , 24
4 5.x) Apatiby  Apatrby  Apaarby  Apaazb; 9
Appbt  Appbiby  Appbiby Ay b3
where
Aij = (1/167°R2 ) F' (kR ; - €)F/ (kR , - €;)P:(k) (25)

fori = a,b and j = a, b. We clearly see that the amplitude matrix no longer depends on the
unknown quantity ez, and therefore we obtain a linear forward model for the target data.

2.4. Scattering model for clutter

For clutter scatterers, we assume that the scattering is isotropic:
FC(kR,.; - ec) = 1. (26)

Again, this removes the nonlinearity from the forward model. We obtain the following forward
model for clutter data:

DE(k, s) = FC[Cl(k, s) = / eZkRes AC (K, 5, x)C(x) dx, 27)

where we let the vector field that describes the clutter be C(x) = pc(x)Sc(0¢). Note pc(x) is
the clutter scattering strength at x, and Sc(6¢) is the clutter scattering vector which depends
on the orientation of the clutter dipole element at location x. The amplitude matrix has the
form

1 2 1 2
Aa,uxa Aa,axaya Aa,axa))a Aa,aya

AC(k. 5.x) = AavXaXy  AapXayo AapyaXo AabYads 28)
- -Ag,axuxb A~b,a)7axb J‘Eb,axuyb Alz.aybe

2 2
Appxy,  Appxpys  Avpxpys  Apsyy

where A,v, jfori =a,band j = a, b are defined as in equation (25). Note that while we
define the clutter vector field as C(x) = pc(x)Sc(6¢), the associated scattering vector (as in
equation (15)) includes the cross products of (17). Therefore, the zero-endfire character of
dipoles is included for clutter dipoles.

The two forward operators FC€ and FT are different, but under the assumptions above,
both are now linear operators.

8
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2.5. Statistical forward model

We combine the target and clutter data with measurement noise n to obtain the full forward
model expression. That is, we expect our collected data D to be of the form

D(k,s) = FT[T1(k, s) + FCICI(k, s) + n(k, s) = DT (k, s) + D€ (k, s) + n(k, s). (29)

More specifically, we have
D(k, s) = / PR AT (k. s, x)T (x) dx + / PR AC(k, 5, X)C(x) dx + n(k, $), (30)

where we assume n is a4 x 1 vector.

We also make the assumption that the target vector field T (x), the clutter vector field
C(x) and the noise vector field n(k, s) are all second-order stochastic processes, in the sense
that each element of the covariance matrix is finite. We have already specified a somewhat
rigid form for the target vector field, namely T (x) = pr (x)S(0r). The functional form of S is
assumed to be known and the parameter 07 is stochastic. We leave the form of the scattering
strength unspecified, and therefore we will eventually need to define a probability distribution
describing the stochastic nature of pr(x). For now we do not assign specific distributions to
these random quantities. In our numerical experiments, we will specify distributions and they
will be discussed in detail in section 4.

We make the following statistical assumptions on T', C and n. For the first-order statistics,
we assume

E[T (x)] = p(x) (31)
E[C(x)]=0 (32)
Eln(k,s)] =0, (33)

where p(x) = [E[T,,(x)], E[T,5(x)], E[Ts 4 (x)], E[T}5(x)]] and where 0 is the 4 x 1 zero
vector. We also specify the autocovariance matrices for T',C and n, where we define the
(I, m)th entry as follows

Cl e, x') = E[(Ti(x) — 1 () (T, (x') — ()] (34)
Rf,,(x,x') = E[C;(x)C, (x)] (35)
Sk, s: K, ") = E[n(k, s)ny, (K, s")], (36)

where here | = aa, ab, ba, bb and m = aa, ab, ba, bb. We assume the Fourier transforms for
each element of CT and RC exist, and we assume that the target, clutter and noise are all
mutually statistically independent.

3. Image formation in the presence of noise and clutter

In order to form an image of the target, we will use a filtered-backprojection-based
reconstruction method. Specifically, we apply the backprojection operator X to the measured
data to form an image I of the target, i.e.

Iz) = (KD)(2) = / e 20z, 5, kYD (k, ) dk ds, (37)
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where I(z) = [1,,4(2), 1,.5(), Ip4(2), Ip.»(z)]. We define Q as a 4 x 4 filter matrix. The filter O
can be chosen in a variety of ways. One method attempts to provide a point-spread function (or
ambiguity function) that most closely resembles a delta function [7, 27]. This method works
well in the case when we assume that the target vector field can be described deterministically.
We will instead consider a statistical criterion for selecting the optimal filter Q. In particular, we
will attempt to minimize the MSE between the reconstructed image I and the actual target
vector field T'. This method seeks to minimize the effect of noise and clutter on the resulting
image while preserving the strength of the singularities of the target vector field. This method
was first described for the case of standard SAR in [42].
We begin by first defining an error process

E@) =1@) — 1T (2), (38)
where ZoT (z) is the ideal L? image that can be obtained from our SAR system, namely
ToT(z) = / 1@ BT () de e, (39)

where x Q(z, &) is a smoothed version of the characteristic function of 2. Here 2 is the set of
target Fourier coefficients that can be obtained from our measurements; this is discussed in
more detail below. The smoothing is done to avoid ringing.

We also define the MSE as
J Q) = / E[|E@)[*]dz = / E[(E@)'(E@)]dz, (40)
where E' denotes the complex conjugate transpose of the vector E. Note that we have
J(©Q) = V(Q) + B(Q), @1)
where
V(Q) = / E[|E(z) — E[E@)]|*]dz (42)
B(Q) = / EU(2)] — ElZoT @) dz. (43)

Here V is the total variance of E (z) and B is the L? norm of the bias. It is well known that the
MSE is the sum of variance and bias and that when we attempt to minimize the MSE there is
always a tradeoff between minimizing variance and bias. Minimizing the MSE will come at a
cost with respect to visible singularities of the target vector field. These singularities, which
for example include target edges, are critical in identifying a target in an image. As discussed
in [42], the strengths of these singularities may be partially suppressed in our attempts to
suppress the clutter and noise contributions to the image. The location and orientation of the
visible singularities, however, will be maintained, because, as we will see, the image-fidelity
operator K. F'is a pseudodifferential operator.

Lemma. Let D be given by (29), where the amplitudes AT and A€ satisfy symbol estimates
[15] and let I be given by (37). Assume S" is given by (36) and define S, S and M as follows:

T, x) = f TS (£ 1) dEd (44)
RE(x,x') = / e e 'S (£, &) dede (45)
pEp () = / e e M (¢, ¢') dede, (46)

10
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where the integrations are defined element-wise. Then

J(Q) = Fr(Q) + B(Q) + Je(Q) + T (Q), 47)

and the expected values of the leading-order singularities of each term in (47) are
Q) ~ / D ul(Q(x, ¢)AT (v, €, %, &) — 1, (x. O

X0, AT (6, e, x, &) — F (6, €ISy (¢, €] de dg de, (48)
Te(Q) ~ / &0 [ Q(x. £)AC (x, £ (x. x, £))

x{Q(x, EHA (x, & )n(x, x, E)}Sc (¢, ¢)] dx dg de, (49)

BQ) ~ / e €0 u{{Q(x, AT (x, € )(x, x, ) — 7o (8, &)
X (0, E)AT (v, E e, %, &) — 7 (v, OIM(E, &) dv dg de, (50)

70(Q) = / tlQ' . 0. £ ©)n(z. 2. §) de dz. (51)

Here ‘leading order’ is in the microlocal sense [15, 33], meaning that the higher order terms
are smoother than the leading-order one, and =~ indicates that we are taking the expected L?
norm of the leading-order term.

Proof. The MSE 7 (Q) is given by the expression

J(Q) = / ENKFT(T) + FE©) +m) @) — ToT@)*1dz. (52)

Because we have assumed that T, C and n are mutually statistically independent, this MSE
can be written as a sum of three terms:

TQ) = Tr(Q) + Te(Q) + Th(Q). (53)
where
7r(Q) = / EN(K(FT) - To)(T) @) dz. (54)
7e(0) = / ENK(FE(©) )Pl dz. (55)
7,(0) = / EIIK(n) @)1 dz. (56)

First we simplify the expression for Jr (Q). The first term of (54) is dependent on the
image-fidelity operator XF7 applied to T

KFT) () = / e HRRD Oz, 5, k)AT (x, 5, k)T (x) dx dk ds. (57)

From the method of stationary phase in the variables (s, k), we know that the main contributions
to the integral (57) come from the critical points of the phase. We have assumed that the antenna
beam pattern is such that only the critical points for which x = z contribute to (57), because
others are not illuminated by the antenna.



Inverse Problems 29 (2013) 054003 K Voccola et al

In order to obtain a phase that resembles that of a delta function, namely (x —z) - &, we
expand the phase about the point x = z. This phase ensures our image-fidelity operator is a
pseudodifferential operator. We use the mean value theorem as in [7, 27]:

I'd
f(x)—f(z)=f d—f(Z+u(x—z))du
0o du

1
-2 / Vet dit = (6 —2) - B, 2.5, k), (58)
0

where in our case f(z) = 2kR, ;. We now perform the Stolt change of variables from (s, k) to
&= E(x,z, 5, k), where E is defined in the last line of (58). Therefore, we have

K(FTT) () ~ / e 80z, 5 (&), k(€)AT (x, (&), k()T (x)n(x, z, §) dx dE, (59)

where 7 is the Jacobian resulting from the change of variables, sometimes called the Beylkin
determinant [2]. In (59), we give only the leading-order term; the higher order terms are
smoother.

We can now substitute (59) into our expression for J7(Q), (67). We have

2

Tr(Q) ~ / E / e IO, HAT (v, En(x, 2, §) — 1, @ EIT (x) dEdx| dz, (60)

where ~ indicates that we are taking the expected L? norm of the leading-order term, namely
that obtained from (59).
We note that (60) involves a sum of scalar terms of the form

A= (AT, AT)p = (ALA T, T) s, ©1)
where A, is the pseudodifferential operator

(AT) @) = f DA, (2, x, £) dE T(x) dx 62)

and A, is defined similarly. A standard result in the theory of pseudodifferential operators [15,
33] tells us that an operator of the form (62) can be written as

AT@) = [t ar s T ax = [P g T ax, (63)
where p(z, £) = e =€ A, (e!#%). The symbol p has an asymptotic expansion

, (64)

=X

jlel »
p@. &)~y — DDA X, §)
a0

where « is a multi-index. In other words, the leading-order term of p(z, &) is simply Az, z, ).
Moreover, according to the symbol calculus [15, 33], the leading-order term of AQ.AI can be
written as

(AAT) )~ / A, (2,2, A (2, z, &) dE T (x) d. (65)

This implies that the leading-order contribution to (60) is
71(Q) ~ / E[ / T () (O, AT (W, O, X, ) — 7 (6 )Y

X (O, AT (& B, X, &) — X, E)}T(x/)} dg dx dx’. (66)

12
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Next we write out the matrix multiplications of (66) in summation form and use the
linearity of the expectation operation. We obtain

Jr(Q) ~ Jr(Q) + B(Q)
~ f e a{Q, HAT (X, B, X, &) — X (&, O
X (OO, HAT (& o, X &) — X, (', )CT (¢, x)] dE dx dx’
+ / e (o, HAT ., B X §) — (. D)

(O, AT (&, B, X, &) — X, O ()] dEdedx’,  (67)
where tr(-) denotes the trace of the matrix argument. The second integral of (67) is the bias
term of the MSE. The remaining terms make up the variance portion.

We can repeat the same steps for the clutter term JC(Q) to obtain the leading-order
expression

Te(Q) ~ / SO GO, HACW, B, X', B))
x{Q(, H)A (X, E)n(x’, x', §)YRC (v, x)] d§ dx dx’'. (68)

The last term we need to simplify is the noise term, i.e. J,(Q), which we write explicitly as

Tn(Q) = / E|: / e en (s, k)0 (@, 5, k) / e Hho 0@z, 5 K)n(s', k') dkeds dk' ds’:| dz.
(69)

We rewrite the matrix and vector multiplication as before to obtain

Jn(Q) = / 2Rk 1[ QT (2, 5, K) Q2. 5/, K)S" (s, K's 5, k)] dk ds k' ds' dz, (70)

where S” is the matrix of covariance functions of the noise. We denote it by the letter S because
the noise is already written in terms of a frequency variable k and is therefore analogous to
a spectral density function. In order to simplify our expression so that we may add it to the
target and clutter terms, we make the assumption that the noise is stationary in both s and &:

S (s, ki s’ k) =87 (5. k)8 (s — §)8(k — k). (71)

This is equivalent to assuming that the noise has been prewhitened. Inserting (71) into
equation (70), we obtain

Tn(Q) = / u[Q' &, 5, k)0, 5, b)S (s, k)] dk ds dz, (72)

where we have also dropped the primes on the dummy variables s and k’. Our last step is to
perform the Stolt change of variables from (s, k) to & to obtain (51).

We now rewrite our expression for J7 and J¢ in terms of the spatial frequency variable.
We use the symmetry of covariances to rewrite (44) and (45) as

T x) = / e e s (£, ¢) dgdg’

R, x) = / e XS (g, ¢) dede, (73)
which we then insert into (67) and (68):
Jr(Q) ~ / BT D {0, H)AT (', B X, E) — X, (&, E))

X(Q(, HAT &, B, X', §) — 7 (& ©)}S, (¢, &) dEdredx’ dgdg  (74)
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and
Jec(Q) ~ / IO O, ©)AC (¥, En (v, ', §))

X (O, AT, E)n(x', x', £))S(8, §)]1dE dx dx’ dg di'. (75)

In (74) and (75), we carry out first the x integration, which results in § (¢ — &), and then the &
integration to obtain (48) and (49).

To address the bias term, B(Q), we introduce the function M, which is analogous to
a spectral density function and is defined as in equation (46). We substitute (46) with the
arguments reversed into the expression for 5(Q) and perform the same symbol calculations
to arrive at (50). o O

Theorem.

(1) Under the same assumptions as the above lemma, any filter Q satisfying a symbol estimate
and also minimizing the leading-order MSE J (Q) must be a solution of the following
integral equation Vr and Vq:

( / 7 CTOUQAT =1 ) (Sp +M)(AT) +(QA)S(A)'] d;’) +(QS5" M) gy = 0.
(r.q)
(76)

Here ‘leading order’ is in the microlocal sense [15, 33], meaning that the higher order
terms are smoother than the leading-order one.
(2) 1If, in addition, we make the stationarity assumptions

S8, 8) = 8p(9)3 — &), (77
Sc(8,8) =Sc(£)8(5 — ¢, (78)
then the filter Q minimizing the leading-order total error variance V(Q) is given by
0" =1InP@A S AT+ A°ESH) A + 0§ T 'AT (S k] (79)

if the matrix in brackets is indeed invertible.
Part (2) of this theorem is included because it results in a simpler algebraic expression for
Q, which aids in numerical calculations.

Proof. In order to find the Q which minimizes J (g), we take the variation of 7 with respect
to Q That is, we look for the Q which satisfies

d ~ d d
0=d— JQ+eQ )+ —| Jc@+eQ)+—| T.(Q+€Q)
€lecg = T def o T T def, — =€
d
+—| B@Q+e€Q) (80)
de|._, — —€

for all possible QE.

To calculate this derivative, we focus on the first term on the right-hand side of (80) and
then apply similar steps to obtain the other terms in the derivative. Applying the product rule
to (48), we have

Jr(Q+e€Q) = / "0 ul(Q AT (QA"n — X )S)1dx dg dg’
0

de

€=l

+ f X0 u(QAT — 1) (QATMS,)]drdeds’. (81

14
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Now if we interchange ¢ and ¢’ in the second integral and use the fact that §; &.&)=58;. 0,
then we obtain

Jr(Q+eQ) = / "0 ul(@ AT (QA"n — X )S/) (&, &)1 dx dgdg’
=0

de

+ [ O utaTy - 1) (QATWS} . ¥ drdg g’ (82)

Next we use the fact that for any square matrix M, tr(M) = tr(M’) (where the
superscript ’ here refers to transpose) and the fact that for any square matrices A, B and
C, tr(ABC) = tr(BCA) to obtain

de

Jr(Q+e€0) = / e ul(Q AT (QA"n — £ )S/) (&, &)1 dxdgdd’
0

€=l

+ / e uf(Q ATn) (QATy — 7 )8, (&, )] drdeds’.  (83)
We note that the second term is exactly the complex conjugate of the first term. This leads us
to the following expression:
d ~ ix-(¢' - /
| Fre+eg)=2re / 6D {0 ATn) (QATn — £ )Sp)dvdgde’.  (84)
=0

Performing similar steps, we obtain the expressions for the variational derivatives of J¢, J,
and B:

d (1 -8) CoVT ((OAC /

| o) =1re / €0 u(Q A ) (QA)S,)] dx dg A,
e=0

d ~n

~| aere) = 2Re/tr[gjgg n de dg,
e=0

“| Bo+e) =me / -0 u{(Q ATn) ((QATn — F_)M)Idvdeds.  (85)
e=0

Now inserting the above results into equation (80) we have
0 =2Re f e u[(Q AT (QATn — %) (S + M) dx dz dg’
+2Re f €0 (@A) ((QACT)Se)] dx dg d

12Re / [0, 08"y dr dg. (86)

In the first two terms we use the fact that for any square matrices A, B, C and D, we have
tr(ABCD) = tr(BCDA). This allows us to write

0= 2Re [ uQ] e € 1QA"n ~ ) (8 + MDA

QAT (S0 (AS) )] dx dg g’ + 2Re / [0’ 03" d dz. (87)

Next we write out the trace operator in the summation form:

4 4
0=k [13 QZ’(‘N){ [ 7oAy - 1), + Mya”y!
1

qg=1 r=

+(QAD) (S) (AC) gy 48" + (OS” nm} dx dg. (88)
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We see that since QE is arbitrary in (88), Q must satisfy the integral equation (76). This
completes the proof of part (1) of the theorem.

To prove part (2) of the theorem, we minimize the variance of the error process. We begin
with the leading-order contribution to V(Q) (the variance of the error term), which is given by

V(Q) = Jr(Q) + Tc(Q) + Tn(Q). (89)

Note the only term missing is the bias-related term B(Q).
Following the above calculations, we find that for all r and ¢,

0= ( / 7 TOLQA ) — X S AT + (gf_xcnm(f)*]d;’) + (@S Mgy (90)
r.q)
With the stationarity assumptions (77), we obtain

Ol A"S (AT + A°S(A)) +nS8"T = 07 Sp (A7) 1)
from which we obtain (79). This completes the proof of the second part of the theorem. [J

4. Numerical experiments

We performed numerical experiments to verify our theory. The scene on the ground is assumed
to be 50 m x 50 m, represented by 100 x 100 pixels. That is, our resolution cell size is
0.5 m x 0.5 m. The endpoints of the scene are (£25, £25) (m). We consider targets with fixed
orientation and we assume that py (x) = 1 for all target locations x. In addition, we assume the
target is always 20 pixels in length and 1 pixel in width. Thus the target is deterministic for our
simulations; we leave stochastic target simulations as future work. For the clutter process, we
assume that a clutter dipole is located at every position x in the scene of interest. The values
of the clutter scattering strength for all ground locations, pc(x), are independent identically
distributed (i.i.d.) Gaussian random variables with zero mean and unit complex variance. In
addition, we assume that the orientations of the clutter dipoles, 6¢ (x), are i.i.d. uniform random
variables between the angles [0, 7 /2]. We note that in this case the total clutter process C(x)
is wide-sense stationary and therefore the stationarity assumption (77) holds. Measurement
noise is not explicitly included in the numerical simulations; this is equivalent to assuming
that the data have been prewhitened.

The flight path is a linear one along the y-axis; we take y(s) = [xo, s, 20], Where
—30 < s < 30 (in meters) and we have assumed that x = 20 m and zp = 10 m are
fixed. The two antennas used for transmission and reception have orientationse, = [1, 0, 0]’
and ¢, = [0, 1, 0], which are defined with respect to the origin in the scene on the ground.
We may think of a as having the vertical or V orientation, and b as having the horizontal or H
orientation. Our frequency range is 1—1.5 GHz, where we sample at a rate above Nyquist.

Since the target vector field is deterministic, we estimate its spectral density function via
the formula
2

S,(8) = ' / T (x) dx

92)

The clutter covariance matrix was calculated by averaging over C(x) and C(x’) given the
simple assumptions on its distribution. We then take the Fourier transform in order to calculate
S(&). Our definition of SCR is given by

N 20 (TG = pr ()P
E[ICI*] ’
where N is the number of grid points and gy is the mean of the target vector field.

SCR = 201log (93)

16
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Figure 2. VV component of the target vector and target-plus-clutter vector, vertically polarized
target.

In producing the data, we did not use the directional scattering assumptions on the
target and clutter process (20) and (26). We instead used equation (11) to simulate the data
produced by each transmitting and receiving antenna pair. That is, we do not approximate the
radiation patterns when simulating the data. In this way, we avoid some of the corresponding
‘inverse crimes’ [9]. From the simulated data, we form images of the target vector field T (x)
using equation (37) with the appropriate filters for the standard SAR image formation and
our coupled polarimetric reconstruction. In the standard reconstruction, we assume that the
transmitted field’s polarization properties remain constant along the flight path and therefore
perform standard backprojection on each element of the data vector. That is, we assume that
the antenna polarization states and also the transmitted field’s polarization states are given by
‘e, and'e;, for all slow-time values instead of the true slow-time varying polarization state given
in equation (17). We then utilize the resulting filter given in equation (91) (which is diagonal
due to our assumption). For the coupled polarimetric reconstruction we allow the transmitted
field’s polarization states to vary according to equation (17) and again use the resulting filter
Q from equation (91) (which is full in this case). We then compare the two sets of images,
I,(z) and I.(z), resulting from the component-by-component backprojection and the coupled
backprojection reconstruction methods, respectively. We also provide plots of the MSE versus
the data SCR for both methods and tables demonstrating the image SCR ratios for the various
cases.

Before we go into specific results, we note one issue present in our coupled numerical
reconstruction scheme. The matrix in square brackets in equation (79) is typically close to
being singular. To find its inverse numerically, we implemented a regularization scheme in
which we diagonally weight the matrix in order to improve its condition number. This diagonal
weighting depends on a constant factor, equivalent to the noise power, which constitutes our
regularization parameter. The choice of the regularization parameter is done for each case
individually and has not yet been optimized for minimizing MSE or maximizing image SCR.
This is left for future work.

Example 1: vertically polarized target. 'We first consider the case when each sub-element (or
individual target dipole) making up the extended target has the orientation er (x) = [1, 0, 0]
which is parallel to the a, or V, antenna. In figure 2, we show the actual target scene on the left
and then the target-embedded-in-clutter scene on the right.

In figures 3 and 4, we display the data obtained using the a antenna for both transmission
and reception, using a for transmission and b for reception, and also the case when b is used

17



Inverse Problems 29 (2013) 054003 K Voccola et al

5

x 10

3
2.5
2
15
1
0.5
0

20 40 60 80 100 120
fast time

x 107

3
6
2
0

20 40 60 80 100 120
fast time

N
=3

slow time
-

slow time

slow time:

fast time

Figure 3. VV, HH and HV target-only data, vertically polarized target.
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Figure 4. VV, HH and HV target-embedded-in-clutter data, vertically polarized target.

-10

x10° x 10

r 2.5 6
-20
> 15
-10
4
1.5
s 3
1
10 2
0.5 1
20
0 0
-20 -10 0 10 20 -20 -10 0 10 20
X X

Figure 5. VV image created using the standard (left) and coupled (right) reconstructions.

for both processes. Note we do not display the data when using b for transmission and a for
reception as in many practical situations this is identical to the a transmit, b receive case.
Figure 3 shows target-only data, and figure 4 shows the data for the target embedded in clutter.
As expected, there is no target response in the HH and HV channels when the antenna reaches
the line y = 0 (s = 50), as this is the point where the flight path crosses the x-axis where
the target lies, and consequently the target is viewed end-on. However there are data at this
point in the VV data set, because the target orientation is parallel to the V antenna and the dot
products in the data therefore have value 1 which is the maximum. When clutter is present,
the target data are completely obscured.

Figure 5 shows the results of the standard image formation and the results of our coupled
reconstruction. Here we only show the result of the VV image as the other two images are
zero, as expected. In this case, the image SCR is 20 dB. We note that the length of the target is
more evident in the coupled reconstruction. This effect is due in part to the fact that the target

18
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Figure 6. SCR versus MSE for the standard reconstructed images and coupled reconstructed
images, respectively, vertically polarized target.

Table 1. Scene SCR in dB and standard versus coupled image SCR in dB, vertically polarized
target.

Scene SCR  Image SCR (standard) Image SCR (coupled)

-20 0.3881 0.2695
-10 1.2272 0.8522
0 3.8809 2.6949
10 12.2723 8.5219
20 38.8085 26.9486

is visible in the data over a range of aspects; in other words, assumption (20) was not used in
producing the simulated data.

We plot the SCR versus the MSE in figure 6. Observe that the coupled reconstruction
performs significantly better when the SCR is small as is the case in more realisitc scenarios.

Lastly, we display the image SCR in table 1. We calculate image SCR by performing
the reconstruction techniques on target-only data and clutter-only data and then compare
the energy in each set of images. We note that our coupled reconstruction does not provide
improved image SCR in this example. This is due to the reduced intensity of the coupled
images and also due to the HH and HV elements of the scattering vector being zero in this
case. Thus the corresponding elements of the target spectral density matrix are zero as well.
We therefore infer that using all data sets to reconstruct the VV scattering vector element does
not increase the signal strength in this case.

Example 2: 45° polarized target Our second example considers the case when each sub-
element of the extended target has orientation e = [1/ V2,1 / V2,01, We display the HV
component of the target and the target-embedded-in-clutter scenes in figure 7. In this case,
we expect the coupled technique to aid in reconstructing the target more than in the previous
example. In particular, the dot product of the transmitted field polarization state and target
orientation reaches its maximal value during the course of the antenna trajectory. Therefore
our model (i.e. the directional scattering assumption) is valid in this case. Also we note the
elements of the spectral density matrix will all be of roughly the same magnitude because each
element of the target scattering vector is of the same order. Therefore, we expect using all
three data sets (shown in figure 8) to reconstruct each element of the scattering vector would
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Figure 7. HV component of target vector and target plus clutter vector, 45° polarized target.
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Figure 8. VV, HH and HV target only data, 45° polarized target.
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Figure 9. HV image created using the standard (left) and coupled (right) reconstructions, 45°
polarized target.

provide better images (i.e. lower MSE and higher image SCR) than the images formed using
channel-by-channel backprojection.

In figure 9, we display example images formed using the two different techniques. Here
we show only the result of the HV image as the other two images are almost identical. In this
case, we have SCR of —20 dB. Note that the target is visible in both images, however the target
stands out from the clutter significantly more in the image formed with our coupled technique.
We see this effect reflected in table 2 where we calculate the image SCR for each technique.
The SCR of the images formed using our technique is three times that of the images formed
using the standard channel-by-channel backprojection. In addition, we see that the MSE is
reduced as well in figure 10. The impact is particularly visible when the SCR of the data is
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Figure 10. SCR versus MSE for the standard images and coupled images, respectively, 45°
polarized target.
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Figure 11. HH component of the target vector and target plus clutter vector, 45° and 135° polarized
targets.

Table 2. Initial SCR in dB and final standard versus the coupled image SCR in dB, 45° polarized
target.

Scene SCR  Image SCR (standard) Image SCR (coupled)

-20 0.1883 0.6475

-10 0.5955 2.0476
0 1.8831 6.475

10 4.3572 14.3539

20 13.7786 45.3912

reduced. Therefore our imaging technique may have the potential to improve images formed
from real data.

Example 3: 45° and 135° polarized targets Our third example is the case of two targets.
The sub-elements of the first target have orientation er = [1/ ﬁ, 1/ \/i, 0] and the second
target is made up of sub-elements with orientation'ey = [—1/ \/E 1/ ﬁ 07, for the various x
locations. Note the target and target-embedded-in-clutter scenes are displayed in figure 11. In
this case, we expect the coupled technique to aid in reconstructing the target as in the previous
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Figure 12. VV, HH and HV target only data, 45° and 135° polarized target.
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Figure 13. HH image created using the standard (left) and coupled (right) reconstructions, 45° and
135° polarized targets.
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Figure 14. HV image created using the standard (left) and coupled (right) reconstructions, 45° and
135° polarized targets.

example. However, the gain in image SCR and decrease in MSE is not as impressive. We
note that while the data for all three channels are essentially identical (see figure 12), the HV
element of the target scattering vector is negative for the 135° polarized portion of the target.
This leads to a spectral density matrix in the single channel HV case, and also in the coupled
case, with elements of smaller magnitude than in the HH and VV cases. This results in the
filter matrix Q having elements with decreased magnitude as well. Note we display the HH
and VV components of the image vectors in figures 13 and 14 respectively. Therefore, we see
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Figure 15. VV image created using the standard (left) and coupled (right) reconstructions, 45° and
135° polarized targets.
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Figure 16. SCR versus MSE for the standard images and coupled images, respectively, 45° and
135° polarized targets.

Table 3. Initial SCR in dB and final standard versus coupled image SCR in dB: 45° and 135°
polarized targets.

Scene SCR  Image SCR (standard) Image SCR (coupled)
—-20 0.1302 0.1708
—-10 0.4118 0.5401
0 1.3022 1.7081
10 4.118 5.4014
20 13.0224 17.0808

in figure 14 that both methods fail to reconstruct the 135° polarized portion of the target in
the HV element of the image vector. This change in the filter implies there is less information
gained by using the coupled technique in this example. So while we see improvements in
figure 16 and in table 3, they are not as significant as in example 2. An adjustment of the filter
to compensate for this change in the spectral density matrices would lead to improvements
similar to that of the 45° polarized target case.
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5. Conclusion

In this work, we developed a novel polarimetric imaging technique. In particular, our model
is useful for imaging targets that display anisotropic scattering behavior. Additionally, we
have developed an algorithm that does not rely on the assumption that antenna polarization
properties remain constant with respect to the scene of interest. Therefore, our method is
potentially useful in a broad variety of scenarios, in particular those where the antenna beam
lacks directivity. This technique not only demonstrates how to incorporate statistical knowledge
into the imaging scheme, but also demonstrates a way to utilize the additional information
polarimetric radar provides.

We have demonstrated that our coupled reconstruction technique improves the image
mean-square error and signal-to-clutter ratio. In addition, this method appears to be especially
advantageous when the flight path is perpendicular to the target orientation. This work suggests
that polarimetric radar may prove useful in improving SAR imaging and target detection.
While in this work we have considered an extremely simplified target model, the positive
results suggest the need for further work on more complicated target models. To address
targets more complicated than curves, the forward model will likely need to be modified, and
we leave this for future work.
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