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I. INTRODUCTION
A. Motivations

Convolution integrals over groups arise in a broad array of science and
engineering problems. This is due to the ubiquitous presence of invariance
or symmetry in natural and man-made systems. Many imaging systems,
for example, have symmetry properties. These include an ordinary circular
lens that exhibits rotational invariance with respect to its optical axis and
a X-ray tomographic system that exhibits invariance with respect to rigid
body motions of the Euclidean space. The mathematical framework that
underlies the concept of invariance is group theory. This chapter describes
a group theoretic framework for system modeling and signal processing to
describe and exploit invariance. We then apply this framework to two image
reconstruction problems formulated as convolution integrals over groups.

The discussion starts with the review of the group theoretic signal and
system theory introduced in Yazici (2004) and shows how group theory
leads to expanded understanding of familiar concepts such as convolution,
Fourier analysis, and stationarity. Group convolution operation is defined as
a representation of the input—output relationship of a linear system, which
has dynamics invariant under the group composition law. Fourier transforms
over groups are introduced to study convolution operation that transforms
convolution to operator multiplication in the Fourier domain. The concept of
group stationarity, generalizing ordinary stationarity, is introduced to model
imperfect symmetries. Spectral decomposition of group stationary processes
is presented using Fourier transforms over groups. Deconvolution problem
over groups is introduced, and a review of the Wiener-type minimum mean
square error solution to the deconvolution problem is presented.

Next, this group-theoretic framework is applied to address two imaging
problems: (1) target estimation in wideband extended range-Doppler imaging
and diversity waveform design and (2) inversion of the Radon and exponential
Radon transforms for transmission and emission tomography.
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In the first problem, the output of the match filter becomes convolution
integral over the affine or Heisenberg group, depending on whether the
underlying model is wideband or narrowband. However, for the wideband
model, modeling the received echo as the Fourier transform of the reflectivity
density function over the affine group allows implementation of the Wiener-
type deconvolution in the Fourier transform domain. Therefore, the echo
model is modeled as the Fourier transform of the superposition of the target
and unwanted scatterers. The receiver and waveform design problems are
addressed within the Wiener filtering framework defined over the affine group.
The approach allows joint design of adaptive transmit and receive methods for
wideband signals.

In the second problem, both Radon and exponential Radon transforms are
formulated as convolutions over the Euclidean motion group of the plane.
Hence, recovering a function from its Radon or exponential Radon transform
projections becomes a deconvolution problem over the Euclidean motion
group. The deconvolution is performed by applying a special case of the
Wiener filter introduced in Section IV. The approach presented for the Radon
and exponential Radon transform can be extended to other integral transforms
of transmission and emission tomography, unifying them under a single
convolution representation (Yarman and Yazici, 2005e).

Apart from these imaging problems, convolutions over groups appear in
a broad array of engineering problems. These include workspace estima-
tion in robotics, estimation of the structure of macromolecules in polymer
science, estimation of illumination and bidirectional reflectance distribu-
tion function in computer graphics, and motion estimation in omnidirec-
tional vision (Blahut, 1991; Chirikjian and Ebert-Uphoff, 1998; Ebert-Uphoff
and Chirikjian, 1996; Ferraro, 1992; Kanatani, 1990; Lenz, 1990; Miller,
1991; Naparst, 1991; Popplestone, 1984; Ramamoorthi and Hanrahan, 2001;
Srivastava and Buschman, 1977; Volchkov, 2003).

B. Organization

Section II introduces the concept of convolution and Fourier analysis over
groups. Section III presents stochastic processes exhibiting invariance with
respect to group composition law and their spectral decomposition theorems.
Section IV describes Wiener filtering over groups as a solution of the
deconvolution problem. Section V addresses wideband target estimation and
waveform design problems. Section VI presents the inversion of Radon
and exponential Radon transforms of transmission and emission tomography
within the framework introduced in Sections II to IV.
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II. CONVOLUTION AND FOURIER ANALYSIS ON GROUPS

Let G be a group. We denote the composition of two elements g, 2 € G by
gh, the identity element by e (i.e., eg = ge = g, for all g € G), and inverse
of an element g by g 7! (i.e., g7 !g = gg~! = e). It is assumed that the reader
is familiar with the concepts of group theory and topological spaces. For an
introduction to group theory and topological groups, the reader is referred to
Sattinger and Weaver (1986) and Artin (1991).

A. Convolution on Groups

Recall that the input—output relationship of a linear time-invariant system can
be represented as a convolution integral

(fin* A)(1) = fou(?) = / Jin (DA — 1) dr. )]

The fundamental property of the ordinary convolution integral is its invariance
under time shifts. To generalize ordinary convolution to functions over groups,
an appropriate integration measure invariant under group translations must be
defined:

/f(g)du(g) =/f(hg)dﬂ(g), )
G G

forall 4 in G and integrable f. For locally compact groups, such an integration
measure exists and is called the left Haar measure. Left Haar measure satisfies
du(hg) = du(g), while right Haar measure satisfies duug(gh) = dur(g).
In general, left and right Haar measures are not equal for an arbitrary group.
However, one has dugr(g) = A*I(g) du(g), where A(g) is the modular
function satisfying A(e) = 1, A(g) > 0, A(gh) = A(g)A(h). Those groups
for which the modular function is 1 are called unimodular. For example, the
Euclidean motion group and the Heisenberg group are unimodular, but affine
and scale Euclidean groups are nonunimodular.

Results involving the right Haar measure can be easily deduced from the
results associated with the left Haar measure. Therefore, for the remainder of
this chapter, unless stated otherwise, we shall use the left Haar measure and
denote it by dg.

Let L?(G, dg) denote the Hilbert space of all complex-valued, square-
integrable functions on the group G, that is, f € L*(G, dg), if

/ |£(o)|" dg < oo. 3)
G
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Let fin, fou € L?(G, dg) be two signals, representing the input and output of
a linear system &, that is, S[fin(g)] = four(g)- If S has the following group
invariant property

S[finhg)] = fou(hg), )

for all g,k € G, then the input—output relationship between fi, and fou
reduces to a convolution over the group G and is given as

(fin* A)(8) = fou(g) = f fin(W)A(h™"g) dh. (&)
G

Here, we refer to A as the kernel or the impulse response function of the linear
system S.

Note that the convolution operation is not necessarily commutative for
noncommutative groups.

For a function f on G, f(h~'g) is called a translation of f by &, in
the same sense that f(¢+ — 7) is a translation of a function on R by . In
particular, [L(h) f1(g) = f (h~'g) is called a left regular representation,
while [R(h) f1(g) = f(gh) is called a right regular representation of the
group over L2(G, dg).

Convolution integral can also be expressed in terms of the left regular
representation of the group

(f * A)(g) = (f. L A*) = (L(g™") f, A*), (6)

where A*(g) = A(g~!), A being the complex conjugate of A, and (-, -) is
the inner product on L%(G,d g) defined as

(f; A) =/f(h)Mdh. (N
G

Let X be a homogeneous space of G, that is, gX = X. Then, convolution
operation over homogeneous spaces is obtained by replacing the left regular
representation in Eq. (6) with the quasi-left regular representation:

four(8) = (Lqg(g7") fin, A%, (8)

where A and fj, are elements of L?(X) and Ly(g) fin(t) = fin(g_] 1).

Note that both the echo signal in radar/sonar imaging and the tomographic
imaging process described in Sections V and VI can be viewed as convolution
operations over homogeneous spaces.
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B. Fourier Analysis on Groups

Fourier analysis on groups allows spectral analysis of signals and system in
invariant subspaces determined by the irreducible unitary representations of
the underlying group. This requires characterization of the unitary represen-
tations, which in return leads to the definition of the Fourier transforms on
groups. It was shown that if the group G is a separable, locally compact
group of Type I, unique characterizations of the unitary representations can
be obtained in terms of the irreducible unitary representations of the group
(Naimark, 1959). This class of groups include finite, compact, and algebraic
Lie groups, separable locally compact commutative groups, and the majority
of well-behaved locally compact groups. Many of the groups involved in
engineering applications, such as the affine group, the Heisenberg group, and
Euclidean motion group, fall into this class of groups.

The following text provides a review of the Fourier analysis on locally
compact groups of Type I for both unimodular and nonunimodular case.
Definitions of the basic concepts in group representation theory are provided
in Appendix A. For a detailed discussion of the topic, the reader is referred to
Groove (1997), Milies and Sehgal (2002), and Onishchik (1993).

Let U(g, ») be the Ath irreducible unitary representation of a separable
locally compact group of Type 1. Then, the operator valued Fourier transform
on G maps each f in L?(G, dg) to a family { f (1)} of bounded operators,
where each f (A) is defined as

FHM = f) = f dgf()U(g™", »), 9)
G

or in component form

fiij) = / f(@Ui (g7 1) dg, (10)
G

where f; ; (1) and U; ;(g, ) denote the (i, j)th matrix elements of f (1) and
U (g, A), respectively. The collection of all A values is denoted by G and is
called the dual of the group G. The collection of Fourier transforms { f )}
for all A € G is called the spectrum of the function f. The Fourier transform
is a one-to-one onto transformation from £2(G, dg) to L*(G, dv())), where
dv()) denotes the Plancherel measure in G.

An important property of the operator-valued Fourier transform is that the
group convolution becomes operator multiplication in the Fourier domain

F(fi = 2R = F(L2MF(fR). (1)
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For the case of separable locally compact groups of Type I, the Fourier
inversion and the Plancherel formulas are given by Duflo and Moore (1976):

flg) = / trace([ f (W&, 2|U (g, 1)) dv(h), (12)

G

and

G

/ |F()| dg = / trace([ f g [ g dv ), (13)
G

where fT(1) denotes the adjoint of f (1) and {£,} is a family of Hermitian
positive definite operators with densely defined inverses satisfying the follow-
ing conditions:

° {f()»)&} is trace class for each A € G and
o U(g. M&EUT(g. 2) = A2 ()&,

where A(g) is the modular function of the group G.

For a given locally compact group of Type I, both the family of operators
{&,} and the Plancherel measure can be determined uniquely. When the group
is unimodular, &, = I, I, being the identity operator. Thus, the Fourier
inversion and the Plancherel formulas become

flg) = / trace(f (MU (g, 1)) dv(r), (14)
G
and
/ £ ()| dg = / trace(f (1) fT(R)) dv(). (15)
G G

In the following section, Fourier transform is used to develop spectral
decomposition theorems for a class of nonstationary stochastic processes.

III. GROUP STATIONARY PROCESSES

One of the key components of our development is the generalized second-
order stationary processes indexed by topological groups (Diaconis, 1988;
Hannan, 1965; Yaglom, 1961). These processes are nonstationary in the
classical sense but exhibit invariance under the right or left regular transfor-
mations of the group.
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Let G denote a group and g, & be its elements. Then, we call a process
X (g), g € G, group stationary if

X(g) =X(hg), g, hegd, (16)
or
X(g) =X(gh), g hegdG, a7

where = denotes equality in terms of all finite joint probability distributions
of {X(g), g € G}. Depending on whether a random process satisfies Eq. (16),
Eq. (17), or both, it is called left, right, or two-way group stationary. Note that
for commutative groups, the process is always two-way group stationary.

Second-order group stationarity is a weaker condition than group stationar-
ity. A process X (g), g € G, is said to be second-order right group stationary
if

E[X(©)X(W]=R(gh™"), g heG. (18)
and second-order left group stationary if
E[X(@X()]|=R(h"'g), g.hed, (19)

where R is a positive definite function defined on the group G. We shall refer
to R as the autocorrelation function of X(g), g € G. A process is called
second-order group stationary if it is both left and right stationary.

The central fact in the analysis of group stationary processes is the existence
of the spectral decomposition, which is facilitated by the group representation
theory. For separable locally compact groups of Type I, the left group
stationary processes admit the following spectral decomposition:

X(g) = / trace(U (g, 1) Z(d))), (20)
G
and
R(g) = /trace(U(g,A)F(dk)), 21)
G

where R is the autocorrelation function defined in Eq. (19), Z(dA) is arandom
linear operator over G and F(dA) is an operator measure over G satisfying

/trace(F(dA)) < 0. (22)

G

Unless the process is both right and left group stationary, the matrix entries
of the random linear operator Z(-) is column-wise correlated and row-wise
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uncorrelated with correlation coefficients equal to the corresponding matrix
entries of the operator F(-). For a detailed discussion of the topic, refer to
Yaglom (1961) and Hannan (1965).

Now, let us assume that the autocorrelation function R € LZ(G, dg). We
define the spectral density function S of a group stationary process as

S =FRR) = /ng(g)U(g, ). (23)
G

For unimodular groups, S is a bounded nonnegative definite operator, defined
on the dual space G. For nonunimodular groups, S can be modified to S=3s g,
so that the resulting operator is Hermitian, nonnegative definite. The spectral
density function represents the correlation structure of the random linear
operators Z(-).

Some examples of group stationary processes are provided below.

1. Shift Stationary Processes

The simplest example is the ordinary stationary processes defined on the real
line with the addition operation, that is, the additive group (R, +),

E[X(1)X(n) ] =Rt — 1), —o00 <1y, < oo. (24)

One-dimensional irreducible unitary representations of the additive group
(R, +) are given by the complex exponential functions e'®’, —oco < 1,
t; < oo. Hence, the spectral decomposition of the shift stationary processes is
given by the ordinary Fourier transform.

2. Scale Stationary Processes

Another important class of group stationary processes is defined by the mul-
tiplicative group, on the positive real line, that is, (R™, x). These processes
exhibit invariance with respect to translation in scale and are referred to as
scale stationary processes (Yazici and Kashyap, 1997). Their autocorrelation
function satisfies the following invariance property:

E[X(t)X ()] =R(ti1/0), 0<t,1r < o0. (25)

One-dimensional irreducible unitary representations of the multiplicative
group are given by e“!°2! ¢ > 0. As a result, the spectral decomposition
of the scale stationary processes is given by the Mellin transform. Detailed
analysis of the self-similar processes based on the concept of scale stationarity
can be found in the first author’s previous works (Yazici, 1997; Yazici and
Izzetoglu, 2002; Yazici et al., 2001; Yazici and Kashyap, 1997).
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3. Filtered White Noise

A trivial group stationary process is the white noise process with autocor-
relation function given by ¢28(g), g € G, where o denotes the variance
of the process. Here, §(g) is the Dirac delta function over the group G,
supported at the identity element and has its integral over G equal to one. It
was shown in Yazici (2004) that the convolution of white noise process with
any f € L*(G, dg) leads to a second-order left group stationary process.

Apart from these examples, detailed discussions on stochastic processes
invariant with respect to multiplicative group, affine group, and two- and
three-dimensional rotational group action can be found in Yazici and Kashyap
(1997), Yazici (1997, 2004), Yazici et al. (2001), Yazici and Izzetoglu (2002),
Yadrenko (1983), and Tewfik (1987) and references therein.

IV. WIENER FILTERING OVER GROUPS

In Yazici (2004), we introduced a deconvolution method over locally compact
groups of Type L. This section provides a review of this method.

Let S be a left group invariant system defined on a locally compact group G
of Type I, and let fy,¢ be the noisy output of the system for an input fi,, given
by the following convolution integral:

Jour(g) = / fin() A(h™"'g) dh +n(g), (26)
G

where A : G — C is the complex-valued, square-summable impulse response
function of the group invariant system S, fi, is the unknown signal, and n is
the additive noise. Both fi; and n are left group stationary and take values in
the field of complex numbers C.

Without loss of generality, we assume that E[ fin(g)] = E[n(g)] = 0 and
that fi, and n are uncorrelated, that is,

E[fin(e)n(g)] =0. (27)

Our objective is to design a linear filter W on G x G to estimate fij, that is,

Finlg) = / W (g, h) fou(h) dh, (28)
G

given the measurements foy, Systems response function A, and a priori
statistical information on fj, and n.

Under stationary assumption, it can be shown that W(hgi, hgy) =
W (g1, g2) for all g1, g2, h € G. Therefore, the estimate of fi, of the signal
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fin 1s given as the following convolution integral:

fin(g) = / fouWW (h™'g) dh, (29)
G

where W(g) = W(g, e).
Letew(g) = fin(g)— fin(g). We design the filter W so that the mean square
error

/ E[|sw(2)]*] dg. (30)
G

is minimized. It can be shown that the Fourier transform of the minimum
mean square error (MMSE) deconvolution filter W is given by

Wopt(h) = S5 WA MW[AW Sz, WATO) +S,W]', reC. 31

Here, A is the Fourier trangform of the convolution filter A, and AT denotes
the adjoint of the operator A. Sy, and S, are operator-valued spectral density
functions of the signal and noise, respectively.

The spectral density function of the MMSE between the signal and its
filtered estimate is given by

Se() = (I = Wop M) AR)) S, (1), (32)

where I denotes the identity operator. For the derivation of the Wiener filter
stated above, we refer the reader to Theorem 2 in Yazici (2004).

A. Remarks

The Fourier domain inverse filtering can be summarized by the following
diagram:

fin A fout
A F
J/ci; m ]/Cojt .
Note that A M)S, ()»);\\T (A) + S, (1) is a nonnegative definite operator. Thus,

its inverse exists but may be unbounded. In that case, [/T M S, ()»)XT A) +
S,(A)]7! can be interpreted as the pseudo-inverse.

Similar to the classical Wiener filtering, the results stated above can be
extended to the case where the signal and the noise are correlated (Yazici,
2004).



268 YAZICI AND YARMAN

Note that the proposed Wiener filter provides a regularized solution to the
inversion problem. With appropriate choice of prior and noise model, one
can ensure that A(A)S7, MATR) + S,V isa positive definite operator with
eigenvalues away from zero.

If a priori information on the unknown signal is not available, it can be
assumed that Sy (1) = I (). Furthermore, when the measurements are free
of noise, the Wiener filter becomes the minimum norm linear least squares
filter given by

W) = AT [AM AT )] (34)

However, if A (A) is compact, this estimate is unstable in the sense that small
deviations in measurements lead to large fluctuations in the estimation. The
zero-order Tikhonov regularization (Tikhonov and Arsenin, 1977) of the form

Wopr(h) = ATG[AM AT + 02T (0)] ™! (35)

is equivalent to the case when Sg, (A) = I(A) and S, (A) = a2l (M.

Note that in Kyatkin and Chirikjian (1998), Chirikjian et al. provided
Eq. (35) as a solution to the convolution equation over the Euclidean motion
groups, which is a special case of the proposed Wiener filtering method.

In the next two sections, we introduce two image reconstruction prob-
lems, namely wideband extended range-Doppler imaging for radar/sonar
and inversion of Radon and exponential Radon transforms for transmission
and emission tomography. Both problems are addressed within the Wiener
filtering framework introduced in Sections II to IV.

V. WIDEBAND EXTENDED RANGE-DOPPLER IMAGING

In radar/sonar imaging, the transmitter emits an electromagnetic signal. The
signal is reflected off a target and detected by the receiver as the echo signal.
Assuming negligible acceleration of the reflector, the echo model from a point
reflector is given as the delayed and scaled replica of the transmitted pulse p
(Cook and Bernfeld, 1967; Miller, 1991; Swick, 1969; Weiss, 1994)

e(t) = Vsp(st = 1)), (36)

where 7 is the time delay and s is the time scale or Doppler stretch. The term
s is given as s = %, where c is the speed of the transmitted signal and v is
the radial velocity of the reflector. When the transmitted signal is narrowband,

the above echo model Eq. (36) can be approximated as

e(t) = p(t — 1) e, (37)
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where w is called the Doppler shift. In general, Eq. (36) is referred to as
the wideband echo model and Eq. (37) is referred to as the narrowband
echo model. The narrowband model is sufficient for most radar applications.
However, for sonar and ultrawideband radar, the wideband model is needed
(Taylor, 1995).

It is often desirable to image a dense group of reflectors. This means that the
target environment is composed of several objects or a physically large object
with a continuum of reflectors and that the reflectors are very close in range-
Doppler space. This dense group of reflectors is described by a reflectivity
density function in the range-Doppler space. The received signal is modeled
as a weighted average (Blahut, 1991; Miller, 1991; Naparst, 1991) of the time
delayed and scaled version of the transmitted pulse. For wideband signals, the
echo model is given as

e(t) = / /TW(S T — < )fj dz, (38)

where Ty is the wideband reﬂecnvzty density function associated with each
time delayed and scaled version of the transmitted signal p. For narrowband,
the echo model is given as

o.¢]

e(t) = / Ty (w, T)p(t — 1) el dt dw, (39)

—00
where Ty (w, T) is the narrowband reflectivity density function associated
with each time-delayed and frequency-shifted version of the transmitted
signal p.
Note that, for wideband signals, the output of the match filter becomes a
convolution integral over the affine group

Ac(s, 1) = //Tw(a b)— < b)i;’ db,  (40)

—00 ()
where A, denotes the cross-ambiguity function and A, denotes the auto-
ambiguity function (Miller, 1991).

In general, the received echo is contaminated with clutter and noise. Here,
we model clutter as an echo signal from unwanted scatterers and noise as the
thermal noise. Therefore, the received signal is modeled as

y(t) = er(t) +ec(t) +n(), (41)

where n(t) is the thermal noise, e7(¢) is the echo signal from the target
modeled as in Eq. (38), and ec(¢) is the echo signal from the clutter modeled
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FIGURE 1. A block diagram of the range-Doppler echo model.

as

T T 1 (1—1\d
ec(t)=//C(s,t)$p< ST>?sdr. 42)
—00 0

Here, we refer C as the clutter reflectivity density function. Figure 1 displays
the components of the radar/sonar range-Doppler echo model.

The goal in range-Doppler imaging is to estimate Tw(a,b) given the
transmitted and received signals and clutter, noise, and target statistics.
Clearly, the transmitted pulse plays a central role in the estimation of the target
reflectivity density function.

The two fundamental problems addressed in this chapter can be summa-
rized as follows:

1. Receiver design problem. How can we recover the wideband target reflec-
tivity density function Ty in range-Doppler space from the measurements
y(), t € R, embedded in clutter given a priori target and clutter
information?

2. Waveform design problem. Given the echo model embedded in clutter,
what is the best set of waveforms to transmit for the optimal recovery of
the target reflectivity density function given the prior information on the
target and background clutter?

The wideband model as described in Eq. (38) has been studied before. (See,
Miller, 1991; Cook and Bernfeld, 1967; Swick, 1969; Weiss, 1994; Naparst,
1991; Rebollo-Neira et al., 1997, 2000 and references therein.) Naparst (1991)
and Miller (1991) suggested the use of the Fourier theory of the affine group
and proposed a method to reconstruct the target reflectivity density function in
a deterministic setting. Weiss (1994) suggested use of the wavelet transform
for the image recovery in a deterministic setting. However, this approach
requires target reflectivity function to be in the reproducing kernel Hilbert
space of the transmitted wavelet signal. In Rebollo-Neira et al. (1997, 2000),
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the approach in Weiss (1994) is extended to include affine frames. In all these
studies, the received signal is modeled clutter and noise free, which is not a
realistic assumption for radar or sonar measurements.

Our approach is based on the observation that the received echo can be
treated as the Fourier transform of the reflectivity density function evaluated
at the transmitted pulse. We model target and clutter reflectivity as stationary
processes on the affine group and use the Wiener filtering approach presented
in Section I'V to remove clutter by transmitting clutter rejecting waveforms.

Our treatment starts with the review of the affine group and its Fourier
transform. Next, we discuss the estimation of target reflectivity function and
design of clutter rejecting waveforms. Note that this study does not address
the suppression of additive noise. For the treatment of this case, see Yazici
and Xie (2005).

A. Fourier Theory of the Affine Group

1. Affine Group

Affine group or the ax+b group is a two-parameter Lie group whose elements
are given by 2 x 2 matrices of the form

[g ﬂ aeR", beR, (43)
parameterized by the scale parameter a and the translation parameter b.

The affine group operation is the usual matrix multiplication, that is,
(a,b)(c,d) = (ac,ad + b), and the inverse elements are given by the
matrix inversion (a, b)~! = (a=', —a~1b). This defines the affine group as a
semidirect product of the additive group (R, 4) and the multiplicative group
(R, x). For the rest of the chapter, the affine group is denoted by A.

Let (s,7) € A, and let L%(A, s 2dsdrt) and L'(A, s~ dsdt) denote
the space of square summable and absolutely summable functions over A,
respectively, that is,

/|f(s, f)}zf_j dt < 400, /yf(s, t)]f—jdt <400, (44
A A

where s~2dsdr is the left Haar measure of the affine group. The inner
product of two functions f and f> in L%(A, s =2 ds d) is defined as

—d
(f1. f2) =/f1(s, ) fals, T)s—;df. (45)
A
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The affine group is a nonunimodular group, where the right Haar measure
is s~ ds dt. Note that for the affine group, the modular function is given by
A(s,t) =s L

2. Fourier Transform over the Affine Group

There are exactly two nonequivalent, infinite dimensional, irreducible, unitary
representations of the affine group, thatis, A € {+, —} and U((s, 1), L) =
U4 (s, 7). Let U4 act on the representation space Hy that consists of functions
¢+, whose Fourier transforms are supported on the right half-line and U_
act on H_, the orthogonal complement of H,, that consists of functions
¢— whose Fourier transforms are supported on the left half-line. Note that
L*(R, dt) is a direct sum of H, and H_, that is, L*R) = H, & H_. Then,
the representations

1 t—1
Uis(s, T ) = — 46
+(s, Do+ (1) ﬁ¢i< . ) (46)
are unitary, nonequivalent, and irreducible in the space H, and H_, respec-

tively.
The affine Fourier transform of a function f € L?(A, s~2ds dr) is defined
as

fi(f)z//s_zdsdtf(s,t)Ui(s, 7). (47)

—0 0

The inverse affine Fourier transform is given by

f@s, )= Z trace(Ul(s, r)}'i(f)éi), (48)
+

where Ul(s, 7) denote the adjoint of Uy(s,t) and &1 are the Hermitian
positive definite operators introduced in Eq. (12) for the affine group. They
are defined as

1 doy

t)y=F——(). 49
E+p+(1) 5.4 (1) (49)

The convolution of two functions f1, f> over the affine group is given by

(fl*fzxs,r)://fl(a,mfz(g,ta )a—‘z’db, (5.7) € A, (50)
—00 0
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Under the affine group Fourier transform, the convolution of two functions
over the affine group becomes operator composition. More specifically,

Fi(fi * o) = Fr(f)F=(f2). (€2))

Let {s’ ()} denote a set of orthonormal differentiable bases for Hi,
respectively. Define 5" (1) = 57 (1) +s".(t), U(s, 1) = U4 (s, 7) ® U_(s, 1),
(s,7) € A,and &£ = &, @ &_. Then for any p € L*(R, dx),

UGs,))p=Us(s,T)py+ + U_(s,T)p- (52)

and if p is differentiable,

§p=§&+p+ +6-p—, (53)

where p; and p_ are orthogonal components of p in Hy and H_, respec-
tively.

For a given orthonormal, differentiable basis {s’} (t)} of Hx, the inverse
affine Fourier transform can be expressed as

Fls, 1) =Y > (ULGs, 1) Fe(f)éxst, k)
+ n
=Y (F(HEs", Us. 1)s"), (54)
where F(f) = F1.(f) ® F-(f).

B. Target Reflectivity Estimation

Observe that the echo model [Eq. (38)] is, in fact, the affine Fourier transform
of the target reflectivity density function Tw evaluated at the transmitted
signal p;

er(t) = F(Tw)p(0), (35

where er is the received target echo. Now, assume that the unknown target
reflectivity density function, Tw(a, b), is a left affine stationary process
contaminated with additive left affine stationary clutter C(a, b) on the range-
Doppler plane. It follows from Eqgs. (29) and (31) that the optimal estimation
for the target reflectivity density function in the mean square error sense is
given by

Tw = (Tw + C) % Wopt. (56)

Here, Wop is the Wiener filter over the affine group given by

Fir(Wopt) = (SL +8§)7"sT, (57)
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where Si and SjCE are the spectral density operators of the target and clutter,
respectively.

The affine Wiener filter can be estimated from a priori target and clutter
information. Such information is routinely compiled for air defense radar (see
Nathanson et al., 1999). The affine spectra, S T and S€, of the target and clutter
can be estimated from such information.

Alternatively, Eq. (56) can be expressed as

Fi(Tw) = Fe(Tw + C) Fr(Wopr) (58)

or

Tw(s, 7) = Z trace(Ui(s, O F+(Tw + C)Fx(Wop)§). (59)
+

This estimate can be implemented in various forms leading to different
adaptive receive and transmit algorithms (Yazici and Xie, 2005). Note that
both target and clutter spectra, Si and SjCE , are not Hermitian operators due to
the nonunimodular nature of the affine group. However, it can be shown that
ST& and S$& are Hermitian and nonnegative definite. So, we define

ST =sTe and S§ =sSe. (60)
Then, Eq. (59) can be rewritten as

Tw(s.1) = trace(UL(s, 0 Fx(Tw + O (ST +35)7'5T). (61)
+

Below, we describe an algorithm to implement the estimate given in Eq. (61)
and discuss how the estimation problem couples with the waveform design
problem.

1. Receiver Design

Let {s’} ()} be a set of orthonormal basis for Hx, respectively. Then, the target
reflectivity estimate in Eq. (61) can be expressed as

Tw(s, 1) = Z Z (Fu(Tw + C& (ST +5) 7' STk, Us(s, T)slt)
= Z Z Fi(Tw + 5L, Us(s, 1)s't), (62)

where

= S(Ei + Eﬂ:) S:ES:E (63)
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Note that if §" = s’/ + §” is chosen as the transmitted pulse, then y"(¢) =
F(Tw + C)s™ becomes the received echo, and Eq. (62) can be reexpressed as

Tw(s.t) =) (" Us. )s"). (64)

n

This observation leads to the following algorithm for receiver and waveform
design.

Algorithm.

1. Choose a set of orthonormal basis functions {s’ } for Hx.

2. Transmit pulse 5" = §'{ + 5", where 5%} = é(Ei + Sg)_lgis:’t.

3. At the receiver side, perform affine match filtering for each channel as
follows:

(s, 1) =(y", U(s, 1)s"), (65)

where y" is the received echo for the nth channel.
4. Coherently sum all channels

Tw(s,t) =) 2"(s. 7). (66)

So far, we have not specified how we can choose the set of orthonormal
basis functions {s} }. Therefore, the wideband image formation algorithms
described above are valid independent of the choice of transmitted waveforms.
The orthogonal functions {s’.} or their filtered counterparts {5’} } do not need
to be wideband signals. Thus, this reconstruction formula leads to a scenario
where there are multiple radars/sonars operating independently, each with a
limited low-resolution aperture (i.e., narrowband transmission). Nevertheless,
appropriate processing and fusion of data from multiple narrowband sensors
lead to formation of a synthetic wideband image.

C. Waveform Design

Note that in the image reconstruction described above, the MMSE is achieved
irrespective of the basis functions or the transmitted pulses chosen. However,
the requirement is that a complete set of modified basis functions {5"} must be
transmitted to achieve the MMSE. In reality, we are only allowed to transmit
finite number of, for instance N, waveforms. So the question is how to choose
the N best waveforms to achieve MMSE sense.
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Observe that the MMSE estimate in Eq. (59) can be written as

Tw (s, 7) = Z trace(Ui(s, ‘L')]:i(TW)S) (67)
+
=2 Z(]:i(fw)fESi, Ux(s, T)s%), (68)
+ n

where {s’ } are orthonormal bases for Hx, s = s’ +s”.
Let T,,(s, T) = (F(Tw)é&s™, U(s, t)s"). Then,

Tw(s. 1) =) Tu(s. 7). (69)

It can be easily verified that fw(s, 7) and T,(s, ) are affine stationary
processes with the following properties:

1. T, (s, t) and T, (s, ) are jointly affine stationary.

2. E[T,(s, )T, (s, 7)] =0if n £ m.

3. E[Ty,(s, r)fw(s, )] = E[|T, (s, 0)|*] = (f(R;W)“;‘s”, s"), where Rz, is
the autocorrelation function of TW (s, 7).

4. E[|Tw(s, D)*] = Y4 trace(Fi(RF, )E).

5. RTW = (’fpt * (Rt + Rc) * Wopt, where W(’fpt(s, 7) = Wopt((s, )~ 1) and
R7, Rc are autocorrelation functions of target reflectivity density process
T (s, t) and clutter C(s, t), respectively.

It follows from the above properties that if only N pulses are transmitted,
then the mean square error is given by

N 2 N N L
E[ Tw—> T, } = E[|Tw ]+ Y_E[IT,I*] -2 EIL,Tw]
n=1 n=1 n=1
N
= trace(Fi(R7,)§) — > _(Fr(Rf, )Es", ")
+ n=1
N
= trace(Fi(R7,)E) — > > (Fa(R7, )Esk, s1)
+ + n=1
=3 Y (Fe(Rf, )Est. sh). (70)
+ p=N+1

Note that
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Fi(R7, )& = Fu(Woy # (R + RN) % Wopt)§
-1
= Fe(We(SL+ SY) (ST +8Y) ™ sie
= Fe(Wep)SL. (71)

Therefore, the MMSE is achieved if s/, n = 1,..., N, are chosen as the
eigenfunctions of the operators .7-]E(W(;“pt)§jTE corresponding to the N largest
eigenvalues. Thus, step 1 of the algorithm introduced in the previous subsec-
tion can be modified so that the orthonormal functions {s’t},n = 1,..., N,
are chosen as the unit eigenfunctions of fi(Wg‘pt)gi corresponding to N
largest eigenvalues.

D. Numerical Experiments

For ease of computation, transmitted waveforms used in the numerical
simulations are derived from the Laguerre polynomials.
Let

§1(@) = Ly—1(w)e 2, oweRt neN, (72)

where §i (w) is the Fourier transform of s’} (t) and L, 1, n € N, are Laguerre
polynomials defined by

Lo(x) =1, (73)
Li(x)=—x+1, (74)
L _ntlox, "L N 75
nt1(x) = ﬁ n(x) — m n—1(x), neNlN. (75)

It is well known that (Abramowitz and Stegun, 1972)

/e_me(x)Ln(x) dx = {
0

1 m=n,

0 else. (76)

Therefore, {57} is an orthonormal basis for L2(R*, dx). Let s" be the
standard inverse Fourier transform of §’ . Then, {s’} } is an orthonormal basis

for Hy . Let§" (w) = §'{ (—w), ® € R™. Then, s" (t) = s’ (), € R, and {s" }
are orthonormal bases for H_.
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We generated realizations of the target and clutter based on the following
spectral density operators Si and Si with respect to bases {s’} }:

10 45
45 9 4
4 8 35
35 7 3
~ 3 6 25
S = 25 5 2 and
2 4 15
15 3 1
1 2 05
05 1 o
07«7
4
8
5C — 10
+ 12
40

Figures 2a and 2b show a realization of the target and target contaminated
with clutter.

We synthesized 10 realizations of the target and clutter at various signal-
to-clutter ratios (SCR) defined as SCR = 20log,((02/0?2), where 02 and o>
are the target and clutter variance, respectively. Each realization is generated
according to spectral densities 0251 and 62S$. The transmitted waveforms
are chosen as

S =£ST 3597187, n=1,...,20. (78)

Figures 2c and 2d present results obtained using the algorithm in Sec-
tion V.B and Naparst’s (1991) method. For Naparst’s method, transmitted
pulses are the Hermite polynomial basis (Naparst, 1991). Figure 3 shows the
mean square error (MSE) between the true and estimated reflectivity density
functions for the proposed method and Naparst’s method at different SCR
levels. MSE is calculated by averaging error based on 10 realizations of the
true target and the estimated target at each SCR level. Our numerical study
shows that the proposed method yields lower MSE than Naparst’s method,
particularly for low SCR.
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(c) Naparst’s method (d) Proposed method

FIGURE 2. Estimated target reflectivity function embedded in clutter. (a) True target reflectivity
function. (b) Target reflectivity function embedded in clutter. (c) Estimated target reflectivity function
using Naparst’s method. (d) Estimated target reflectivity function by the proposed method.

VI. RADON AND EXPONENTIAL RADON TRANSFORMS

In transmission computed tomography, a X-ray beam with known energy
is sent through an object, and attenuated X-rays are collected by an array
of detectors. The attenuation in the final X-ray beam provides a means of
determining the mass density of the object along the path of the X-ray. In
two dimensions, the relationship between the attenuation and mass density
along the X-ray path is given by the Radon transform. In general, the Radon
transform R maps an integrable function f (unknown image) over RV to its
integral over the hyperplanes of RV (Radon, 1917; Deans, 1983; Natterer,
1986; Helgason, 1999)

(R, r) / fx)é(x - —r)dx, (79)

RN
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Log,,(MSE)
L)

in

Naparst’s method
Wiener filtering

e A0 & - 1 2 0
SCR

FIGURE 3. Mean square error between the estimated and true target reflectivity function.

where ¥ is the unit normal of the hyperplane, which is an element of the unit
sphere S¥~!in RV, and r > 0 is the distance from the hyperplane to the
origin. While for the current discussion we will take N = 2, the results are
valid for any N € Z greater than 2 (Yarman and Yazici, 2005c).

There has been an enormous interest in both applied and theoretical
communities in analyzing and developing methods of inversion for the
Radon transform (Barrett, 1984; Cormack, 1963, 1964; Gelfand et al., 1966;
Helgason, 1999; Natterer, 1986; Pintsov, 1989). Although the research effort
has been very diverse, inversion of the Radon transform can be broadly cate-
gorized into two approaches: analytic and algebraic. The analytic approach
covers the works of Cormack (1964), Natterer (1986), and Barrett (1984)
among many others. The research effort in this approach ultimately aims at
numerical implementation of the Radon transform inversion. The foremost
study in the algebraic approach can be found in the work of Helgason (1999)
and the references therein. The algebraic approach is mainly concerned with
the generalization of the Radon transform and the development of associated
analysis methods in a group theoretic setting (Helgason, 1999, 2000; Gelfand
et al., 1966; Rouviére, 2001; Strichartz, 1981). In Helgason (1999), the
domain of the unknown function and its projections are given by the homo-
geneous spaces of the Euclidean motion group, M (N), of the N-dimensional
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Euclidean space, namely by M(N)/SO(N) and M(N)/(Z2 x M(N — 1)).
The underlying group structure enables development of a generalization of the
Radon transform for the homogeneous spaces of locally compact unimodular
groups. This leads to a generalization of the backprojection operator and the
development of generalized filtered backprojection-type inversion methods
for the generalized Radon transforms.

In emission tomography, an object is identified with the emission distri-
bution of a radiochemical substance inside the object. The measurements
depend on both the emission distribution of the radiochemical substance
and the attenuation distribution of the object. For a uniform attenuation,
the relationship between the measurements and the emission distribution is
represented by the exponential Radon transform. The exponential Radon
transform of a compactly supported real valued function f over R? for a
uniform attenuation coefficient u € C, is defined as (Natterer, 1986)

(Tu (@, 1) =/f(X)3(X-17 — e dx, (80)
R2

where t € R, # = (cos8, sinf)7 is a unit vector on S! with 6 € [0, 2x)
and 0+ = (—sin@, cos0)7. Clearly, Radon transform is a special case of the
exponential Radon transform for which u = 0.

The exponential Radon transform constitutes a mathematical model for
imaging modalities such as X-ray tomography (© = 0) (Cormack, 1963),
single photon emission tomography (SPECT) (u € R) (Tretiak and Metz,
1980), and optical polarization tomography of stress tensor field (1 € iR)
(Puro, 2001).

A number of different approaches have been proposed for the exponential
Radon transform inversion (Bellini et al., 1979; Tretiak and Metz, 1980;
Inouye et al., 1989; Hawkins et al., 1988; Kuchment and Shneiberg, 1994;
Metz and Pan, 1995). Bellini ef al. (1979) reduced the inversion of the
exponential Radon transform to finding the solution of an ordinary differ-
ential equation that leads to a relationship between the circular harmonic
decomposition of the Fourier transform of the projections (7, f) and circular
harmonic decomposition of the Fourier transform of the function f. An
alternative method based on the circular harmonic decomposition of the
Fourier transform of f and (7, f) was derived by Tretiak and Metz (1980)
and Inouye et al. (1989) using two different approaches.

Tretiak and Metz (1980) also introduced a filtered backprojection-type
inversion method. Hawkins er al. (1988) used the filtered backprojection
method introduced by Tretiak and Metz together with the circular harmonic
decomposition and expressed the circular harmonic decomposition of the
function f in terms of the circular harmonic decomposition of its projections
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(7, f). Later the filtered backprojection method was extended to the angle-
dependent exponential Radon transform by Kuchment and Shneiberg (1994).

Reconstruction of images from the data collected by the aforementioned
imaging systems requires inversion of the exponential Radon transform.

Here we present an alternative deconvolution-type inversion approach
for the Radon and exponential Radon transforms based on the harmonic
analysis of the Euclidean motion group. The proposed deconvolution-type
inversion method is a special case of the Wiener filtering method presented
in Section IV. In the current discussion, we address the inversion problem
in a deterministic setting. However, it should be noted that many emission
tomography applications require rigorous treatment of noise, which can
be addressed by extending the approach presented here to the statistical
setting introduced in Section IV. Furthermore, the inversion algorithm can
be implemented efficiently using the fast Fourier algorithms over M(2)
(Kyatkin and Chirikjian, 2000; Yarman and Yazici, 2003, 2005a, 2005b,
2005c¢, 2005d).

A. Fourier Transform over M (2)

The rigid motions of R? form a group called the Euclidean motion group
M (2). The elements of the group are the 3 x 3 dimensional matrices of the
form

R
(Rg. 1) = [0{3 g] Ry € SOQ), r € R?, 81)

parameterized by a rotation component € and a translation component r.
SO(2) is the special orthonormal group, whose elements are 2 x 2-dimensional
matrices with determinant equal to 1, and the group operation is the usual
matrix multiplication. The group operation of M(2) is the usual matrix
multiplications, and the inverse of an element is obtained by matrix inversion
as (Ro,r)"' = (R, ', —R; 'r).

Let f; and f> be two integrable functions over M (2). Then, the inner
product { f1, f>) and convolution ( f1 * f2) of f1 and f; are defined as

i = [ SiRo 0 Re ) d(R) d. 82)

MQ2)
(Fre PORour = [ fi(RoRe, Rox + 1) fa(Ry ' ~R; ') d(Ry) dx,
MQ2) (33)

where (Rg,r), (Ry,x) € M(2), and d(Ry) dx is the normalized invariant
Haar measure on M (2), with d(Ry) being the normalized measures on SO(2).
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For an explanation of f S0Q2) d(Ry), we refer the reader to Section VIL2 of
Natterer (1986).
Let f be a function defined over M (2). f is said to be L2(M (2), d(Ry)dx)
if
/ |/ (Rp, )|” d(Ry) dx < oo. (84)
M(2)
The irreducible unitary representations U ((Rg, r), A) of M(2) are given by
the following linear operators (Vilenkin, 1988)
(U((Rg, 1), A)F)(s) = e *"OF(R;'s), FeL*(S' dw)), (85)

where s is a point on the unit circle S, (- ) is the standard inner product
over R?, and A is a nonnegative real number.

Since the circular harmonics {S,,} form an orthonormal basis for L%(S',
d(w)) (Seeley, 1966), the matrix elements U, ((Rg, ), A) of U((Rg, 1), 1)
are given by Vilenkin (1988):

Unn((Ro, 1), 1) = (Sm, U((Rg, 1), 1) Sy)

= f Sn(@)e 28, (R, '») d(w), (86)
s1

where d(w) is the normalized Haar measure on the unit circle.

If the complex exponentials {€"¥}, n € Z are chosen as the orthonormal
basis for LZ(S 1 d (w)), the matrix elements for the unitary representation
U(g, 1) of M(2) become (Vilenkin, 1988)

Unn((Ra, 1), 1)
= (", U((Rg, 1), 2)e"™)
2
— ZL e—iml//e—i(rlk cos Y —+rpA sin w)ein(lﬁ—é) dWa Vm,n €7Z. (87)
T
0

The matrix elements of U ((Rg, r), 1) satisfy the following properties:

Unn(Ry', =R, 'r), 1) = Uyt (Ro, 1), 1) = Unim (g, A), (88)
Unn((RgRg, Rgr + x), 1) = Z Unic((Rp, %), 1) Ukn ((Rg, 1), 1). (89)
k

Furthermore, the matrix elements U, ((Rg, r), A) of U((Ry, r), A) form a
complete orthonormal system in L2(MQ2),d (Ryp) dx).
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Let f € L?(M(2)). The Fourier transform over M (2) of f is defined as
(Sugiura, 1975; Vilenkin, 1988)

FHO) = f0) = / f(Rg, U ((Rg, 7)™, 1) d(Rg)dr,  (90)
M)

where d(Ry) dr = drd(Rp) is the normalized Haar measure on M (2). Then,
the inverse Fourier transform is given by

F YRy, r) = f(Ro, 1)

/ trace(f (MU ((Rg, 1), ))Adr.  (91)

0

1
- (2n)?
The matrix elements of the Fourier transform over M (2) is given by

F(Pmn ) = fun(h) = / S (Ro, 1)Unn((Rg. 1)~ 1) d(Rg) dr, (92)
MQ)

for A > 0. Then the corresponding inverse Fourier transform is given by

F X Fun) (R, 1) = f(Ry, r)

Let f, f1, fo € L>(M(2), d(R¢,) d(x)). The Fourier transform over M (2)
satisfies the following properties:

1. Adjoint property:

P ) = Fum ), (94)

where f*(Rp, 1) = f((Rg, r)7").
2. Convolution property:

F(fr# 2B = Famg ) Fign (). 95)
q
3. Plancherel relation: Let
(fi. fo) = (2n)2 / Zflm,,(x)f2 A d, (96)
0

then (f1, f2) = (1, fo)-



DECONVOLUTION OVER GROUPS 285

4. SO(2) invariance—I: If f is a SO(2) invariant function over M (2), that is,
f(8) = f(r) € L*(R?), then

Fon ) = 8 fu(=1), (97)

where §8,, is the Kronecker delta function, and f, (%) is the spherical
harmonic decomposition of the standard Fourier transform f of f

fur) = / f @) Sy (@) d(w), where f(e) = / fx)e ¥ dx.  (98)
St R2

5. SO(2) invariance—I I: Let f be a SO(2) invariant function over M (2) and
©(g) = 8(Rp) f(r), then

Pmn (L) = / [(—10)8,(®) S (@) d (@), 99
s1

and @on (V) = fu(—1).

The Fourier transform over M (2) can be extended to the space of compactly
supported functions D(M (2)) and rapidly decreasing functions S(M(2)) and
is injective (Sugiura, 1975). Furthermore, Fourier transform over M (2) can
be extended to the space of tempered distributions S’(M (2)) and compactly
supported distributions £'(M(2)), together with its properties as shown in
Appendix B.

B. Radon and Exponential Radon Transforms as Convolutions

1. Radon Transform

Let §(Ry) denote the distribution over SO(2) defined as follows:

/ 8(Ry)9p(Rg) d(Rg) = @(1), (100)
S0(2)

where I is the identity rotation. Let g = (Rg,7r), h = (Rp,x) € M(2),
¥ = RQT e1, and r; = r - e1, where e; denotes the unit vector in R? with its ith
component equal to 1. Then, the Radon transform of a real valued function f
can be written as a convolution over M (2) as follows:
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(RA@, —r1) = / f)8(x - RY ey +r1)dx
R2

= / /6((R9x+r)-e1)8(R¢)f(x)dxd(R¢)

S0(2) R?

= [ antehrrmdrg dx
M(2)
= (AR * f™)(8), (101)
where f*(h) = f(h~!), Ag(h) = &(x - e1), § being the Dirac delta
distribution (Gelfand and Shilov, 1964), and f’(h) = §(Rg) f (x). Alternative
formulations of the convolution representation of the Radon transform were

given in Yarman and Yazici (2003, 2005¢, 2005d). Note that for the rest of
this chapter, we shall use the integral representation of distributions.

2. Exponential and Angle-Dependent Exponential Radon Transforms

Motivated by the Radon transform, we now present the convolution represen-
tations of the angle-dependent exponential Radon transform.

Letd = R9Te1, and r| = r-eq, for some Ry € SO(2). The angle-dependent
exponential Radon transform of a real valued function is given by

T 1@ =) = [ 08050+l @x 7" dx
R2
= / /f(x)S(R¢)8((R9x +r)-e)
S0(2) R?
x exp(u((RgRy) e2) Rox - €2) dx d(Ry). (102)
Multiplying both sides of (102) by e*®)72 the resulting operator (’ZZ(,}) )
can be represented as a convolution over M (2)
(T 3y (@) = P ( Ty )@, y)
= (A7) * (9, (103)

where f'(g) = 8(Rp) f (r) and Azyp)(g) = 8(r - ep)eRa evrez,

From Eq. (103) the angle-dependent exponential Radon transform can
be visualized as an operator that fixes the function f while traversing an
exponentially weighted projection line, where the weight is determined by the
orientation of the line. When w is independent of the angle, that is, u(#) =
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for some fixed u € C, the angle-dependent exponential Radon transform
reduces to the exponential Radon transform

(T, /(&) =" (T (@, —r).

We refer to (7, f) as the modified exponential Radon transform of f.

C. Inversion Methods

Let A € {R, 'ZZ}. Then, one can treat (A f) as a tempered distribution that
is the convolution of two distributions (see Appendix B for the definition of
convolution of distributions), A4, and f’ given as in Section VI.B

(Af)(Q) = (Aax* f")(g), (104)

in which f’ is compactly supported and A4 € S’ (M(2)).

Using the convolution property of the Fourier transform over M(2),
Eq. (104) can be written as (see Appendix B for Fourier transform of
distributions over M (2))

ADHR = T 0Aam. (105)
If m(k) is invertible, then f’ can be obtained as
£y = FH([AHM[Aam]'T). (106)

Since 71;()») is rank deficient, we replace the inverse of TA(A) with the
special case of the optimal filter W, (A) Eq. (35) of Section IV, given as

Wop) = [A4 WAL + o1 ()] A4 ), (107)

where /(1) is the identity operator and o is a small positive constant. Thus,

£y ~ FU WL WA () (108)

= F Y A [Aa" AR + o 10)] AN ), (109)

which is a regularized linear least square approximation of f”.

For Radon and modified exponential Radon transforms with uniform
attenuation, A4 is a SO(2) invariant distribution. Hence, by the SO(2)
invariance properties of the Fourier transform over M (2), A 4 is rank one.
Then, Eq. (105) can be simplified as

AP mn V) = (=) A a0 (), (110)



288 YAZICI AND YARMAN

where fm () is the spherical harmonic decomposition of the standard Fourier
transform of f. For A = T/, (1,f ), (&) and /TT\;Q on () are given by

(T, 0 = ﬁ[@/’ﬁ_m (224 u2) (—p+ a2 2y
FTuf) (22 +02) (=12 £ 2)" ")
700 = 8 (D2 32 4 )]
+ [(\/m—ﬂ)"])- (112)

Here, (7, f),, (o) denotes the circular harmonic decomposition of the one-
dimensional standard Fourier transform of (7,, f)(6, r):

(T /), (0) = / (T ) (@, 0) S (@) d (@), (113)
Sl
where
(T, )0,0) = | (T, f)©O,r)e " dr. (114)
R

Substitution of (7, 1), (») and A7, (1) into Eq. (110) gives the follow-
ing relationship between f and (7, f) (Yarman and Yazici, 2005a, 2005b)

Fom@) = @) (32 + 12)
5 M (ot VA2 )
(=D"(Vp? + 22+ )" + (Vu? + 22— )"

+(77/«/_\]_C/)—m(_\/ )\2+M2)
y M (—p = /A
(D" (2432 4 + (S 02—

for any integer n. For u = 0, Eq. (115) gives the spherical harmonic
decomposition of the projection slice theorem (Yarman and Yazici, 2005¢).

Hence, as long as A 40, (A) # 0, k € Z, a simplified inversion formula can
be obtained as

(115)

(A (1) ) (116)

f@) =F (S fa(=1) = ( T
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Numerical inversion of the Radon and exponential Radon transforms based on
Eq. (108) will be presented in Section VI.E. Inversion methods based on the
simplified Egs. (110) and (116), are presented in Yarman and Yazici (2005a,
2005b, 2005¢).

For the modified angle-dependent exponential Radon transform neither f’
nor AT;Z('}) are SO(2) invariant. Therefore, Eq. (106) or Eq. (108) has to be
used to recover f’.

Assuming that & is known, f can be recovered from f’ by

fx) = / ['(Rg, x) d(Ry). 117)

S0(2)

In the next section, we present numerical reconstruction algorithms based
on Eq. (108).

D. Numerical Algorithms

1. Fourier Transform over M (2)

The computational complexity of the inversion algorithms is directly related
to the computational complexity of the Fourier transform over M (2). After
reordering the integrals, the Fourier coefficients fmn (A) of f over M(2) can
be expressed as follows:

/( / (/f(Rg,r)ei“""dr>sm(R9lw)d(e))sn(w)d(w). (118)

st S0(2) 'R?

Choosing S, as the complex exponentials, that is, S, (w) = elne, Eq. (118) can
be performed in four consecutive standard Fourier transforms. For a detailed
description of the Fourier transform algorithm over M (2) based on Eq. (118),
we refer to Kyatkin and Chirikjian (2000) and Yarman and Yazici (2003,
2005¢).

If there are O(K) number of samples in each of SO(2) and R, the
computational complexity of the Fourier transform implementation over M (2)
described above is O(K 3 log K). If the projections and the unknown function
do not depend on the r» component and SO(2), computation complexity of
the Fourier coefficients of the projections and the inverse Fourier transform of
Finn (1) reduces to O(K 2 log K).
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2. Reconstruction Algorithm

The proposed inversion algorithm can be implemented in four steps as shown
in the following diagram:

f—A-Af—F- A7
[ zlwopm (119)

fSO(z) o ¥
f==5—r
Let f(x) = O for |x| > a and hence Af(®,r) = O for |r;| > a. The

four-step reconstruction algorithm can be implemented as follows:

1. Compute the Fourier transform of .717 of the projections over M (2) for

m,n:O,:I:l,...,:I:K,andA:%,k:O,...,K,forsome)\o>0.

2. Foreach A, let [A4(M)], [Af(M)], and [ f/(1)] denote the 2K — 1 by 2K —1
matrix representations of the Fourier transforms of A 4, Af, and f’ over
M (2), respectively. Then, the Fourier transform of f’ over M (2) can be
approximated as

A — P ——— — 71 —
[F W] = [Aam]([AaW] [Aam)] + o) [AfMW]". (120)
where o is a positive constant close to zero; overline and superscript 7 are
the complex conjugation and transpose operations, respectively.

3. Take the inverse Fourier transform of f,;m (1) to obtain f”.
4. Integrate [’ over SO(2) to recover f.

E. Numerical Simulations

1. Radon Transform

The numerical implementation of the algorithm introduced in the previous
subsection is performed on a two-dimensional modified Shepp—Logan phan-
tom of size 129 x 129 pixels, generated by MATLAB’s phantom function.
The projections of the phantom are taken from 129 equally spaced angles
over 2 and 129 parallel lines for each angle. To avoid aliasing, the image
and the projections were zero-padded to 257 pixels in horizontal and vertical
and radial directions. The Fourier transform over M (2) was numerically
implemented as described in Section VI.D and Yarman and Yazici (2003,
2005d). All the numerical implementations were performed using MATLAB.
For comparison purposes, the standard filtered backprojection (FBP) method
with Ram-Lak filter is used.

Figure 4a presents the reconstructed phantom image. For reconstruction,
the regularization factor o is set to 107>, The effect of the regularization term
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(a) Proposed algorithm (b) FBP

FIGURE 4. Reconstruction of the modified Shepp—Logan phantom from its Radon transform
using proposed algorithms and FBP. (a) Reconstruction by proposed algorithm, for o = 1078,
(b) Reconstruction by FBP.

Original -
FBP -

Proposed algorithm

FIGURE 5. Comparison of details in reconstructed Shepp—Logan phantom from its Radon
transform.

was discussed in Yarman and Yazici (2005d). For visual comparison, FBP
reconstructed images are shown in Figure 4b. The details of the reconstructed
images are shown in Figure 5. These results suggest that the proposed
reconstruction algorithm produces details at least as good as that of the FBP
algorithm.
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(b)

FIGURE 6. Reconstruction of the modified Shepp-Logan phantom from its exponential
Radon transform using the proposed algorithm for o = 1010, Reconstructed images for (a)
w="0.154 cm~! and (b) u = i0.154 cm~ 1.

2. Exponential Radon Transform with Uniform Attenuation

Numerical simulations are performed on a two-dimensional modified Shepp—
Logan phantom image corresponding to a region of 13.1 x 13.1 cm?,
discretized by 129 x 129 pixels. The projections of the phantom are taken
from 129 equally spaced angles over 2 and 129 parallel lines for each angle.
The Fourier transform over M (2) was numerically implemented as previously
described. All numerical implementations were performed using MATLAB.
The regularization factor o is set to 107!, Taking & = 0.154 cm~! and
w = i0.154 cm™!, the reconstructed images using the proposed algorithm
is presented in Figure 6. An extensive study on the proposed reconstruction
algorithm and numerical experiments can be found in Yarman and Yazici
(2005b).

The numerical simulations demonstrate the applicability and the perfor-
mance of the proposed inversion algorithm. Note that further improvements
in reconstruction can be achieved by improving the numerical implementation
of the Fourier transform over M (2).

VII. CONCLUSION

In this chapter, we introduced a MMSE solution for the deconvolution
problems formulated over groups using the group representation theory and
the concept of group stationarity. We used these concepts to address the
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receiver and waveform design problems in wideband extended range-Doppler
imaging and the inversion of the Radon and exponential Radon transforms for
the transmission and emission tomography.

We treated the wideband radar/sonar echo signal as the Fourier transform
of the range-Doppler extended target reflectivity function with respect to
the affine group evaluated at the transmitted pulse. The clutter filtering
and target reconstruction naturally couples with the design of transmitted
pulses. We developed a Wiener filtering method in the Fourier transform
of the affine group to remove clutter. This treatment leads to a framework
that simultaneously addresses multiple problems, including joint design of
transmission and reception strategy, suppression of clutter, and use of a priori
information.

We presented convolution representation of the Radon and exponential
Radon transforms. The convolution representations are block diagonalized
in the Fourier domain of the Euclidean motion group. Due to the rotation
invariance properties of the Fourier transform of the unknown image over the
Euclidean motion group, the block diagonal representation is further simpli-
fied to a diagonal form. We introduced a new algorithm for the inversion of
these transforms and demonstrated their performance in numerical examples.

The fundamental results introduced here are applicable to other imaging
problems that can be formulated as convolutions over groups. Such problems
include inverse rendering (Ramamoorthi and Hanrahan, 2001), omnidirec-
tional image processing (Makadia et al., 2005), and inversion of other integral
transforms of transmission and emission tomography (Yarman and Yazici,
2005e).
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APPENDIX A
Definitions

Definitions of the basic concepts used in this chapter are provided for readers’
convenience. Detailed discussions and rigorous treatment of these concepts
can be found in Milies and Sehgal (2002), Groove (1997), and Onishchik
(1993).
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Definition Al.1

Let G be a group, F afield, and V a vector field over F. A representation of
a group G is a homomorphism p from G into the group of automorphisms
of V, denoted by GL(V), thatis, p: G — GL(V), such that p(g) = pg.

If V is a n-dimensional vector space over F, then for a fixed basis of
V there is an isomorphism ¢ from GL(V) into GL(n, F). Therefore, ¢
induces another representation (¢ o p) of G into GL(n, F'), which is called
a matrix representation. Any representation of G into GL(V) is equivalent
to a representation into GL(n, F) and vice versa. The integer 7 is called the
degree of p.

Definition Al.2

Let W be a subspace of V. If for all elements g € G, p,v is again in
W(pgW C W), then W is said to be invariant under p or, equivalently,
p-invariant. If V is nonempty and has no proper p-invariant subspace W,
then the representation is said to be irreducible, else reducible.

A group G is called a topological group if G is a topological space
satisfying the Hausdorff separation axiom and the mapping (x, y) — xy~!
is a continuous mapping from G x G into G.

Let G be a topological group. A unitary representation of G over a Hilbert
space H is a strongly continuous homomorphism U from G into the group
of unitary operators of H, U(H). H is called the representation space of
U and denoted by H (U). The dimension of H (U) is the called the degree
of U.

Let W be a subspace of a representation space H(U) of a unitary repre-
sentation U. Then W is said to be invariant under U if U(g)W C W for
all g € G. A unitary representation U is called irreducible if H(U) is
nonempty and has no proper subspace invariant under U.

Let G be a locally compact topological group and let H(R) = L*(G, dg)
be the Hilbert space of square-integrable functions on G with respect to
right Haar measure on G. Let f be a function in H (R). Define the operator
R on H(R) by [R(g) f1(h) = f(hg). Then R is a unitary representation
of G and is called the right regular representation of G. Similarly, the left
regular representation L is defined by [L(g) f1(h) = f(g~'h).

Definition Al.3

Let G be a group, and let K be a subgroup of G. Given an element g € G,
the subsets of the form

gK ={gk: k € K}, Kg={kg: k € K}
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are called the left and right cosets of the subgroup K determined by g. The
equivalence class of the cosets are denoted by G/K and K\ G, respectively.

e G acts on the set K\ G by right multiplications, and since it is an automor-
phism of the group K\ G, it also induces automorphism over the represen-
tations of K\G. Hence, this automorphism induces a representation of G
over the complex-valued function over K\G called the quasi-right regular
representation.

APPENDIX B
Distributions and Fourier Transform Over M (2)

Let D(M(2)) denote the space of compactly supported functions on M (2);
and S(M (2)) denote the space of rapidly decreasing functions on M (2). The
Fourier transform over M (2) can be extended to D(M (2)) and S(M(2)), on
M (2), and is injective (Sugiura, 1975). Let D’'(M(2)) and S’ (M (2)) denote
the space of linear functionals over D(M(2)) and S(M(2)), respectively.
D'(M(2)) and S’ (M (2)) are called the space of distributions and tempered
distributions over M (2) and S'(M (2)) C D'(M(2)). Let u € D'(M(2)) and
¢ € D(M(2)). The value u(g) is denoted by (u, @) or fM(z) u(g)p(g)dg,
similarly for u € S(M(2)).

Let g € S(M(2)) and u € S'(M(2)). The Fourier transform # of u over
M (2) is defined by (i1, @) = (u, @).

Let u and v be two distributions, at least one of which has compact support.
Then the convolution of u and v is a distribution that can be computed using
either of the following

(v, 9) = (uh), (v(g), p(hg))) = {v(), (u(h), p(hg))).  (B.1)

If either of u or v is a tempered distribution and the other is compactly
supported, then u * v is a tempered distribution. Without loss of generality,
assume that u is compactly supported and v € S’ (M(2)). Then i can be
computed by

i = (u(g), Unn(g~", 1)). (B.2)

Using Egs. (B.1) and (B.2), the Fourier transform of the convolution u *v over
M (2) is obtained to be

Fsv) =Y Omk (Wit (1). (B.3)
k
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