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ABSTRACT

Reconstruction algorithms for monostatic synthetic aperture radar (SAR) with poor antenna directivity
traversing straight and arbitrary flight trajectories have been developed by various authors1–5 , while, to
our knowledge, the acquisition geometry of bistatic SAR studies for the case of poor antenna directivity
are limited to isotropic antennas traversing certain flight trajectories (straight6,7 or circular8,9 flight
trajectories) over flat topography.

In this paper, we present an approximate analytic inversion method for bistatic SAR (Bi-SAR).10 In
particular, we present a new filtered-backprojection (FBP) type Bi-SAR inversion method for arbitrary,
but known, flight trajectories over non-flat, but known, topography. These FBP type reconstruction
methods have the advantage that they produce images that have the edges of the scene at the correct
location, orientation and strength. We demonstrate the performance of the new method via numerical
simulations.

1. INTRODUCTION

In synthetic aperture radar (SAR) imaging a scene of interest is illuminated by electromagnetic waves
that are transmitted from an antenna mounted on a plane or satellite. The aim is to reconstruct an
image of the scene from the measurement of the scattered waves.

In bistatic SAR (Bi-SAR),10 unlike the monostatic case, where transmitter and receiver antennas
are co-located, transmitter and receiver antennas are located on separate platforms (Figure 1). This
allows the transmitter and its heavy power supply to be flown on a platform different from that of
the cheap, expendable receiver. Also, some of the electronic countermeasures that have been devised
to thwart monostatic configurations are less effective against bistatic systems.10–12 Finally, bistatic
measurements can provide better ability to distinguish targets from clutter.13

For SAR systems whose antennas are able to form a narrow beam, the image reconstruction al-
gorithms are well-known.14–20 However these algorithms are not useful for imaging systems using
antennas having poor directivity where the antenna footprint is large.

In1–4,21 reconstruction algorithms for monostatic SAR with poor antenna directivity traversing
straight and arbitrary flight trajectories have been developed. To our knowledge, the acquisition
geometry of Bi-SAR studies for the case of poor antenna directivity are limited to isotropic antennas
traversing certain flight trajectories (straight6,7 or circular8,9 flight trajectories) over flat topography.
In this paper, we focus on Bi-SAR with poor antenna directivity and address the image reconstruction
problem when transmitter and receiver are traversing arbitrary, but known, flight trajectories over a
known, but not necessarily flat, topography.
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Figure 1. Acquisition geometry for Bi-SAR.

We start our discussion by introducing our forward model in Section 2. We present the FBP-type
image formation method in Section 3. In Section 4, we demonstrate the performance of the image
formation method in numerical simulations using circular and distorted circular flight trajectories over
a flat topography. Finally, we conclude our discussion in Section 5.

2. FORWARD MODEL

Let γT (s),γR(s) ∈ R
3, s ∈ R, be the transmitter and receiver trajectories, respectively. We assume

that the earth’s surface is located at the position x = (x1, x2, ψ(x1, x2)), where ψ : R
2 → R, is a known

smooth function, and scattering takes place in a thin region near the surface. Following,2,3, 22 under
the single scattering (Born) approximation, we model the received signal d(s, t) as follows:

d(s, t) ≈ F [T ](s, t) :=
∫

e−i2πω(t−RTR(s,x)/c0)ATR(x, s, ω)T (x)dω dx, (1)

where x = (x1, x2), RTR(s,x) = |γT (s) − x| + |x − γR(s)| is the total travel time, also known as
the bistatic range,10 T (x) denotes the surface reflectivity, c0 denotes the speed of light and ω denotes
the temporal frequency. ATR is a complex amplitude function that includes the transmitter and
receiver antenna beam patterns, the transmitted waveform, geometrical spreading factors, etc.2,3, 22 For
example, for an isotropic transmitter transmitting a waveform P (ω) and isotropic receiver, ATR(x, s, ω)
can be approximated by ATR(x, s, ω) = P (ω) (4π|γT (s) − x| |γR(s) − x|)−1. Here t denotes the time
and s, which is referred to as the slow time, parameterizes the trajectory.

Unless otherwise stated, the bold Roman, bold italic, and Roman small letters will denote points
in R

3, R
2 and R, respectively, i.e. x = (x, x3) ∈ R

3, with x ∈ R
2, and x3 ∈ R.

We assume that for some mATR
, ATR satisfies the estimate2,3

sup
(s,x)∈K

|∂α
ω∂

β
s ∂

ρ1
x1
∂ρ2

x2
ATR(x, s, ω)| ≤ C0(1 + ω2)(mATR

−|α|)/2 (2)

where K is any compact subset of R × R
2, and the constant C0 depends on K,α, β, ρ1, and ρ2. This

assumption is true when the antenna is broadband and the source waveform is a band-limited waveform.

In fact under the assumption (2), (1) defines F as a Fourier integral operator23–25 whose leading
order contribution comes from those points lying in the critical points of the phase, i.e. intersection

Proc. of SPIE Vol. 6568  656807-2



of the illuminated surface and the ellipsoid E(s) = {z : RTR(s, z) = c0t}. Since F is a Fourier
integral operator, an approximate inverse of F can be computed by a suitable backprojection onto
these intersections. The curves formed by the intersection of the surface and E(s) are also referred to
as isorange contours10 for the slow-time s. For flat topography ψ(x) = 0, the isorange contours are
given by ellipses on the plane x3 = 0 (see Figure 2), which do not necessarily share the same foci (For
an explicit formulation of the ellipses see26).

The ideal image formation problem is to estimate T from the knowledge of the data d(s, t).
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Figure 2. Isorange contour for a distorted circular flight trajectory (dashed line) γT (s) = γR(s+ π/4) = γd(s)
over a flat topography where black and white triangles are the transmitter and receiver platforms, respectively.
(See Section 4 for an explicit formula of γd(s).)

3. IMAGE FORMATION

In general, the strategy for estimating T is to apply an imaging operator K to the data F [T ]. The
image T̃ for the target can thus be written T̃ = KF [T ]. The operator L = KF contains the information
about how the image T̃ is related to the actual target scene T .

Since F is a Fourier integral operator, an approximate inverse of F can be computed by another
Fourier integral operator K. Our strategy is to determine K so that the kernel of L, which is also called
as the point spread function, approximates the Dirac delta function. In this regard, we extend the
monostatic SAR reconstruction techniques based on microlocal analysis2,3 to Bi-SAR to determine K.
We used microlocal-analysis-based methods to develop a generalized FBP-type reconstruction method
where the data is first filtered and then backprojected onto isorange contours in oder to form the
image. It is a direct consequence of microlocal-analysis of the backprojection operator that the visible
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edges of the scene appear in the correct location and correct orientation in the image obtained by
backprojection.2,3

We use the following FBP operator K to form an image T̃ of the scene:

T̃ (z) := K[d](z)

:=
∫

ei2πω(t−RTR(s,z)/c0)QTR(z, s, ω)d(s, t)dω ds dt, (3)

where z = (z1, z2), z = (z, ψ(z)), and

QTR(z, s, ω) = χΩz (ξ(s, ω))
ATR(z, s, ω)
|ATR(z, s, ω)|2

1
η(z, ξ)

, (4)

is the filter chosen such that the leading order term of the point spread function of L becomes the
Dirac delta function (see26,27 for the derivation of QTR). Here

ξ(s, ω, z) =
ω

c0
[J(z1, z2)]T

[
γT (s) − z
|γT (s) − z| +

γR(s) − z
|γR(s) − z|

]
, (5)

where

J(z1, z2) =
[
∂z/∂z1 ∂z/∂z2

]
=

⎡
⎣ 1 0

0 1
∂ψ/∂z1 ∂ψ/∂z2

⎤
⎦ , (6)

and superscript T denotes transposition,

Ωz = {ξ | ATR(z, s, ω) �= 0} (7)

and χΩz is a smooth cut-off function equal to one in the interior of Ωz and zero in the exterior of Ωz,
and

η(z, ξ) =
∣∣∣∣∂(s, ω)

∂ξ

∣∣∣∣ (8)

is the determinant of the Jacobian that comes from the change of variables (5). We note that since
ATR satisfies (2), by (4), for some mQTR

, QTR satisfies the estimate.23–25

sup
(s,x)∈K

|∂α
ω∂

β
s ∂

ρ1
x1
∂ρ2

x2
QTR(z, s, ω)| ≤ C0(1 + ω2)(mQTR

−|α|)/2, (9)

where K is any compact subset of R × R
2, and the constant C0 depends on K, α, β, ρ1, and ρ2, thus

making K a Fourier integral operator.

With the choice (4), the leading-order contribution to (3) becomes simply Ωz band-limited version
of T (z). An edge passing through the point z is visible if the normal to the edge is contained in
Ωz.2 Thus one reconstructs the visible edges of the scene with the correct strength (i.e., magnitude
of the jump) and order (i.e., not smoothed). We will demonstrate these properties of the method via
numerical simulations in the next section.
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4. NUMERICAL RESULTS

We performed numerical simulations for Bi-SAR with circular and distorted circular transmitter and
receiver flight trajectories.

In our numerical simulations, we considered a square target of size 5.5km and a rectangular target
of size 3.3km by 8.8km located in a flat scene of size [0, 22] × [0, 22] km2 with their centers located at
(−4.4,−2.2)km and (8.8, 2.2)km (see Figure 3), respectively. We discretize the scene with 128 × 128
pixels, where (0, 0, 0) km and (22, 22, 0) km correspond to the pixels (1, 1) and (128, 128) (see Figure 4),
respectively. In these simulations, we considered the circular flight trajectory γ(s) = (11+22 cos s, 11+
22 sin s, 6.5) km, and the distorted circular flight trajectory γd(s) = (11+22(cos s+.1 cos s cos(6s)), 11+
22(sin s+.1 sin s cos(6s)), 6.5) km. For each case we took the transmitter and receiver flight trajectories
to be γT (s) = γR(s+ π/4).

Figure 3. (Left) 3D and (right) 2D views of circular (dashed line) and distorted circular (solid line) flight
trajectories.
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Figure 4. Scene used in numerical simulations.

For comparison purposes, we also reconstructed images using backprojection (BP)6,9 only, where
we set QTR = 1. The projection data and reconstructed images using BP and FBP are presented in
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Figure 5. All the edges are visible and are reconstructed at the correct location and orientation using
both the BP and FBP methods. Furthermore, the FBP method recovers the correct strength and order
of the edges.
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Figure 5. (Top row) Projection data for Bi-SAR with (left) circular and (right) distorted circular transmitter
and receiver trajectories, with reconstructed images obtained by (middle row) backprojection and (bottom) FBP.
Both methods reconstruct the visible edges of the scene at the correct location and orientation. However, the
edges in the backprojected image are smoothed; this is corrected in the FBP image, as predicted by the theory.
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5. CONCLUSION

In this paper, we presented a new explicit filtered-backprojection-type bistatic synthetic aperture radar
inversion method for arbitrary flight trajectories. The method is based on microlocal analysis and
preserves the location, orientation, strength, and order of the visible edges. We demonstrated the
performance of the inversion method in numerical simulations, which is in correspondence with the
theoretical expectations. The method can be extended to Bi-SAR with static transmitter or receiver,27

or to multiple Bi-SARs, assuming proper data association, in a straightforward manner.
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