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ABSTRACT

This paper presents a new method for exponential Radon transform inversion based on the harmonic analysis of
the Euclidean motion group of the plane. The proposed inversion method is based on the observation that the
exponential Radon transform can be modified to obtain a new transform, defined as the modified exponential
Radon transform, that can be expressed as a convolution on the Euclidean motion group. The convolution
representation of the modified exponential Radon transform is block diagonalized in the Euclidean motion group
Fourier domain. Further analysis of the block diagonal representation provides a class of relationships between
the spherical harmonic decompositions of the Fourier transforms of the function and its exponential Radon trans-
form. The block diagonal representation provides a method to simultaneously compute all these relationships.
The proposed algorithm is implemented using the fast implementation of the Euclidean motion group Fourier
transform and its performances is demonstrated in numerical simulations.

Keywords: exponential Radon transform, Euclidean motion group, harmonic analysis, convolution represen-
tation

1. INTRODUCTION

The exponential Radon transform constitutes a mathematical model for imaging modalities such as x-ray tomog-
raphy (µ = 0), single photon emission tomography (SPECT) (µ ∈ �)1, 2 , and optical polarization tomography
of stress tensor field (µ ∈ i�).3

For a uniform attenuation coefficient µ ∈ �, the exponential Radon transform of a compactly supported real
valued function f over �2 is defined as

Tµf(θ, t) =
∫
�2
f(x)δ(x · θ − t)eµx·θ⊥

dx, (1)

where t ∈ �, θ = (cos θ, sin θ)T is a unit vector on S1 with θ ∈ [0, 2π) and θ⊥ = (− sin θ, cos θ)T . We invert the
exponential Radon transform by studying its invariance with respect to the Euclidean motions of the plane. Our
analysis starts with the following modification of the exponential Radon transform:

T ′
µf(ϑ, r1, r2) = Tµf(ϑ,−r1)eµr2 , ϑ = (cos θ,− sin θ)T , r1, r2 ∈ �. (2)

We refer to the resulting transform T ′
µ as the modified exponential Radon transform. We showed7 that the

modified exponential Radon transform can be expressed as a convolution over the Euclidean motion group of
the plane.

In this paper, we present a new inversion algorithm for the exponential Radon transform based on this
convolution representation. Analysis of the algorithm leads to circular harmonic decomposition type relation-
ships7 between the Fourier transforms of f and its exponential Radon transform which fall into the class of
relationships presented by Metz and Pan2 . Our derivation differs from the one presented in2 that we used the
underlying invariance of the exponential Radon transform with respect to the Euclidean motion group. The
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presented algorithm can compute and incorporate all the circular harmonic decomposition type relationships
simultaneously.

The rest of the paper is organized as follows: In Section 2, we introduce the Euclidean motion group of
the plane and its Fourier transform. In Section 3, we present the convolution representation of the modified
exponential Radon transform and its diagonalization. In Section 4, we described the reconstruction algorithm
based on the diagonalization of the modified exponential Radon transform and the Fourier transform of the
Euclidean motion group. In Section 5, we present numerical simulations and compared the performance of the
proposed algorithm with the previously proposed algorithms7 . Finally, in Section 6, we summarize our results
and conclusion.

2. HARMONIC ANALYSIS OF THE EUCLIDEAN MOTION GROUP

2.1. Euclidean Motion Group

The rigid motions of �2 are made up of translations and rotations. Translations form the group �2 with
group operation being the vector addition. Any rotation of �2 can be represented as an 2 × 2 unitary matrix
parameterized by θ ∈ [0, 2π), Rθ, i.e.

Rθ =
[

cos θ − sin θ
sin θ cos θ

]
. (3)

Rotations of �2 form the group SO(2) with matrix product being the group operation.

The rigid motions of �2 form the group called the Euclidean motion group of the plane, denoted by M(2).
The elements of the group are 3 × 3 matrices of the form

(Rθ, r) =
[
Rθ r
0T 1

]
, Rθ ∈ SO(2), r ∈ �2, (4)

parameterized by a rotation component θ and a translation component r. The group operation of M(2) is
the usual matrix multiplications and inverse of an element is obtained by matrix inversion as (Rθ, r)−1 =
(R−1

θ ,−R−1
θ r). This defines M(2) as the semidirect product of the additive group of �2 and special orthonormal

group SO(2), i.e. M(2) = SO(2) � �
2.

2.2. Fourier Transform over the Euclidean Motion Group

Fourier transform over the Euclidean motion group, which we will also refer to as M(2)-Fourier transform for
short, projects a square integrable function f over M(2), f ∈ L2(M(2)), onto the irreducible unitary representa-
tions U (λ)(g) of M(2), where g is an element of M(2) and λ is the frequency parameter. Each irreducible unitary
representation corresponds to an invariant subspace of L2(M(2)) parameterized by λ. Therefore M(2)-Fourier
transform decomposes a given function as a direct sum of its projections over the invariant subspaces of M(2).9

This decomposition together with the homomorphism property of U (λ)(g),

U (λ)(g1g2) = U (λ)(g1)U (λ)(g2), (5)

allows group convolution to be expressed as a multiplication in the Fourier domain. For a detailed treatment of
the topic, we refer the reader to9, 10 .

The irreducible unitary representations, U (λ)(g), of M(2) over L2(M(2)) is given by the following linear
operators:

(U (λ)(g)F )(s) = e−iλ(r·s)F (R−1
θ s), F ∈ L2(S1), (6)

where g = (θ, r) ∈M(2), s is a point on the unit circle S1, ( · ) is the standard inner product over �2, and λ is
a nonnegative real number.10
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We can express the matrix elements u(λ)
mn(g) of U (λ)(g) using the circular harmonics {Sm}, which form an

orthonormal basis of L2(S1),10, 11 as follows

u(λ)
mn(g) = (Sm, U (λ)(g)Sn) =

∫
S1
Sm(ω)e−iλr·ωSn(R−1

θ ω)d(ω). (7)

Choosing the complex exponentials {einψ}, n ∈ � as the orthonormal basis for L2(S1), the matrix elements for
the unitary representation U (λ)(g) of M(2) become10:

u(λ)
mn(g) = (eimψ, U (λ)(g)einψ) (8)

=
1
2π

∫ 2π

0

e−imψe−i(r1λ cosψ+r2λ sinψ)ein(ψ−θ)dψ, ∀m,n ∈ �. (9)

Alternatively, u(λ)
mn(g) can be expressed as

u(λ)
mn(g) = in−me−i[nθ+(m−n)φ]Jn−m(λr), (10)

where Jn(r) is the nth order Bessel function.

The matrix elements of U (λ)(g) satisfy the following properties:

u(λ)
mn(g

−1) = u(λ)
mn

−1
(g) = u

(λ)
nm(g), (11)

u(λ)
mn(g1g2) =

∑
k

u
(λ)
mk(g1)u

(λ)
kn (g2). (12)

Furthermore, the matrix elements u(λ)
mn(g) of Uλ(g) form a complete orthonormal system in L2(M(2)).

Let f ∈ L2(M(2)), then its M(2)-Fourier transform is defined as9, 10

FM(2)(f)(λ) = f̂(λ) =
∫
M(2)

f(g)U (λ)(g−1) d(g), (13)

where g = (Rθ, r), d(g) = drd(θ) is the normalized Haar measure on M(2) with d(θ) is the normalized Haar
measure on SO(2),12 and the inverse M(2)-Fourier transform is given by

F−1
M(2)(f̂)(g) = f(g) =

1
(2π)2

∫ ∞

0

Trace
(
f̂(λ)U (λ)(g)

)
λdλ. (14)

The M(2)-Fourier coefficients are operator valued functions that can be expressed in terms of matrices given
an orthonormal basis over L2(S1). Given the matrix elements of the unitary representations, the M(2)-Fourier
and inverse M(2)-Fourier transforms can be expressed as follows9:

FM(2)(f)mn(λ) = f̂mn(λ) =
∫
M(2)

f(g)u(λ)
mn(g

−1)d(g), (15)

F−1
M(2)(f̂mn)(g) = f(g) =

1
(2π)2

∫ ∞

0

∑
m,n

f̂mn(λ)u(λ)
nm(g)λN−1dλ. (16)

Using (15) and (9), the M(2)-Fourier matrix elements can be expressed as

f̂mn(λ) =
1

(2π)2

∫ 2π

0

([∫ 2π

0

[∫
�2
f(g)ei(r1λ cosψ+r2λ sinψ)dr1dr2

]
eimθdθ

]
e−imψ

)
einψdψ.

(17)

Equation (17) shows that given {einψ}n∈� as the orthonormal basis for L2(S1), computing the M(2)-Fourier
transform of f is equivalent to computing four consecutive standard Fourier transforms. First two Fourier

Proc. of SPIE Vol. 6142  61424A-3



transforms are due to the integration over �2. The last two Fourier transforms are due to the integrations over
θ ∈ [0, 2π) and φ ∈ [0, 2π).

For the rest of the paper, the orthonormal basis {Sm} of L2(S1) is assumed to be the complex exponential
{eimφ}.

Here, the properties of the M(2)-Fourier transform that are relevant to rest of our discussion are presented:

1. Adjoint property: Let f ∈ L2(M(2)), then

f̂∗
mn(λ) = f̂nm(λ), (18)

where f∗(g) = f(g−1).

2. Convolution property: Let f1, f2 ∈ L2(M(2)), and let g = (Rθ, r) and h = (Rφ,x). Convolution over
M(2) is defined by

(f1 ∗M(2) f2)(g) =
∫
M(2)

f1(h)f2(h−1g)d(h). (19)

Then

FM(2)(f1 ∗ f2)mn(λ) =
∑
q

f̂2mq(λ) f̂1qn(λ). (20)

3. M(2)-Fourier transform of SO(2) invariant functions: Let f(g)=f(r)∈L2(�2), and define

f̃n(λ) =
∫ 2π

0

∫
�2
f(x)e−iλx·θeinθ dx dθ, (21)

to be the circular harmonic decomposition of the Fourier transform of f . Then

f̂mn(λ) = δm0f̃n(−λ), λ ≥ 0, m, n ∈ � (22)

where δ0m is the Kronecker delta function, equal to 1 if m = 0, and 0 otherwise. Hence, the M(2)-Fourier
transform over �2 is equivalent to performing a standard Fourier transform followed by spherical harmonic
decomposition. Similarly, the inverse M(2)-Fourier transform f̂ of f ∈ L2(�2), is obtained by reversing
the order and the operations performed in the M(2)-Fourier transform.

4. Band-limitedness Let f̂mn(λ) be the M(2)-Fourier transform of a function f ∈ L2(M(2)). Then f is said
to be band-limited if there exist m0, n0 ∈ �+, and λ0 > 0 such that f̂mn(λ) = 0 for |m| > m0, |n| > n0

and λ > λ0.

• If f is band-limited so is f∗.

• If f1 and f2 are two band-limited functions, then f1 ∗M(2) f2 is also band-limited.

3. MODIFIED EXPONENTIAL RADON TRANSFORM AS A CONVOLUTION

Recall that the exponential Radon transform of a compactly supported real valued function f over �2 is given
by

Tµf(ϑ,−r1) =
∫
�2
f(x)δ(x · ϑ + r1)eµx·ϑ⊥

dx, (23)

where µ ∈ �. Define Λµ to be

Λµ(h) = δ(x · e1)eµx·e2 , h = (Rφ,x) ∈M(2). (24)
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Then the convolution of Λµ with f∗ gives the modified exponential Radon transform of f :

(Λµ ∗M(2) f
∗)(g) =

∫
�2
f(x)δ((Rθx + r) · e1)eµ (Rθx+r)·e2dx, g = (Rθ, r) ∈M(2)

=
∫
�2
f(x)δ(Rθx · e1 + r1)eµRθx·e2+µr2dx

=
∫
�2
f(x)δ(x · ϑ + r1)eµx·ϑ⊥+µr2dx

= eµr2Tµf(ϑ,−r1) = T ′
µf(g). (25)

This is equivalent to say that the modified exponential Radon transform of a function is obtained by taking
integral along a traversed weighted line, where the integration measure along the line is given by Λµ. The
exponential Radon transform Tµf can be viewed as a restriction of the convolution Λµ ∗M(2) f

∗

(Λµ ∗M(2) f
∗)(g)

∣∣
r2=0

= Tµf(ϑ,−r1)eµ r2 |r2=0

= Tµf(ϑ,−r1), g = (Rθ, r), (26)

where r = (r1, r2)T and ϑ = Rθ
Te1. Therefore inversion of the modified exponential Radon transform is equiv-

alent to the inversion of modified exponential Radon transform.

Using the convolution property of the M(2)-Fourier transform and SO(2) invariance of f , in M(2)-Fourier
domain (25) becomes

T̂ ′
µfmn(λ) =

∑
q

f̂qm(λ)Λ̂µqn(λ) (27)

= f̂0m(λ)Λ̂µ0n(λ), m, n ∈ �. (28)

Equations (27) and (28) provides block diagonal and diagonal representation of the modified exponential Radon
transform in the M(2)-Fourier domain, respectively, where each block is indexed by λ ≥ 0.

Circular Harmonic Decomposition Type Relationships

Substituting the values of T̂µfmn(λ) and Λ̂µ0n(λ)

T̂µfmn(λ) = λ−1
[
T̃µf−m(

√
λ2 + µ2)γn−mµ + (−1)n−mT̃µf−m(−

√
λ2 + µ2)γ−(n−m)

µ

]
(29)

Λ̂µ0n(λ) = δ0mλ
−1

(
(−1)nγ−nµ + γnµ

)
, (30)

in (28), where γµ = λ√
λ2+µ2+µ

and

T̃µfn(λ) =
∫ 2π

0

∫
�

Tµf(θ, t)e−iλteinθ dt dθ, (31)

and using the SO(2) invariance of f , we obtain

f̃m(λ) = ρnγ
m
µ T̃µfm(

√
λ2 + µ2) + (1 − ρn)(−γµ)−mT̃µfm(−

√
λ2 + µ2), (32)

where ρn = γn
µ

(−1)nγ−n
µ +γn

µ

.

Taking complex conjugate of both sides of (32) and negating the signs of k and λ, one obtains the identity

γmµ T̃µfm(
√
µ2 + λ2) = (−1)mγ−mµ T̃µfm(−

√
µ2 + λ2), (33)
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which substituting back in (32) leads to the relationship

f̃m(λ) = γmµ T̃µfm(
√
µ2 + λ2). (34)

(34) was first presented by Tretiak et al. ((33) in1), Hawkins et al. ((25) in5) and Inouye et al. ((13) in6) by
performing circular harmonic decomposition of the radial Fourier transform of T f :

T̃µfm(λ) =
(
λ+ µ

λ− µ

)m/2
f̃m(

√
λ2 − µ2), (35)

By replacing λ with
√
λ2 + µ2, (35) is equivalent to (34):

f̃m(λ) =

(√
λ2 + µ2 − µ√
λ2 + µ2 + µ

)m/2

T̃µfm(
√
λ2 + µ2) = γmµ T̃µfm(

√
λ2 + µ2). (36)

Using (34) and (33), Metz et al. took a weighted sum approach to obtain

f̃m(λ) = ωγmµ T̃µfm(
√
λ2 + µ2) + (1 − ω)(−1)mγ−mµ T̃µfm(−

√
λ2 + µ2), (37)

which for different choices of the weighting factor ω leads to different Fourier type relationships between f and
Tµf presented in1, 4–6 .

Notice that our notation differs from those in1, 2, 5, 6 , due to the definitions of the exponential Radon transform
based on the convention µ or −µ, and/or the spherical harmonic decomposition where f̃m and T̃µfm in those
works respectively correspond to f̃−m and T̃µf−m in our work.

4. INVERSION OF EXPONENTIAL RADON TRANSFORM AND
THE RECONSTRUCTION ALGORITHM

Previously7 , we presented two reconstruction algorithms based on (27) and (28), which simultaneously combined
the relationships (32) for various n values. Here, we will provide an alternative reconstruction algorithm which
is based on averaging (28) over n, and hence simultaneously combines the relationships (32) for various n values.

Averaging (28) over n f̂ can be recovered by

f̂0m(λ) =

(∑N
n=N0

T̂ ′
µfmn(λ)∑N

n=N0
Λ̂µ0n(λ)

)
, N0 ≤ N, N0, N ∈ �. (38)

We implemented our reconstruction algorithm based on the inversion formula (38) in four steps, which is
summarized in the following diagram:

f
T �� Tµf

× eµ r2

1
�� T ′
µf

FM(2)2

��

f̂0m

F−1
M(2)

4

����������

T̂ ′
µfmn

(38)

3
��

. (39)

1. As the first step, we extend the exponential Radon transform of f to modified exponential Radon transform
over M(2) by (2), multiplication of Tµf by eµr2 .

2. In the second step, we take M(2)-Fourier transform of the modified exponential Radon transform.

3. In third step, we compute the M(2)-Fourier coefficients of f by (38).
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4. Finally, in the fourth step, we take the inverse M(2)-Fourier transform to obtain f .

In the second and fourth steps of the proposed reconstruction algorithm we used a fastM(2)-Fourier transform
algorithm based on equation (17). For a detailed description of the fast M(2)-Fourier transform algorithm we
refer the reader to8, 13, 15 .

Note that as long as
∑N
n=N0

Λ̂µ0n(λ) � 0 the proposed algorithm does not require any regularization.
However, this requires computation of sufficient number ofM(2)-Fourier coefficients, which can be simultaneously
computed using M(2)-Fourier transform.

5. NUMERICAL SIMULATIONS

We performed numerical simulations on a two-dimensional Shepp-Logan phantom image corresponding to a
region of 13.1 × 13.1cm2, discretized by 129 × 129 pixels. We choose µ = 0.154cm−1, however the proposed
reconstruction algorithm can be used for any complex µ. We previously studied the case for µ = 0 in14 and
µ = i0.154cm−1 in7 .

Figure 1 shows reconstructed images using the proposed algorithm for µ = 0.154cm−1 using multiple n values,
where n = −64, . . . , 64. The reconstructed images suggests that the proposed method induces less artifact when
compared to the reconstructed images using the reconstruction algorithms proposed in7 .

(a) (b) (c)

Figure 1. Reconstruction of the modified Shepp-Logan phantom of size 13.1 × 13.1cm2 for µ = 0.154cm−1 and n =
−64, . . . , 64 using (a) Algorithm 1 of 7 , (b) Algorithm 2 of 7 , and (c) proposed algorithm.

6. CONCLUSION

In this work, we present a new reconstruction algorithm for the inversion of the exponential Radon transform
based on harmonic analysis of the Euclidean motion group. The proposed algorithm starts with the modification
of the exponential Radon transform. Then the inversion formula is obtained by diagonalizing the convolution
representation of the modified exponential Radon transform in the M(2)-Fourier domain. Once the M(2)-Fourier
coefficients of the function are computed using the inversion formula, the function is obtained by M(2)-Fourier
inversion. We showed the performance of the proposed algorithm with numerical simulations. For µ = 0.154cm−1,
visual comparison shows that the proposed algorithm is comparable or better than the previously7 proposed
algorithms.
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