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ABSTRACT
The problem of Radon transform inversion arises in fields as diverse as medical imaging, synthetic aperture radar,
and radio astronomy. In this paper, we model the Radon transform as a convolution integral over the Euclidean
motion group and provide a novel deconvolution method for its inversion. The deconvolution method presented
here is a special case of the Wiener filtering framework in abstract harmonic analysis that was recently developed
by the author. The proposed deconvolution method provides a fundamentally new statistical formulation for
the inversion of the Radon transform that can operate in nonstationary noise and signal fields. It can be utilized
for radiation treatment planning, inverse source problems, and 3D and 4D computed tomography. Furthermore,
it is directly applicable to many computer vision and pattern recognition problems, as well as to problems in
robotics and polymer science. Here, we present an algorithm for the discrete implementation of the Wiener
filter and provide a comparison of the proposed image reconstruction method with the filtered back projection
algorithms.

Keywords: Wiener filtering, noncommutative harmonic analysis, Euclidean motion group

1. INTRODUCTION
In X-ray computed tomography, an X-ray beam with known energy is sent trough an object and attenuated
X-rays are collected by an array of detectors. The attenuation in the final X-ray beam provides a means of
determining the mass density of the object along the path of the X-ray. In 2D, the relationship between the
attenuation and mass density along the X-ray path at angle 9 and radius t is given by the Radon transform:

f(Ro, t) = P(9, t) = L2 f(xi, x2)8(t — cos9x1 — sinOx2)dxidx2, (1)

where 5 is the Dirac delta function, f is the unknown attenuation coeffients, and R9 is the rotation matrix
in counter clockwise direction. Similarly, in positron emission tomography, single photon emission computed
tomography and synthetic aperture radar, the line projections and the unknown image are related by the Radon
transform.

In the last two decades, Radon transform inversion has received a great deal of attention. For recent works,
23 5, 7, 11 Here, we formulate the Radon transform as a convolution integral over the Euclidean motion

group and propose a deconvolution method based on a novel Wiener filtering approach in harmonic analysis
that was recently developed by the author'6. The method provides a minimum mean square error (MMSE)
regularized solution for the deconvolution problem. It has a number of advantages as compared to standard
Radon transform inversion methods. It is fundamentally a new statistical formulation of the Radon transform
inversion that can operate in nonstationary noise and signal fields. It can be easily extended to Radon transform
inversion in higher dimensions. The formulation allows application of the method to radiation therapy treatment
planning, and non-rigid body motion imaging in X-ray computed tomography. Furthermore, it is applicable to
other deconvolution problem over the Euclidean motion group, in particular, to object recognition and tracking
in computer vision, as well as to problems in robotics and polymer 46

Mathematically, Euclidean motion group, SE(2), in two dimension is the group formed by the semidirect
product of the additive group of R2 and the rotation group 80(2). Each element consists of a translation and
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a rotation component. The group operation can be viewed as a rotation with respect to an origin followed by
a translation. Group convolution can be viewed as a generalization of the ordinary convolution in which the
additive group translation is replaced by a group translation, i.e., f(—y +x) —+ f(g'h). An important property
of the group convolution is that it is mapped to a multiplication in the group Fourier transform domain. Group
Fourier transforms along with stochastic processes that are invariant with respect to group operation form the
key components of the proposed deconvolution method.

The paper is organized as follows: In Section 2, we provide some preliminaries for the Euclidean motion
group, its unitary representations and the associated Fourier transform. In Section 3, we present the convolution
integral representation of the Radon transform over SE(2). In Section 4, we introduce the Wiener filtering
framework for the solution of the convolution integral over SE(2) . In Section 5, we present an algorithm
for the discrete implementation of the Wiener filtering. In Section 6, we present simulation experiments to
demonstrate the preformance of the proposed method with respect to several construction parameters and
filtered back projection (FBP) . Section 7 includes concluding remarks and future work.

2. PRELIMINARIES
2.1. Euclidean Motion Group
Euclidean motion group is a locally compact topological group. Each of its elements consists of a translation
and a rotation parameter. A formal definition of the motion group is given as follows.

DEFINITIoN 2.1. The subgroup G of real valued invertible matrices, consisting of the elements

I cosO —sin9
g(i,O) = sin9 cos9

J (2)
\' 0 1)

for any 9 E [0, 2ii-) and for any i = (ri , r2)T R2 is called the motion group of the Euclidean plane, and
denoted by SE(2) . Operation of the group is the usual matrix multiplication.

Note that i denotes a vector, and r denotes a scalar.
SE(2) group action can be viewed as a rotation operation followed by a translation operation on the plane,

i.e., g translates (x1 ,x2)T to (x ,x)T in the following fashion:

x = xi cos 0 — x2 sin 9 + r1 ) ,

x = xi sin 9 + x2 sin 9 + r2 J x2) = g . (x1 ,x2) . (3)

Let L2(SE(2)) denote the Hilbert space of the square integrable complex valued functions. Let fl,2
SE(2) — C, be two functions in this space. Then, the inner product of fi and f2 is given by

(fl,f2) = fi(g)f2(g)dp(g) (4)
JSE(2)

where d,a(g) is the invariant Haar measure on SE(2), and is given by

d(g) =
(2)2r

dr d dO (5)

and (r, ) is the polar coordinate representation for (ri , r2) . Note that Equation 3 can be used to define the
action of SE(2) over the square integrable functions of J2 and SE(2) as follows:

Lq(g)f(x) = f(g'.x) 6L(g)f(h) = f(g'h)
Here Lq and L are called the quasi left and left regular representations of SE(2) , respectively. The convolution
integral is defined in terms of left regular representation of the group as follows:

(1' *SE(2) f2)(g) = f f1(h)f2(h'g)d(h). (7)
SE(2)
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2.2. Unitary representations of SE(2)
The unitary representation U', p a nonnegative real number, of SE(2) of the square integrable functions on the
unit cirle, i.e. , L2 (R/2irZ ) , is given by

(UF)(s) = e_i)(l))F(R(9)_1s), p U {O} (8)

where g = (it, 9) E SE(2) and (i .) is the usual inner product in R2.

Any function f defined on the unit circle can be written as a weighted sum of orthonormal basis functions as
f eu') = nEZ Thefore, the matrix elements of the unitary representations can be expressed as follows:

umn(g,p) = (eim, U;e) = f2eme_i(n1 p cos+r2 P sin)ein(_9)d, V m, n E Z. (9)

Note that the matrix representation of the unitary representations U are infinite dimensional. Another way of
expressing the matrix elements of representations is by means of Bessel functions:

umn(g(r, , 9), p) = (10)

where J (z) is the vt order Bessel function. Using the expression in Equation 10, one can show that

umn(g',p) = u;;';2(g,p) = unm(g,p)
= in-rn emo+mJm_n(pr). (11)

It is straightforward to show that the matrix elements satisfy the following symmetry relationship:

I \_f i\m—r Imn,P) — v—') U—m,—nJJ,P

2.3. Fourier Transform over SE(2)
DEFINITION 2.2. Let U be a unitary representation ofSE(2). For any complex valuedfunction f E L2(SE(2))
the Fourier transform over SE(2) is defined as

(f) = f(p) = f f(g)U1d(g), (13)
SE(2)

where d,a(g) = 5--r dr dq dG, 0 < p E JR, and fsE(2) = f fR2. The corresponding inverse Fourier transform
is given by

(F1)(f) = f(g) = L trace (J(p)u;) p dp. (14)

The matrix elements of the Fourier transform f(p) can be expressed as follows:

Jmn(P) = (eim, f(p)e) = f f(g)umn(g1,p)d(g). (15)
SE(2)

Similarly, the inverse Fourier transform can be expressed in terms of the matrix elements of f, I and U'3

f(g) = fmn(p)umm(g,p)p dp. (16)
n,mEZ 0

The inverse Fourier transform shows the decomposition of f(g) in terms of its projections into G-invariant
subspaces. Similar to the Fourier transform over R, an analogue of the Parsevals equality for Fourier transform
over SE(2) exists,

THEOREM 2.3. Let f, fi, 12 be square integrable functions on G, then the following properties hold.
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1.

fG 1f(g)12(g) = L°° IJ(p)IIp dp (17)

This equality is known as the Plancherel equality.

F(f1 * f2) = 9(f2)T(f1) (18)

This is the convolution property of the Fourier transform.

3. ______
(f*)(p) = (f(p))t,where f*(g) f(g1). (19)

where t denotes the adjoint operation. In matrix form adjoint operation corresponds to complex conjugate
operation.

For a detailed discussion of group representation theory and the group Fourier transforms, the reader is
referred to13' 14

3. RADON TRANSFORM AS A CONVOLUTION INTEGRAL OVER SE(2)
In this section, we provide a formulation of the Radon transform equation as a convolution integral over SE(2).
This formulation is based on the extension of functions from 2 and R x 80(2) to SE(2). Let g, h e SE(2)
with g = g(*,9) h = h(, q5), where i = (ri , r2)T and = (x1 , x2)T.

f1*f(g) = f fi(h)f2(g'h)d(h) (20)
SE(2)

= I f1(gh)f2(h)d(h) (21)
SE(2)

= fl * f,9) = f f1(R(9) + ,9 + )f2()d(h). (22)
SE(2)

Choosing 1' , c) = (ei . ), f2C cb) = f(—) the convolution in Equation 22 results in

fl * f(g) = Rf(—O, —ri) = f3(g) (23)

where e1 = (1, o)T is the unit vector in x direction and . j the usual inner product. Therefore e1 x1.
Equivalently, Equation 23 can be rewritten as

f2 * f(g) = f; (24)

Thus, Radon transform inversion can be viewed as a deconvolution problem over SE(2).

4. STATIONARY PROCESS AND WIENER FILTERING OVER GROUPS
Let x(t), t e T be a stochastic process. The covariance function of x(t), t E T, 'y : G x G —k C is given by

y(s,t) = E[x(s),x(t)J. (25)

Let group G act transitively on T and let x(t), t E T satisfy the following condition:

y(gs, gt) = 'y(s, t), g E G. (26)

Then x(t), t e T is called a wide sense stationary stochastic process.9 Choosing T as the group G itself, the
action of the group becomes the group operation. For the rest of this paper, we assume that T = G. In this
case, the covariance function 'y of the group satisfies

'y(g,h) = 'y(hg,e), g,h E G. (27)
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where e is the identity element of the group G. Substituting gh' for h,

(g,gh')=y(h,e), g,heG. (28)

Thus, the covariance function of a wide sense stationary process reduces to a function on G. For notational
convenience we denote 'y(g, e) by 'y(g). In the case of Euclidean motion group, the wide sense stationarity
implies a translational and rotational invariance.

Note that 7(g) 15 a nonnegative function over G. Similar to the classical spectral density function, one can
define a spectral density function for x(g) , g G via group Fourier transform. Under some conditions on 'y, we
define'6

S(p) = f(g)u:diz(g) (29)

as the spectral density function of x(g), g G. Note that 8(p) is a non-negative definite, Hermitian operator.
THEOREM 4.1. Letx(g), n(g) be two zero mean, wide sense stationaryprocesses overSE(2). Let the observation
y(g) be given as

y(g) = x *SE(2) f(g) + n(g) = f x(h)f(h'g)d(h) + n(g) (30)
SE(2)

and
E[x(g)n(g))J = 0 (31)

where f E L2(SE(2)). Then the linear filter, W0,, minimizing the error function

J = fG E [Ix(g) - (g)I2] d(g) (32)

is group invariant, i.e.,
= I y(h)W0t(h'g)d(h) (33)

JSE(2)

and the Fourier transform, Wopt, of the optimal filter is given by

Topt(P) = S(p)Jt(p) [J(p)S(p)ft(p) + S(p)]
'

(34)

The spectral density function of the associated mean square error is given by

Se(p) (i _ T(p)f(p)) Sx(p). (35)

Proof. The proof is provided in16 . U

Note that in the absence of noise and prior information about the signal, the filter takes the following form

Vopt(p) = ft(p)[j(p)ft(p)]', (36)

which is nothing but the pseudo inverse of f. Since f is a trace class operator, its inverse is unbounded. The
inversion can be stabilized by a zero order Tikhonov regularization which amounts to the additive white noise
assumption in the Wiener filtering framework.

opt(p) = ft(p) [j(p)ft(p) + a21(p)] '. (37)

5. AN ALGORITHM FOR THE DISCRETE IMPLEMENTATION OF THE WIENER
FILTERING OVER SE(2)

In this section, we shall describe an algorithm for the discrete implementation of the Wiener filtering over SE(2)
and apply this algorithm to the inversion of Radon transform. Discrete implementation requires discritization
of the motion group, approximate implementation of the Fourier transform and band-limited approximation of
functions in L2(SE(2)).
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5.1. Discrete Motion Subgroup
The subgroup of SE(2) consisting of elements g = (it, 9) where 0 = , N Z, j = 0 . . . N — 1, is called the
discrete motion group of the plane. This group is the semidirect product of the group of rotational symmetries
of a regular N—gon, denoted by CA', and the additive group of R2 .When the integral over SO(2) is discretized
at N equally spaced intervals, the integration is approximated by a sum over the discrete group CN as follows:

fSQ(2) f( 9)d(9) = f2 f(., 9)dO : 9) ej =. (38)

Choosing a pulse orthonormal basis on the unit circle,

I N"2 9 E IiE!! 27r(n+1)'\
b(9) = ' L

N ' N ) , n = 0 . . . N — 1, (39)
t%

0 otherwise

the matrix elements of the irreducible unitary representations are given by'2

umn(g,p) = (bm(),Ub()) = f2 bm()e_i(n1Pc0s2Pbn( 9)d (40)

where g = (it,0) . Due to the orthogonality of basis functions, Equation 40 can be reexpressed as

ttmn(gj),p) = e5m_j,n , (41)

where gj =g(i, 9), Tim (cos(-), sin())T, and t5m,n 5 the Kronecker delta function.

5.2. Approximate Fourier Transform over SE(2)
A fast algorithm for the Fourier Transform over SE(2) based on fast Fourier tranforms (FFT) was given in12.
This algorithm is based on step wise computation of the integral of fmn using the inner product expression for
matrix elements of unitary representations, given in Equation 9,

Èmn(P) =f f2 f2 d2 dO d. (42)
rER2 0=0 ib=O

where = (p cos 'çb, p sin ib). For numerical implementation, the data has to be discritized. Let S be the
number of harmonics for the computation of SE(2) Fourier transform, i.e., m, n = —S, . . . , S. Then, we can
choose the number of discrete samples of F on SE(2) as shown in Table 1.

NR Number of samples on SO(2) 0(S)
N-it Number of samples on J2 0(52)
N Total number of samples on SE(2) = N-*NR 0(S)
N Number of samples on p interval 0(5)
N Number of samples on [0, 2ir) 0(5)
Nmn Total number of harmonics = NRN 0(82)

Table 1. Sampling in SE(2) as an order of S, 0(S).

The integral in Equation 42 may be computed in 4 steps:

1.

F,(,9) =f F(,9)ei()d2i, (43)

2D inverse Fourier transform ofF with respect to i, using FFT takes 0(NRN- log(N-*)) =0(Nlog(N-t))
number of computations.
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where
F1 = [ . . . {fi,] [k,01 [fi,1 • . . I ' (49)

is a columnwise representations for F1 . As mentioned earlier, in the bandlimited case the matrices are approx-
imated with a finite number of harmonics, i.e., m, n = —S, . . . , S. Expanding Equation 49, the bandlimited
approximation of Equation 48 can be expressed as

flo,—s 0 i . . . i 13SS f3s,_s
... ... F2 ... , (50)

0 1 . . . 1
f3_s,s . . .

equivalently,

iF2 DF3, (51)

where 1 is the square matrix with all its elements equal to one, is equal to the right hand side of Equation
50, and D is the diagonal matrix with diagonal elements = 1/fi0, n = —S, . . . , S.

Thus, Equation 24 can be approximated in Fourier domain as follows:

1F2(p) = D(p)tF3(p)t (52)

Note that, D (p)P3 (p) can be viewed as the modified measurements and 1 as the blurring filter in Fourier
domain.

6. NUMERICAL EXPERIMENTS AND DISCUSSION
Recall that f = f2 * f (g) where fi is the blurring filter, f is the projections and f2 is the unknown image.
In our numerical experiments, we implemented the following Wiener filter:

Wopt(P) =P(p) fl1t (p)!i (P) + 2i(p)] . (53)

where = 1 . The absorption coefficients of the object are reconstructed by

f2P = 3_1 { [DtP3t] } (54)

where DtF3 is the Fourier transform of modified measurements.

In our numerical experiments, we approximated the blurring filter, fi as a one pixel wide windowing function.
This filter can be viewed as the Kronecker delta function extended along the r2 direction. Forier transform of
f i was numerically computed using the Fourier transform algorithm given in Section 5.2. When f0 is close to
zero, values are very high, making D ill conditioned. For small values of fi0 i.e., fi0 < , values
are replaced by one. D can be viewed as a pseudoinverse of fi.

We used modified Shepp-Logan phantom and performed two sets of experiments. In the first set of exper-
iments, we investigated how different choice of matrix D effects the performance of the reconstructed images.
In the second set, we compare our results with the FBP algorithm. In both set of experiments we have used
a modified Shepp-Logan phantom of size N x N. N was choosed to be an odd integer and the rotations of
discrete motion subgroup was choosed as 9 = , j = \1) , , Functions ffri , r2 ,9) of N x N x N
are zero padded to (2N + 1) x (2N + 1) along R2 for each fixed 9, to prevent aliasing.

Our numerical studies has shown that the interpolation method used in the second step of the SE(2) Fourier
transform is crucial in terms of final image quality. We used two interpolation techniques: nearest neighborhood
and linear interpolation. All examples presented here are based on linear interpolation due to its superior
performance. The computational complexity of the algorithm is 0(5 log(S3)), whereas traditional FBP is
0(5).
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RMSE = [f -
fiji2,

i,j=1

PSNR = 20log10 (RSE)'

FBP Proposed method for o2 1 1O_2 iO 106 108
RMSE 16.3348 E = iO 13.7452 13.7452 13.7452 13.7452 13.7452

6 1O_6 23.1200 23.1200 23.1200 23.1200 23.1195

PSNR -24.2623 e = iO -22.7630 -22.7630 -22.7630 -22.7630 -22.7630
6 106 -27.2797 -27.2797 -27.2797 -27.2797 -27.2796

Table 2. RMSE and PSNR comparison for phatom 65 x 65

Numerical studies show that RMSE and PSNR do not depend on the choice of o. When compared with FBP
algorithm, with the treshold value e = iO proposed algorithm has lower RMSE for a2 J4 We applied the
filter on a phantom of size 129 x 129 with these parameters. Figure 2 shows that the reconstructed images for
the proposed filter (Fig. 2(c)) and the FBP (Fig. 2(b)). Visual comparison shows that the proposed algorithm
produces results that are as good or better than FBP algorithm. Note that the contrast of the second image
appears to be better than that of FBP (Fig.2). All boundaries are sharper and more consistent as compared
with the FBP. Additionally RMSE and PSNR values of the proposed algorithm is better than that of FBP
(Table 3).

7. CONCLUSION
We developed an algorithm based on a group theoretical Wiener filtering framework to invert the Radon trans-
form. Proposed algorithm produced comparable or better results relative to FBP algorithm. In the future,
we will report the robustness of this algorithm in the presence of noise, and applications in radiation therapy
treatment planning.

(b) a=102, (C) y=i0, E=iO-4(a) =10_O, -4

(f) a=100, E=106

(d) y=106, e=1 0 (e) a=108,

(9) a=1O2, e=106 (h) a=iO, £=1O_6

a
(I) y=106, E=1O_6 (I) a=1O_8, C=1O_6

Figure 1 . (I) Modified Shepp-Logan phantom of size 65 x 65 reconstructed with (II) FBP and (a) —(j) results of Wiener
filtering for o = 102, 1j—4, 10_6, 10_8 with thresh hold e = i0, 10_6.

For the case N = 65, the filter was implemented as in Equation 53 for ovalues equal to 10_2, iO, 106, 108
and threshold value of equal to i0 ,10_6. The results are shown in Figure 1.

We compute the root mean square (RMSE) and peak signal to noise ratio (PSNR)

of reconstructed images. The results are presented in Table tab: RMSE and PSNR phantom 65 comparison.

(55)

(56)
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b C

Figure 2. (a) Modified Shepp-Logan phantom of size 129 x 129 is (b)reconstructed using FBP (c) and proposed
algorithm for a2 = 104, e = 102

RMSE
FBP

7.8259
Proposed

7.7234
PSNR -17.8707 -17.75dI

Table 3. RMSE and PSNR comparison for phantom 129 x 129
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