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Stochastic Deconvolution Over Groups

Birsen Yazici, Member, IEEE

Abstract—In this paper, we address a class of inverse problems
that are formulated as group convolutions. This is a rich area
of research with applications to Radon transform inversion for
tomography, wide-band and narrow-band signal processing,
inverse rendering in computer graphics, and channel estimation
in communications, as well as robotics and polymer science. We
present a group-theoretic framework for signal modeling and
analysis for such problems and propose a minimum mean-square
error (MMSE) deconvolution method in a probabilistic setting.
Key components of our approach are group representation theory
and the concept of group stationarity. The roposed deconvolution
method incorporates a priori information and noise statistics
into the inversion process, which leads to a natural regularized
solution. We present recovery of self-similar processes that are
“blurred” and embedded in noise as a demonstration example.
The method is applicable to a wide range of inverse problems in-
volving both commutative and noncommutative groups including
finite, compact, and majority of well-behaved locally compact
groups.

Index Terms—Deconvolution, group convolution, group repre-
sentation theory, inverse problems, minimum mean-square error
(MMSE) filtering, Wiener filtering.

1. INTRODUCTION
A. Motivations

HIS work addresses a class of inverse problems that are

modeled as group convolutions. One common type of such
problem is the classical deconvolution problem describing the
image formation for space-invariant imaging systems. However,
there are many imaging problems where classical convolution
integral can not capture the imaging process. For example, in
computed tomography, the imaging process, which is described
by the Radon transform, can be viewed as a convolution in-
tegral over Euclidean motion groups. Similarly, in wide-band
and narrow-band coherent imaging, physics of imaging leads to
forward models that are defined as convolution integrals over
the affine and Heisenberg groups, respectively. In computer vi-
sion, realistic rendering of computer-generated images requires
estimation of illumination and bidirectional reflectance distri-
bution function from real photographs, which can be modeled
as a convolution integral over the rotation group [39]. Apart
from these imaging problems, group convolutions appear in a
broad array of inverse problems in science and engineering.
These include channel estimation in wireless communications,
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workspace estimation in robotics, estimation of the structure
of macromolecules in polymer science, just to mention a few
[1]1-{10].

In this paper, we describe a group-theoretic linear system
and signal theory, in particular group stationarity stochastic
processes and Fourier analysis over groups. We introduce the
problem of convolution integral over groups and, demonstrate
its occurrence in a broad array of engineering problems. We
present a Wiener type minimum mean square error solution
for the convolution integral and presented its application to
recovery of self-similar signals embedded in noise.

Group convolution operation can be viewed as a representa-
tion of the input-output relationship of a linear system, which
has dynamics invariant under the group composition law. As
such, it is the generalization of the classical convolution integral
associated with the linear time invariant systems where the un-
derlying structure is the additive group. Classical Fourier based
minimum mean square deconvolution techniques rely on the
assumption of stationarity and time invariance, and utilize the
Fourier transform to develop inverse filtering methods. In this
work, we develop a stochastic inverse filtering technique based
on the minimum mean square error criterion to solve the con-
volution integral equation for a class of locally compact groups
of both commutative and noncommutative type. This class of
groups includes finite, compact, and algebraic Lie groups, sep-
arable locally compact commutative groups, and a majority of
well-behaved locally compact groups.

The key components of our study are Fourier transforms on
groups, and the concept of group stationarity. Group stationarity
can be thought of as a generalization of the ordinary stationarity
in which the second-order statistics remain invariant under the
group composition law. Such statistical structures can be easily
induced from the white noise processes via linear group-in-
variant filtering. It was shown that the special cases of the group
stationary processes, in which the underlying structures are mul-
tiplicative and affine groups, provides an engineering-oriented
mathematical framework to model self-similar and multiresolu-
tion signals [19], [21]-[23].

The central fact in the analysis of group stationary processes
is the existence of spectral decomposition theorems, which is
facilitated by the theory of group representations. This area of
mathematics deals with the generalization of the ordinary con-
volution and the Fourier analysis to functions on groups. That is,
given a complex-valued function defined on a group, it can be
decomposed in terms of collection of unitary irreducible repre-
sentations of the group. The result is a collection of Fourier coef-
ficients that exhibit some type of group invariance. This decom-
position, which is referred to as the spectral analysis of func-
tions, transforms convolution over the group to a multiplication
in the Fourier domain.
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Statistical methods introduced in this paper complement a
variety of group-theoretical methods that have been formulated
in a deterministic setting. For example, in inverse problems
involving group convolutions, Fourier domain inversion
techniques do not consider noise in measurements [56]. Our
deconvolution technique not only utilizes noise statistics, but
also provides a possible regularization to the inversion problem.
In addition to being novel, and leading to potentially improved
results, the implementation of these techniques can be achieved
efficiently using fast Fourier transform (FFT) algorithms
[27]-[29] available for a broad range of groups.

Finally, we believe that group theory not only provides physi-
cally intuitive and computationally efficient methods, but also a
mathematically unifying and powerful approach for both linear
systems theory, transform theory, and statistical signal modeling
and processing. This geometric connection between the system
theory and statistical tools provides a deeper understanding of
signal and system structures and the associated processing tech-
niques.

B. Related Work

The particular focus of our work utilizes noncommutative
harmonic analysis over groups to solve convolution integrals in
a probabilistic setting. To the best of our knowledge, there is a
limited number of studies in the literature on this specific topic.
In [9], Naparst addressed deconvolution over the affine group
in the context of wide-band target density estimation for sonar
and radar applications. In [56], Kyatkin and Chirikjian devel-
oped a regularized solution for a specific convolution integral
equation over the Euclidean motion group and demonstrated
its application into the kinematic design of binary manipulators
[5]. Both of these studies address specific problems in determin-
istic setting. Our work addresses the deconvolution problem in
a probabilistic setting for a broad range of topological groups
that arise naturally in engineering applications. Our minimum
mean-square formulation also provides a natural regularization
to the inverse problem. Another work that is related to our re-
search is the work of Karpovsky and Trachtenberg [41]-[43].
In [43], they addressed the problem of nonstationary signal re-
covery in the presence of additive noise. The primary objective
of this work is to take advantage of fast unitary transforms over
finite groups to obtain suboptimal approximations to Wiener fil-
tering achieved by Karhune-Loéve transforms. Additionally, a
number of interesting studies recently appeared in the statis-
tics literature addressing deconvolution over groups, in which
the underlying functions are probability density functions; see,
for example, [63] and the references therein. These studies ad-
dress a very interesting but entirely different problem. In this
class of deconvolution problems, the noise model is not addi-
tive but rather acts on the signal via a transitive group action.
Thus, the deconvolution problem is to recover the probability
density function of the unknown signal from the probability den-
sity function of the measurements.

Apart from these studies, group theory appears in pattern
recognition, signal processing, and information theory in a va-
riety of other ways. Most notably, in the areas of coding theory,
fast transforms, wavelet theory, and pattern matching [7], [57],
[25], [271, [28], [1]-{3], [64], [65].
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C. Organization

In Section II, we introduce two image reconstruction prob-
lems that can be formulated and addressed within the mathemat-
ical framework that will be introduced in this paper. This section
provides theoretical and engineering motivations for our devel-
opment in the subsequent sections. In Section III, we introduce
the concept of convolution and Fourier analysis on groups and
describe group-theoretical signal processing in a system-the-
oretic framework. In Section IV, we introduce stochastic pro-
cesses that are indexed by groups and their spectral decomposi-
tion theorems. In each of these sections, the theory is illustrated
by examples. In Section V, we present minimum mean-square
solution of the convolution integral. In Section VI, we demon-
strate the application of the proposed inverse filtering method in
the recovery of blurred and noisy self-similar signals. Finally,
in Section VII, we point out future research directions and con-
clude our discussion.

II. IMAGE RECONSTRUCTION APPLICATIONS

Before we start our discussion, we will give an overview of
two application areas where our results are directly applicable.
Both of these problems can be viewed as inverse imaging prob-
lems.

A. Radar and Sonar Image Reconstruction by Wide-Band and
Narrow-Band Processing

In radar and sonar imaging, the transmitter emits an electro-
magnetic signal. The signal is reflected off a target and detected
by the transmitter/receiver as an echo signal. Assuming negli-
gible acceleration of the reflector, the wide-band model of the
echo from a point reflector is given as the time-delayed and
time-scaled replica of the transmitted pulse [13]-[15]:

e(t) = sf(st+7) (2.1
where f is the transmitted pulse, 7 is the time delay, and s is
the time scale or Doppler stretch. The term /s is needed, if we
require the energy of the echo signal is to be conserved. It is
givenas s = (¢ — v) /(¢ + v), where ¢ is the speed of the trans-
mitted signal propagating in a homogenous medium and v is the
radial velocity of the reflector. Wide-band processing applies
to several types of signals, including signals with large frac-
tional bandwidths, signals with large time bandwidths, signals
whose statistics may be nonstationary in the ordinary sense, and
signals reflected from rapidly moving objects. The advantage
of wide-band processing includes noise immunity, improved
resolution, and removal of many assumptions. Wide-band pro-
cessing has been studied for decades. However, its implementa-
tion has been limited since wide-band techniques could not be
efficiently implemented.

The narrow-band model of the echo from a point reflector is
given by

e(t)=f(t—7)el*t (2.2)
where f is the transmitted pulse, 7 is the time delay, and w is the
frequency or Doppler shift. When |v| << ¢ and ¢ is small over
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a period of observations, the wide-band model can be approxi-
mated by the narrow-band model. (See [30] for a careful anal-
ysis of wide-band solution and narrow-band approximation.)
Generally speaking, the narrow-band approximation is usually
adequate for radar applications but is less appropriate for sonar.

It is often desirable to image a dense group of reflectors,
which may be several objects or a single object distributed in
size. This dense group of reflectors is then described by a re-
flectivity density function. The received signal is modeled as a
weighted average [7]-[9]. For wide-band signals, it is given as

% oo 1 —\d
ew(t):/_ /0 SW(S,T)%f(tTTL—de (2.3a)

where Sy (s, 7) is the wide-band reflectivity density function
associated with each time-delayed and time-scaled version of
the transmitted signal. The narrow-band model is given by

ex (1) = / h / T S (@ r) f(t— 1) e tdrdw  (2.3b)

where Sy (w, 7) is the narrow-band reflectivity density function
associated with each time-delayed and frequency-shifted ver-
sion of the transmitted signal.

The goal in radar and sonar imaging is to estimate Syy (s, 7)
and Sy (w,7) given the transmitted and the received signals.
Typically, the received echo in a radar or sonar system is very
weak due to clutter and system noise. Therefore, the detection
at the receiver side is performed by matched filtering, which
amounts to correlating the received echo with the transmitted
pulse. When the two echo models described in (2.3a) and (2.3b)
are inserted into the narrow-band and wide-band correlation re-
ceivers, the resulting outputs are expressed as group convolution
integrals. (See [15] for a description of estimator/correlator re-
ceiver.) In the case of wide-band processing, the estimator/cor-
relator output Cgc is given by

;db

Cyff (S,T) = /oo /OO SVV (a,b)AW <§/ - b)
J—00 J0O a a
(2.4a)

where Ayy is the wide-band autoambiguity function of the trans-
mitted pulse. Clearly, the output is expressed as a convolution
integral over the affine group

da

C:};; = SVV * AVV. (24b)

Similarly, for the narrow-band case, the estimator/correlator
output is given by
cywn=[ [ sv@oax@-ur-0
eI dud¢ (2.50)

where Ay is the narrow-band autoambiguity function. Thus,
the output Cé\} is expressed as a convolution integral over the

Heisenberg group
CN =Sy * An. (2.5b)

We will show that the deconvolution techniques described
here provides a minimum mean-square estimate of the target re-
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flectivity density functions embedded in noise. For a group-the-
oretic approach to radar signal processing, the reader is referred
to arecent article by Moran [80], and the the works of Schempp,
Miller, and Naparts [8], [9], [78], [79].

B. Radon Transform Inversion for Tomographic Image
Reconstruction

The Radon transform and its generalizations arise in di-
verse engineering applications, including medical imaging,
synthetic-aperture radar (SAR), radio astronomy, and pattern
recognition [12]. The Radon transform plays an important role
in image reconstruction problems because it constitutes a good
model of tomographic acquisition process for X-ray computed
tomography (CT), single photon emission computer tomog-
raphy (SPECT), positron emission tomography (PET), and
SAR [31]. The problem of image reconstruction is equivalent
to computing the inverse Radon transform. For recent studies,
see [32]-[38]. Here, we will show that tomographic image
reconstruction can be posed as a deconvolution problem over
the Euclidean motion groups.

In X-ray CT, an X-ray beam with known energy is sent
through the object and the attenuated X-ray is collected by
an array of collimated detectors. The attenuation in the final
X-ray beam provides a means of determining the integral of the
mass density of the object along the path of the X-ray. In two
dimensions (2D), the relationship between the mass density
along the path and the attenuation at angle # and radius ¢ is
given by the following Radon transform:

p(t,0) = / / f(z,y)6 (t —zcosb — ysinb) dedy
R (2.6)
where ¢ is the Dirac delta function. Similarly, in PET and
SPECT, the line projections and the attenuation coefficients are
related by the Radon transform.

The Euclidean motion group is the semidirect product of
the rotation group SO(N) and the additive group in RY. Re-
defining, f(R,r) = f(r)6(R), where R is the two-dimensional
rotation matrix, 7 = [z,y]T, and k(Q,7) = §(e- ), e is the
unit vector in the z direction. It was observed that the Radon
transforms and its generalizations can be written as a Euclidean
group convolution in the following form [10], [20]:

p(R,r):/ k(goh ) f(h)dh
SE(2)

:/ k(RQ ™, r — RQ™'7) [ (Q.7)d(Q,7)
JSE(2)

g=(R,r) and g,h € SE(2) 2.7
where SFE(2) denotes the two-dimensional Euclidean motion
group, o denotes the group composition law, and d(Q, 7) de-
notes the invariant measure on the Euclidean motion group.
Thus, the problem of image reconstruction is formulated as a
deconvolution problem over the Euclidean motion group. By
lifting the formulation of the Radon transform to the group from
the coset space, one may like to take advantage of the invari-
ance property of the group convolutions in forward and inverse
calculations of the Radon transform. For example, if the object
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is translated in space by g € SE(2), its Radon transform will
be translated by g. Therefore, the new Radon transform can be
easily calculated from the original one. Similarly, in the inver-
sion process, this property may be useful in performing spatial
averaging to eliminate motion artifacts in moving objects, such
as in cardiac CT imaging.

III. THE CONCEPT OF CONVOLUTION AND FOURIER ANALYSIS
ON GROUPS

The concept of group convolution of functions on a wide
variety of abstract groups is well known in pure mathematics
literature [40]. Although many of the engineering applications
involving group convolutions were developed independently,
they can be systematically formulated within a group-invariant
system-theoretic framework [21], [41], [64], [65]. Such a for-
mulation not only establishes a relationship between classical
signal and system theory, it also highlights the underlying dy-
namics of the group convolution filtering. Here, we shall give an
overview of this topic from a perspective relevant to linear sys-
tems and signals. We start with an introduction to the concept of
convolution in Section III-A, and in the following subsections,
we provide a brief review of the Fourier analysis on groups.

Fourier analysis over groups allows spectral analysis of sig-
nals and systems in invariant subspaces defined by the irre-
ducible unitary representations of the underlying group struc-
ture. This decomposition maps group convolutions into mul-
tiplications in the transform domain. Fast implementation of
Fourier analysis on compact groups can be accomplished effi-
ciently using algorithms that are analogous to the Cooley—Tukey
FFT [25], [27], [28].

We shall indicate a group by G and its elements by g, h, . . ..
The group composition law will be written by go h, and we shall
use e for the identity element, for whicheo g = go e = g for
all elements g of G. We shall indicate inverse elements by g~*
sothat g o g = go g~ ! = e for all elements ¢ of G. It is
assumed that the reader is familiar with the concepts of group
and topological spaces. Readers unfamiliar with these concepts
are referred to [26] and [44].

A. The Concept of Convolution on Groups

Recall that the input—output relationship of a stable linear
system can be represented by the following integral equation:

y () = ./_OO K (t,7) 2 (7)dr (3.1a)

where y and x are finite energy signals, i.e., elements of
L2(R, dt). If we assume that the linear system is time invariant,
the kernel K of the system has to satisfy the following invari-
ance relationship:

Ktr)=K@t+T,7+T) forall o < t,7,T < 0.

(3.1b)

As a result, kernel K can be simplified as

k(t—7)= K(t,7) = K(t —1,0)
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and the input—output relationship of a linear time-invariant
system can be represented as a convolution integral

(x*k)(t):/ooa:(T)k(t—T)dT.

— 00

3.1¢)

The fundamental property of an ordinary convolution integral
is its invariance under time shifts. To generalize the ordinary
convolution to functions on groups, an appropriate integration
measure invariant under group translations must be defined, i.e.,

/f@@@z/ﬂw@@@
G JG

forall hin G and f integrable. For locally compact groups, such
an integration measure exists and is called the (left) Haar mea-
sure. For any fixed element h of G, the left Haar measure sat-
isfies du(h o g) = du(g), while the right Haar measure sat-
isfies dur(goh) = dugr(g). In general, left and right Haar
measures are not the same for an arbitrary group. However,
one has dur(g) = A7(g)du(g), where A(g) is the mod-
ular function satisfying A(e) = 1, A(g) > 0, A(goh) =
A(g)A(h). Those groups for which the modular function is
1 are called unimodular. For example, the Euclidean motion
group and the Heisenberg group are unimodular, but affine and
scale Euclidean groups are nonunimodular.

Analytical developments associated with the right Haar
measure can be easily deduced from the results associated with
the left Haar measure. Therefore, for the rest of this paper, we
shall use the left Haar measure, unless specified otherwise.
To simplify notation, we shall denote left Haar measure by
dg = du(g).

Let L%*(G,dg) denote the Hilbert space of all com-
plex-valued, square-integrable functions on the group G, and
let z and y be two square integrable signals, representing the
input and output of a linear system. Then, the input—output
relationship of the system can be represented by the following
integral:

(3.2)

y@zLK@MMmM

where K is a kernel defined on G' x G and dh is the left Haar
measure of the group. Now, let us assume that the system S has
the following group-invariant dynamics:

S{z(9)} =y(9) = S{z(hog)} =y(hog)

for all g, h of the group G It is straightforward to show that such
a group-invariant dynamic is satisfied if and only if the kernel
K satisfies

(3.3a)

(3.3b)

K (g9,h) =K (pog,poh)

for any p of the group G. Thus, the kernel K can be reduced to
a function of G

k(h'og)=K (h "og,e) =K (g,h)

(3.3¢)

(3.3d)

and, the input—output relationship in (3.3a) reduces to a convo-
lution integral over the group G

(zxk)(9) =y(9) :'/G:v(h)/(a(h_1 og)dh. (3.4)
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For a square integrable function on an arbitrary Lie group,
f(h™1 o g)iscalled a translation in the same sense that f(t — 7)
is a translation of a function defined on the real line. In partic-
ular, [L(h)f](g) = f(h™1og) is called a left regular repre-
sentation while [R(h) f](g) = f(g o h) is called a right regular
representation. For the definition of group representations, see
Appendix I. These representations indicate the order in which
the elements appear in the group composition law. In general,
the left and right translations are not equal. As a result, the con-
volution operation is not commutative for arbitrary groups. Ob-
viously, for commutative groups convolution operation is com-
mutative.

Note that convolution integral can also be expressed in terms
of the left regular representation of the group

(z*k)(9) =(L(g)k,

where T is the complex conjugate of the function z.

z) (3.5)

B. Fourier Analysis on Groups

The Fourier analysis on groups is closely associated with the
theory of group representations. This theory, particularly for Lie
groups, has many physical applications. From the perspective
of group representation theory, Fourier analysis deals with the
characterization of unitary representations as a direct sum (inte-
gral) of the irreducible unitary group representations. This char-
acterization is then utilized to define the Fourier transformation,
which has the property of mapping the convolution integral to
multiplication in the transform domain. However, for an arbi-
trary group, such a characterization is far from unique. Nonethe-
less, considerably satisfactory results can be obtained if some re-
strictions are imposed on the group structure. It was shown that
if the group G is a separable, locally compact group of Type I,
[45] unique characterizations of the unitary representations can
be obtained in terms of the irreducible unitary representations
of the group. These conditions on the group G are satisfied by
a large class of groups, including compact groups, separable lo-
cally compact commutative groups, all connected semi-simple
Lie groups, unimodular Lie groups, all algebraic Lie groups,
and the majority of well-behaved locally compact groups. [46],
[47]. Fortunately, most of the noncommutative groups of in-
terest in engineering applications, such as the Euclidean mo-
tion groups, the affine group, and the Heisenberg group, fall into
this category and admit unique Fourier decomposition of func-
tions. Here, we shall review the Fourier analysis on compact Lie
groups and separable locally compact groups of Type I for both
unimodular and nonunimodular case.

Let U(g, A) be the Ath irreducible unitary representation of a
separable locally compact group of Type 1. Then, the operator-
valued Fourier transform on G maps each f in L?(G, dg) to
the family {f(\)} of bounded operators, where each f()) is
defined by

FHW=i0= [ U a G
or in component form
fig 0 /f Ui (97", A) dg (3.6b)
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where U; ;(g, ) are the (4, j)th matrix elements of U(g, ).
The collection of all \ values is denoted by G and is called
the dual of the group G. The collection of Fourier transforms
{f(\)} forall A € @ is called the spectrum of the function f.
The Fourier transform can be viewed as a one-to-one onto trans-
formation from L2(@, dg) to L*(G, dv) where dv denotes the
Plancherel measure in the space G. The Fourier synthesis and
the Plancherel formula differ somewhat depending on the group
structure.

An important property of the operator-valued Fourier trans-
form, reminiscent of the classical Fourier transform over the
reals, is that the group convolution becomes operator multipli-
cation on the Fourier side; more precisely

F(fixfo)=F (f2)F(f1).

For locally compact commutative groups, all irreducible
representations of the group are one dimensional. Hence, the
Fourier spectrum is scalar valued and appears similar to the
classical Fourier transform. The inversion formula, in this case,
is given by [48].

(3.7)

= / fouU (3.8)
G
The Plancherel formula is given by
[1r@ras= [ |Fo) (3:8b)
Ja Jé&

For compact groups (in particular, for finite groups), the ma-
trix elements of the irreducible representations form a complete
orthonormal basis for L2((, dg). As a result, the following in-
version formula holds [40]:

Z d (A trace( MU (g /\)) (3.9a)
Yel
or in component form
d())
=Y > AN fii (N Ui (9.0 (3.9b)

AeG 1I=1

where d(\) denotes the dimension of the representation
U(g, \). The Plancherel formula is given by

|1t @ras= Y do|f |

\eG

(3.9¢0)

For the case of separable locally compact groups of Type I,
the Fourier inversion and the Plancherel formulas are given by
[49]

flg) = /G trace ([f()\) C’;?} Ut (9, )\)) dv()\) (3.10a)

and
[ 17 @Pdg
G
N . T
:/étrace([f()\) Hf( )C ] )du()\) (3.10b)

where )ﬁ()\) denotes the adjoint of f()\) and dv()) is the
Plancherel measure and {C)} is a family of Hermitian posi-
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tive-definite operators with densely defined inverses such that
the followings hold:

e {f(A\)Cz} is trace class for each A € G and

o U(g, \)CiUT (g, )) = A2 (g) Cy (3.10¢)

where A(g) is the modular function of the group G.

For a given group, both the family of operators {C} and
the Plancherel measure can be determined uniquely. When the
group is unimodular, Cy = I,. Thus, the inversion and the
Plancherel formulae become

£g) = [ twace (F VU (g.0)) v )

G

(3.11a)

and
./Glf(g)l2dg=./étrace (f()\)ﬁ ()\))dv()\) (3.11b)

where dr(\) is the Plancherel measure.

As an example, we present the Fourier transform over the
affine group or the az + b group. The affine group of the real line
has two nonequivalent infinite-dimensional unitary irreducible
representations. We denote them by U.. Let UL act on the
Hilbert space H. that consists of functions 4 whose Fourier
transform are supported on the right and left half half-line, re-
spectively

1 —b
Us (a,b) f (z) = %1/& <$ , ) :
Then, the Fourier transform of a function defined on the affine

group, i.e., f € L2(R x RTa~2dadb) is given by the following
operator valued functions:

Fu, (f) = /_OO /000 a”2dadbf (a,b) Ux (a,b)  (3.12b)

(3.12a)

where a~?dadb is the left Haar measure of the affine group. The
Fourier inversion formula is given by

f(a,b) = Ztrace (Ul (a,b) Fu, (f) 6). (3.12¢)
+

Note that the linear operator ¢ is given by

8¢(t) = M [lw| F{EHw)(1)

where ¢ € L2(R,dt) and F is the Fourier transform of the
additive group [20]. The extra operator § in the affine group
Fourier inversion formula is due to the nonunimodular nature
of the affine group.

In the following section, Fourier decomposition discussed in
this section will be utilized to develop spectral decomposition
theorems for a class of nonstationary stochastic processes.

IV. GROUP STATIONARY PROCESSES

One of the key components of our development is the
generalized second-order stationary processes indexed by
topological groups [50]-[52]. These processes are nonsta-
tionary in the classical sense but exhibit invariance under the
right or left regular transformations of the group. Obviously,
ordinary stationary processes are group stationary in which
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the underlying group is the additive group (R, +). The author
demonstrated in her earlier work that the special cases of group
stationary processes for the multiplicative and affine group
form suitable mathematical frameworks for modeling and
analysis of self-similar and multiscale processes. Formally, the
group stationary processes are defined as follows.

Let G denote a group g, h be its elements. Then, the process
X (9), g € G is group stationary if

X(g)=X(hog), g,heqG (4.1a)

or

X(g9)=X(goh), g,hed (4.1b)

where = denotes equality in terms of finite joint probability
distributions. Depending on whether a random process satisfies
(4.1a), (4.1b) or both, it is called left, right, or two-way group
stationary. Note that for commutative groups, the process is al-
ways two-way group stationary.

Second-order group stationarity is a weaker condition in
which, only the second order statistics of the random process
is required to be invariant under the right or left regular trans-
formations of the group. Loosely speaking, second-order group
stationary processes obey the following structure:

E [X (9) m} =R(go h_l) , g,heqG 4.2)

where R is a positive-definite function defined on the group

The central fact in the analysis of group stationary processes
is the existence of spectral decomposition, which is facilitated
by the Fourier theory on groups. For compact groups, left group
stationary processes admit the following spectral decomposi-
tion:

X (g) =) trace (U (g,A) Z ())) (4.3a)
Ae@
and
R(g) = Z trace (U (g, \) F (X))
\e@
with
> trace (F (X)) < oo (4.3b)
xe@

where R (-) is the autocorrelation function of the process,
U (g,A) is the Ath irreducible unitary representation of the
group G with dimension d (), Z ()) is a random matrix of
dimension d (A), and F (\) is a bounded Hermitian posi-
tive-definite operator over G.

For separable locally compact groups of Type I, the summa-
tion in (4.3a) is replaced by an integral and the left group sta-
tionary processes admit the following spectral decomposition:

X (g) = /G trace (U (9, \) Z (d3))  (4.4a)
and
R(g) = /G trace (U (9, \) F (d\))  (4.4b)
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where R and U (g,A) are as described above, Z (d)) is a
random linear operator over G, and F'(d)) is a operator
measure over G satisfying

/ trace (F (d))) < oo. (4.4¢)
G

The random linear operator Z (-) can be thought of as a matrix
in which each matrix element is a random variable. In the case of
commutative groups, this matrix is a diagonal one and the matrix
elements are statistically independent. In the case of noncom-
mutative groups, it is typically a block-diagonal matrix in which
the matrix elements from one block to another are independent,
but not necessarily independent within the same block. Unless
the process is both right and left group stationary, the matrix
entries of the random linear operator Z (-) is column-wise cor-
related and row-wise uncorrelated with correlation coefficients
equal to the corresponding matrix entries of the operator F (-).
For a rigorous treatment of the topic, we refer the reader to [50],
[51].

Now, let us assume that the autocorrelation function R is a
square integrable function defined on the group G, i.e.,

/ IR (g9)|*dg < oc. (4.52)
G

We define
SO = F(R)(N) = /G dgR (9)U (9, 7).

We shall refer to S as the spectral density function of a
group stationary process. It is straightforward to show that S
is a bounded nonnegative-definite operator or matrix-valued
function defined on the dual space G. This is a natural gener-
alization of the spectral density function defined for ordinary
stationary processes due to its generalized version of symmetry
and positivity properties. Obviously, the operator-valued spec-
tral density function is closely related to the operators defined
in (4.3b) and (4.4b). For compact groups, they are equal and
for noncompact groups, loosely speaking, spectral density
function is associated with the derivative of the operator mea-
sure defined in (4.3b) and (4.4b). Hence, the spectral density
function represents the correlation structure of the underlying
elementary almost white random operators Z (-). We shall
utilize the concept of spectral density function extensively in
our subsequent development.

For practical implementation and processing of time series
with group-invariant structure, one has to define a notion of er-
godicity. See Wiener [83] for the generalized notion of ergod-
icity over groups.

(4.5b)

Examples:

For commutative groups, irreducible unitary representations
of the group are one dimensional. As a result, the Fourier trans-
form diagonalizes the covariance function, but for noncommu-
tative groups, the covariance function can only be block diago-
nalized.

A. Shift Stationary Processes

The simplest example of the group stationary processes is
the ordinary stationary processes defined on the real line with
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the addition operation, i.e., the additive group (R, +). For the
rest of our discussion, we shall refer to these processes as shift
stationary processes

E [X (tl)X(tz)] =Rt —ts),  —00<tits < oo
(4.6)
One-dimensional irreducible representations of the additive
group (R, +) are given by the complex exponential functions
vt _0o < t1,t2 < oo. Hence, the whitening transform,
or the spectral decomposition of the shift stationary processes
is given by the ordinary Fourier transform. As a result of the
well-developed analytical framework based on Fourier theory
coupled with the existence of the fast Fourier algorithms, shift
stationary signal modeling and analysis has been indispensable
in engineering applications.

B. Scale Stationary Processes [19]

Another important class of group stationary processes is
defined by the multiplicative group, on the positive real line,
i.e., (RT, x). These processes exhibit invariance with respect
to translation in scale, and are referred to as scale stationary
processes [19]. Their second-order statistic obeys the following
structure:

E[X (1) X()] = R(ti/t2),

These processes and their mathematical framework are
shown to be optimal for modeling and analysis of statistically
self-similar phenomena [19]. Formally, self-similar processes
are defined as follows:

X (t)=a" "X (at),

0< ti,ty <oo. (4.7)

foralla > 0 (4.8a)

where = denotes equality in probability distribution and H is a
constant parameter characterizing the degree of self-similarity.
Scale stationary processes are self-similar with parameter 0.
Nevertheless, there is a one-to-one correspondence between a
self-similar process with parameter H and a scale stationary
process defined through the following relationship:

X)) =tEX @), t>0 (4.8b)

in which X is self-similar with parameter H if and only if X
is scale stationary. Fig. 1 shows the sample path of a scale sta-
tionary autoregressive moving average process. Smoothness of
the sample paths over large time scales indicates the ability of
scale stationary models in capturing long-term correlations.

One-dimensional irreducible representations of the mul-
tiplicative group are given by e/“!°8% ¢ > 0. As a result,
the Mellin transform whitens the scale stationary processes.
Detailed analysis of the self-similar processes based on the
concept of scale stationarity can be found in the present author’s
previous work [19], [21], [66], [67].

C. Affine Stationary Processes [19], [21]-[23]

These are second-order processes defined on the ax + b or
affine group, i.e., X (a,b), a > 0, —o0 < b < o0. Due to
the noncommutativity of the affine group, stochastic processes
induced by the left and right regular representation of the group
are different, nevertheless related. Here, we shall only discuss
the left affine stationary processes.
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Fig. 1. Sample paths of first-order scale stationary autoregressive (SSAR) process with unit variance and parameter o = 0.6.
Right Affine Stationary FBM Process
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shift index on the dyadic lattice
Fig. 2. Sample paths of an affine stationary process derived from fractional Brownian motion (fBM). Each line represents the sample paths at a different scale,

level 1 being the lowest scale.

Affine stationary processes are proposed for statistical
modeling of multiscale signals, such as random signals in the
wavelet domain or signals obtained at different resolutions
[20]. The index « is interpreted as the scale, and the index b is
interpreted as the shift index. The autocorrelation function of a
left affine stationary process is given as

E [ X (a1,01) X (a,82)| = R <ﬂ, L, - b2)> . (49)

az a2

Thus, a left affine stationary process is shift stationary within
the same scale and scale stationary across the scales for fixed

shift index. Sample paths of a left affine stationary process
shown in Fig. 2 clearly indicate the strong correlation across
the scales. It was also shown by the author that the spectral
decomposition of affine stationary processes is associated with
the wavelet transforms. For a detailed discussion on affine
stationary processes and their spectral decomposition, see [19].

Apart from these examples, detailed study on stochastic pro-
cesses invariant with respect to the two- and three-dimensional
rotational group action can be found in [81] and [82] and refer-
ences therein.
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Note that both the estimator/correlator output in radar/sonar
imaging described in Section II-A and the tomographic imaging
process described in Section II-B, can be viewed as convolution
operations over homogenous spaces in the sense that the left reg-
ular representation in (3.5) is replaced by the quasi-left regular
representation and the space L? (G) is replaced by the space of
square summable functions on the homogeneous space X, i.e.,

y(9)=(Ly(9)f T)

where f and z are elements of L? (X) and L, (g) f(t) =
f (gflt). Standard examples of the homogenous spaces are
the sphere S =S50 (N +1)/S0 (N) and the Euclidean spaces
RY = SE(N)/SO(N). In engineering practice, measure-
ments are typically indexed by homogenous spaces. Therefore,
it is useful to investigate the class of stochastic processes
indexed by the homogeneous space X that leads to group
stationary processes after the ‘“detection/imaging” process
described by (4.10). To do so, we shall first define stochastic
processes that are stationary on homogeneous spaces.

Let X be ahomogenous space on which the topological group
G is acting transitively, and let {z (¢), ¢ € X} be a stochastic
process with constant mean and finite variance satisfying the
following condition:

(4.10)

Elz(gti) z (gt2)] = Efx (t1) = (t2)]

forallty, s in X and g in G. Then, we shall call {z (¢), t € X}
a group stationary process on X . For spectral decomposition of
such processes, see [50]. Loosely speaking, the following the-
orem states how group stationary processes are induced from
stationary processes on homogeneous spaces via convolution
operation.

Before we introduce the theorem, let us define the relatively
invariant measure for homogeneous spaces. The homogenous
space X is said to possess a relatively invariant measure p (dt)
if there is a character p; (g) on G such that

p(dg™"t) = py (9) n(dt)

A.11)

[75] ie.,

pt (9) /Xf (97 't)dt = /Xf(t)dt, forg € G.

Note that a relatively invariant measure on X exists if and
only if the modular function of H, where X = G/H, can be
extended as a character of G [75]. For example, it is sufficient
for H to be unimodular.

Theorem 1: Let X be a homogenous space on which
the topological group G 1is acting transitively, and let
{z (t), t € X} be a stochastic process on X. Assume that
the homogeneous space X has a relatively invariant measure
p(dt). Let

mmzﬂ%@wmummm (4.120)

where f is an element of f € L2 (X, u(dt)) N L(X,pu(dt))
and L, (g) is the quasi-left regular representation of the group
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x(g)

Fig. 3. Observation model.

G on L? (X, ;u(dt)). Then, y(g), g € G is group stationary
up to an amplitude factor if and only if {z (¢), ¢ € X} is group
stationary on the homogenous space X . In this case, the second-
order statistics of the process y(g), g € G has the following
structure:

Ely(g)y(g2)l =05 (9)Ely(gog)y(gogs)] (4.12b)

where p,, (g) is the character on G such that p (dg='t) =

pu(g) p (dt).
Proof: See Appendix II.

A trivial process that is group stationary on homogenous
spaces is the “white noise” process that can be rigorously de-
fined via orthogonal random set functions. Let {Z (B) , B € B}
be an orthogonal random set function satisfying

E[Z(B1)Z (B2)] = p(B1 N By) (4.13a)
where B is a o-field of the homogenous space X and y is the
measure on (X, B). By definition, the orthogonal process is sta-
tionary on X since the measure p is invariant under left transla-

tions. Thus, the following process is left group stationary up to
an amplitude factor:

mmzAmewww (4.13b)

where f is an element of f € L?(X,du)N L(X,dy), and
L, (g) is the quasi-left regular representation of the group G
in L2 (X, du).

In engineering applications, often the homogenous space of
interest is either RN or C, in which case, the process with
orthogonal increments is the Brownian motion process. Thus,
the theorem states that the filtered “white noise” process has a
group stationary structure.

V. WIENER FILTERING OVER GROUPS

In this section, we shall introduce a novel stochastic decon-
volution method over groups based on the Fourier theory of the
topological groups. We shall pose the deconvolution problem
within the framework of minimum mean-square error (MMSE)
prediction, and develop a Wiener filtering method to estimate
unknown signals from noisy measurements. While our results
will be stated for the locally compact groups of Type I, special
cases of finite, compact, and commutative groups can be easily
deduced from the main result.

Let S be a left group-invariant system defined on a locally
compact group G of Type I, and let y be the noisy output of the
system for an input z as depicted in Fig. 3.
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Thus, the observation model is given by the following convo-
lution integral:

y(g) = /G (W) (b~ o g)dh + n(g)

where f : G — C is the complex-valued, square-summable
impulse response function of the group-invariant system S, and
z and n are random processes of the unknown signal and addi-
tive noise indexed by the group G, taking values in the field of
complex numbers C. Without loss of generality, we assume that
Elz(g9)] = E[n(g)] = 0. Then, the classical linear Wiener
problem of recovering x from noisy measurements y can be
posed as follows: Find the linear filter W : G x G — C such
that the least squares error variance

G.D

T (ew) = / E [lew (9)*] dg (5.2)
G
is minimized, where
cw(9) = /G W (g, h)y (h) dh —  (g) (5.2b)

and dh is the left Haar measure on the group G. Note that it is
implicit by the (5.2a) that the filter W must be doubly square
summable. Then, the solution to the above linear least squares
problem is provided by the following Wiener—Hopf type equa-
tion:

| W R si)ds = Reyfa) 530
where
Ry, (s,h) = B [y () y ()]
and
Rey (9.h) = E [ (9) y (B)] (5.3b)
Alternatively
(FeR.) (9) = | /G Ry(WW (p~"og)dp  (5.4a)
where
Ry (9) =R (g.¢) = E [2(9) 2 (0)]
Ry (9) =Ry (9:0) = E[y(9)y(@)]  (S4b)
and
W(g)=Wl(ge) and f(g)=/f(97D). (540

The following theorem states an explicit solution for the
Wiener—Hopf equation, which in turn leads to the linear least
squares recovery of the signal x.

Theorem 2: Let G be a separable locally compact group of
Type I, and 2 (g) and n(g), g of G, be two zero mean left
group stationary processes, referred to as signal and noise, re-
spectively. Assume that the measurements obey the following
convolution integral and noise model:

y(g) = /Ga: () f (h™"0g)dh+n(g) (5.52)
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and

B [x(9)n(9)] =0 (5.5b)
where f € L? (G, dg). Then, the optimum linear least squares
deconvolution filter W, minimizing (5.2a), is left group in-
variant and the estimate of the signal is given as a convolution
integral

&(g) = / y () Wope (h™" 0 g) dh. (5.5¢)
G

The Fourier transform of the optimal filter W, is given by

N R R -1

Wope (V) = Sa () /T O) [FO) 8. ) AT )+ 8. 0)]
AeG. (55d)
Here, f is the Fourier transform of the cgnvolution filter f, and
f t denotes the adjoint of the operator f. S, and S,, are oper-
ator-valued spectral density functions of the signal and noise,

respectively. The spectral density function of the least square
error between the signal and its filtered estimate is given as

Se () = (7= Wonr () F (V) 82 ()

where I denotes the identity operator.
Proof: See Appendix II.

(5.5¢)

Remarks:

Note that f(A)S,(A)fT(A) + Sn()\) is a nonnegative defi-
nite operator. Thus, its iAnverse exists, but may be unbounded. In
that case, [f(A\)Sz(A)fT(X) + S,(X\)]~! can be interpreted as
the pseudo-inverse. When the underlying group is the additive
group of reals, (R, +), the Wiener filter given in (5.5d) becomes
the classical Wiener filter given by

Wope () = —— 222 F () (5.60)
S: @) |[f @) + 8 @)
where
Flw) = /_ Ty e, (5.6b)

Similar to the classical Wiener filtering, the results stated in
Theorem 2 can be extended to the case where the signal and the
noise are correlated. Under the assumption that the noise and
the signal are jointly left group stationary, i.e.,

2o (9)n(g2)] = B[ (hog)nhog)]

forany g1, g2, and h element of the group G, it is straightforward
to show that the Wiener—Hopf equation in (5.3) becomes a group
convolution integral which can be solved in a manner similar to
the case described in Theorem 2 above.

In the absence of a blurring filter f, the optimal filter which
separates the signal from the noise can be defined in terms of an
operator-valued signal-to-noise ratio function

Wopt (A) = Ssnr (A) [Ssyr (V) + 171
where

Ssxr (A) = Sp (A) S, (A) 1. (5.7)
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This formulation of the optimal filter does not require the
signal and noise spectral density functions and may be prefer-
able over the formulation in (5.5d) if the signal-to-noise spectral
density function can be developed from the system and physical
modeling of the problem.

Note that the proposed Wiener filter provides a regularized
solution to the inversion problem. To see this, let us assume
that there is no noise in measurements, then the Wiener filter
becomes Wopt = f-1 (\). However, the Fourier transform of
the blurring filter f may not be invertable if it has singularities.
On the other hand, f (\) S, (\) i (A) + Sn (A) is always a
nonnegative-definite operator. With appropriate choice of prior
and noise model, one can assure that it is a positive-definite
matrix with eigenvalues away from zero. For example, when the
measurement noise is “white” with variance o2, i.e., S, (A =
a2I(\), f()\) S. (A) fT(A\) + 02T ()\) has eigenvalues away
from zero which coincides with the Tikhonov regularization of
order zero [54].

Another case is when there is no noise in measurements and
no prior knowledge on the statistical distribution of the unknown
signal is available. For simplicity, we can assume that the spec-
tral density function of the unknown signal is simply white noise
with unit variance. In this case, the Wiener filter is simply the
minimum norm linear least squares filter given by

Wope () = £1 00 [F ) T V)] (5:8)

Howeyver, this estimate is unstable in the sense that small de-
viations in measurements may lead to large fluctuations in the
estimation due to the eigenvalues of f(\)f Jr(/\) that are close
to 0. The zero-order Tikhonov regularization of the form

Wope ) = FTO) [FOV ST ) +021 0] 59)
which amounts to the case where no a priori information on
the spectral density function of the unknown signal is available,
i.e., Sx (A) = I () and the spectral density function of noise is
S, (A) = %I (\). Note that in [56], Chirikjian et al. provided
the solution in (5.8) as a solution to the convolution equation
over the Euclidean motion groups, which is a special case of the
proposed Wiener filtering method.

The minimum mean square solution of the convolution in-
tegral stated in Theorem 2 can easily be extended to integral
equations involving representations that are equivalent to the left
regular representation. The convolution integral is a result of the
left regular representation of the group G acting on function in
L?(G,dg), i.e.

f17f2 € L2 (G7dg)

(5.10)
where f; denotes the complex conjugate of f1. Let Lz (g) be
a representation equivalent to the left regular representation
acting on vectors in a Hilbert space H. Then, by definition,
there is a linear operator A, mapping H into L? (G, dg), with
an inverse linear operator A~ such that

=L(g).

(fixf2) (9) = (L (9) fo, f1)

ALg (g) A1 (5.11)
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The solution of the integral equation

fa9) = (Lu (9) Fo. 1)
fi.fo € Hand f3 € L? (G,dg) (5.12a)

is equal to the solution of

f3(q) = <L(q)Af27 Af1> ) .f17 f27 f3 € L2 (G, dQ)
. _ (5.12b)
where Afy = fy and Af; = f;. Using the Hilbert space theory

of stochastic processes, the argument described above can be ex-
tended to include group stationary random processes. Such an
extension requires definition of an equivalence relationship for
group stationary processes via the equivalence relationship of
group representations. In defining an equivalence relationship
for group stationary processes, Parzen’s theory of associating a
unique vector from the reproducing kernel Hilbert space gener-
ated by the covariance function of the random process is the key
in bridging the random and deterministic signals [55].

VI. EXAMPLE: RECOVERY OF BLURRED AND NOISY
SELF-SIMILAR PROCESSES

In this section, we will demonstrate the application of the
proposed Wiener filtering method to the recovery of the blurred
and noisy self-similar processes. One of the fundamental
properties of the self-similar processes is their strong long-term
correlation structure. Such a problem is commonly encountered
in practice where both the signal and noise exhibit strong
long-term correlations. There is a variety of self-similar models
that capture such long-term correlations parsimoniously, in-
cluding fractional Brownian motion (fBM) and scale stationary
processes [53], [19]. We have demonstrated in our earlier work
that the notion of scale stationarity described in Section IV,
Example 2 leads to a complete, engineering-oriented mathe-
matical framework to model and analyze self-similar processes.
These include spectral representation, autoregressive moving
average (ARMA) modeling, Kalman filtering, and Wiener
filtering as will be demonstrated here [19], [22], [66]-[68].

Let the observation model be

y(t)=fxx(t)+n(t) (6.12)
where
Elz(t)] =FE[n(t)] =0,
Elz(t)n(t)] =0, forallt > 0
Elz(t1)x (t2)] = R (t1/t2) (6.1b)
and
E [’fL (tl) n (tg)] =R, (tl/tg) s forall t1,t5 > 0. (6.1¢c)

Due to the commutativity of the underlying group, the spec-
tral density function is scalar valued defined via Mellin trans-
form. Thus, the MMSE filter is given by

Wop‘r(w): F() ()
' | (@)[* Si () + 8 (@)

—0o<w< o0

(6.2a)
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where
S, (w) = / Ry (A) A=59=1d)
0

S, (w) = / R, (\) A9~ 1d\ (6.2b)
0

and F' (w) is the transfer function of the blurring filter in Mellin

domain.

A. Example 1

For the first simulation, we model the signal as a first-order
scale stationary autoregressive (SSAR) model given by

tj—j (t) + oz (t) = ot w (1),
where w (t), t > 0 is a scale stationary “white noise” process
and « is the scale stationary AR model parameter, and H is the
self-similarity parameter [19]. It is straightforward to show that
the spectral density function of the first-order SSAR process is
given by

t>0  (6.3)

2

w2+ a2’
We model the observation as a first-order SSAR model with
parameter « = 0.6 and H = 0 embedded in additive white

Gaussian noise with variance o2

y(t)=z({)+n(t).

Clearly, the standard (R, +) Fourier-based Wiener filter is not
applicable for self-similar signals due to their nonstationary na-
ture in the classical sense. Given the underlying multiplicative
structure, the optimal MMSE filter in the Mellin domain is given
by

o
-0 < w < 00.

S, (w) = (6.4)

(6.5)

0_2

= (6.6)

op (WP +a?) + 0}

Wopt (w) =

where o2 is the variance of the additive noise. This filter is im-
plemented in the Mellin domain and the time-domain estimate
of the signal is obtained by taking the inverse Mellin trans-
form of the estimate. Implementation of the Mellin transform
depends on the optimal sampling and the notion of bandlimit-
edness for signals indexed by the multiplicative group. Detailed
discussion of these concepts and efficient implementation of the
Mellin transform are described in the author’s previous work,
[21], [22], [66], and [68].

We performed 100 Monte Carlo simulations for each noise
level and compute the average mean difference and variance be-
tween the original and recovered signal to quantify the good-
ness of the recovered signals. These results are tabulated in
Table I. For visual illustration of the proposed self-similar signal
recovery method, we present the sample paths of the original
signal, noisy signal with 10-dB SNR, and the recovered signal
in Fig. 4(a)—(c), respectively

B. Example 2

In the second simulation, the signal is assumed to be the
generating process of the fBm with a self-similarity parameter
H = 0.6 [19]. The observation is a blurred and noisy fBm
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TABLE 1
MEAN ERROR AND MEAN SQUARE ERROR OUT OF 100 MONTE CARLO RUNS
FOR THE RECOVERY OF THE FIRST-ORDER SSAR PROCESS EMBEDDED IN
WHITE GAUSSIAN NOISE AT VARIOUS LEVELS

5dB 10dB 20dB 40dB
Mean error 0.0749 0.0544 0.0271 0.0033
Mean
square error 0.0091 0.0048 0.0012 0.0
TABLE 1I

MEAN ERROR AND MEAN SQUARE ERROR OUT OF 100 MONTE CARLO RUNS
FOR THE RECOVERY OF THE BLURRED AND NOISY fBM PROCESS AT
VARIOUS NOISE LEVELS

5dB 10dB 20dB 40dB
Mean error 0.0350 0.0251 0.0122 0.0027
Mean
square error 0.0023 0.0012 0.0004 0.0

process in which the noise is a first-order SSAR process and
the blurring is due to a “low-pass” scale-invariant filter defined
as

f (w) = cos? (%) ,

Time-domain realization of this filter is shown in Fig. 5(b).
The scale autocorrelation of the fBm process is given by [19],
(16]

Ripm (\) = Vir [cosh (H1In\) — (1/2)]2sinh (In A/2)|2H]

—0 < W < 0. 6.7)

where

Vg =1/(sinmHI (2H +1)), 0<H<L1  (68)

The scale spectral density of the fBm process is given by [16]

Fi-—H+iw)T'(1-H —iw)

1/2 + i) D (1/2 — iw) (H? + w2)’
-0 < w < 00.

StBm (W) = Il
(6.9)

The sample paths of the noise-free fBm process and blurred
and noisy measurements with 10-dB SNR are shown in Fig. 5(a)
and (c), respectively. Inserting (6.7), (6.9), and (6.4) into (6.2a),
an analytic expression for the MMSE filter can be obtained. The
transfer function of the optimal MMSE filter was numerically
formed and denoising is performed in the Mellin domain. The
sample paths of the original and the denoised signal are pre-
sented in Fig. 4(d). Error analysis is performed based on 100
Monte Carlo runs. The mean and the mean-square values of the
error are given in Table II.

Note that for locally compact commutative and compact
groups, the Fourier domain deconvolution method described in
this study can be efficiently implemented by the fast Fourier
algorithms [58], [59], [25], [27]-[29]. The study of noncom-
mutative noncompact sampling theory, Fourier algorithm
development is still a relatively new area for computational
methods. It appears that for this case, the extension of the ban-
dlimitedness idea has to be addressed differently depending on
the structure of the noncommutative locally compact groups.
In [58], it was shown that the sampling algorithm and the
discretization of generalized continuous wavelet transforms are
equivalent problems for the locally compact unimodular groups
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Fig. 4.
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(a) Sample paths of the first-order SSAR process with unit variance and o = 0.6. (b) First-order SSAR process in Fig. 3(a) embedded in white noise with

SNR = 10 dB. (c) Sample path of the recovered process after Mellin based Wiener filtering. Solid line: recovered process; dashed line: original.
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(a) The generating process of the fBm process with = 0.6. (b) Time-domain representation of the blurring filter defined in (6.7). (c) Sample path of

the blurred and noisy observations. (d) Sample paths of the original and recovered signal. Solid line: recovered process; dashed line: original.
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using the framework of Plancherel theory. See [58] for the im-
plementation of sampling algorithms for Heisenberg group. In
[72]-[74], a notion of bandlimitedness is defined and sampling
theorems for functions on groups are developed.

Approximate methods of Fourier transform implementation
can be addressed on a case-by-case basis based on the particular
structure of the group. For example, in [60], the Fourier trans-
form over the two-dimensional Euclidean motion group SE(2)
is approximated by the Fourier transform of the discrete motion
group which is defined as the semi-direct product of the discrete
rotation group and the additive group R. In [29], an approxi-
mate Shannon-type sampling theorem is derived for Euclidean
motion groups.

VII. CONCLUSION

In this paper, we have shown how group representation theory
can be utilized to solve a class of inverse problems formulated
as group convolutions. A classical deconvolution problem in the
linear time-invariant system and signal framework is a special
case of the general deconvolution problem, in which the un-
derlying structure is the additive group. We broaden the clas-
sical framework to include a wide range of groups of both com-
mutative and noncommutative type. These include finite, com-
pact, and a large class of well-behaved locally compact groups
that arise naturally in engineering applications. We developed a
minimum mean-square solution for the deconvolution problem
using the group representation theory and the concept of group
stationarity.

There are many possible avenues for future research. At a
theoretical level, one may extend the results of this study to
blind deconvolution where the deblurring filter is unknown
and has to be estimated along with the unknown signal from
measurements. This task may necessitate the development of
ARMA-type parametric models over groups. It will also be
very interesting to perform deconvolution recursively within
the Kalman filtering framework. At the application level,
investigation of inverse filtering techniques for the Euclidean
motion group and the affine group for image reconstruction
problems as well as other applications are proceeding and will
be reported in the future [76], [77].

APPENDIX 1

Definitions of the basic concepts used in this paper are pro-
vided for readers’ convenience. Detailed discussions and rig-
orous treatment of these concepts can be found in [69]-[71].

Definition Al.I:

* Let G be a group, F' a field, and V a vector field over
F. A representation of a group G is a homomorphism p
from G into the group of automorphisms of V', denoted by
GL(V),ie., p: G — GL(V), such that p(g) = p,.

* If V is an n-dimensional vector space over F', then for a
fixed basis of V' there is an isomorphism ¢ from GL(V')
into GL(n, F'). Therefore, ¢ induces another representa-
tion (¢ o p) of G into GL(n, F'), which is called a ma-
trix representation. Any representation of G into GL(V)
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is equivalent to a representation into GL(n, I') and vice
versa. The integer n is called the degree of p.

Definition Al.2:

* Let W be a subspace of V. If for all elements g € G, pgv
isagainin W (p,W C W), then W is said to be invariant
under p or, equivalently, p-invariant. If V' is nonempty and
has no proper p-invariant subspace W then the represen-
tation p is said to be irreducible, else reducible.

* A group G is called a topological group if G is a topolog-
ical space satisfying the Hausdorff separation axiom and
the mapping (z,y) — xy~! is a continuous mapping from
G x G into G.

¢ Let G be a topological group. A unitary representation of
G is a strongly continuous homomorphism U from G into
the group of unitary operators of a Hilbert space H,U(H).
H is called the representation space of U and denoted by
H(U). The dimension of H(U) is the called the degree of
U.

* Let W be a subspace of a representation space H(U) of
a unitary representation U. Then W is said to be invariant
under U if U;,W C W for all g € G. A unitary represen-
tation U is called irreducible if H(U) is nonempty and has
no proper subspace invariant under U.

e Let G be a locally compact topological group and let
H(R) = L*(G) be the Hilbert space of square-integrable
functions on G with respect to right Haar measure on
G. Let f be a function in H(R). Define the operator R
on H(R) by [R(g)f](h) = f(hg). Then R is a unitary
representation of GG and is called the right regular repre-
sentation of G. Similarly, the left regular representation L

is defined by [L(g)f1(h) = f(g~'h).
Definition Al.3:
¢ Let G be a group, and let K be a subgroup of G. Given an
element g € G, the subsets of the form
gK ={gk:ke K}, Kg={kg: ke K}

are called the left and right cosets of the subgroup K de-
termined by g. The equivalence class of the cosets are de-
noted by G/K and K\G, respectively.

* G acts on the set K'\G by right multiplications and since
it is an automorphism of the group K\G, it also induces
automorphism over the representations of K'\G. Hence,
this automorphism induces a representation of G over the
complex-valued function over K'\G called the quasi-right
regular representation.

APPENDIX II
A. Proof of Theorem 1
To simplify the notation, we shall denote u(dt) by dt. Let

u(g) = /X Lo(g) f(£)(t)dt,

for some f € L*(X,dt) N L(X,dt) (Al.la)
E [x(tl)il}(tz)] = Cm(tl, tg), for all tl,tg in X (Allb)
Ey(91)y(92)] =Cy(g1,92), forall g1,92 € G. (Al.lc)
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Assume
E[z(gt)x(gt2)] = E [#(t1)x(t2)],
forall t1,t2in X and g in G (Al.2a)
i.e.,
Co(t1,t2) = Cr(gt1, gt2), forall t;,¢; in X and g in G.

(A1.2b)
Since y(g), g € G is a finite mean, finite variance process.
Thus,

E [9(91)@}
91, 92)

e

:/ / Lqy(91)Lg(g92) f(t1) f(t2)Cu(gty, gt2)dt1dls.
xJx
(A1.3)

92) f(t1) f(t2)Cy(t1, t2)dt1dts

Note that the measure dt is relatively invariant under left
translations, i.e., dg=t = p(g) dt.
Let S1 = gtl and S9 = th

z//Lq(gl)Lq(gz)f(g_lsl)W

(81 82) ( )d31d82

// (90 91)Log © 92)f(5)T ()

- Cy(s1, sz)p”( Yds1dse
=pp(9)Cy(gog1,9092)

(A1.4)
(A1.5)

Thus, y(g), g € G is a left group stationary process. The
proof of the “only if” part is similar and is omitted.

B. Proof of Theorem 2
The MMSE in (5.2a) is minimized when

E [Ew(g)M} =0, forallg,heG  (A2.la)

ie.,

[(/ Wig.p)y(p)dp = =(g )> W} =0. (A21b)

Assuming all processes involved have finite variance, (A2.1b)
can be alternatively written as

/GW(g,p)Ryy(p7 h)dp = R.y(g,h). (A2.1¢)

Under the assumptions that z(g) and y(g), g € G, are left
group stationarity and jointly group stationary, i.e.,

Elx(g)y(h)] = Rey(h~

(A2.1c) can be expressed as a group convolution

[

Yog.e)

-t °4g, 6) Ryy(p7€)dp = Rﬂ»/(ga €>. (AZld)
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Furthermore, if z(g) and n(g), g € G, are statistically inde-
pendent, then

Roy(g.0) = E [2(g)ax )] . (A22)
It is straightforward to show that
Rey(g.¢) = (f * Ra)(9) (A23)
where f(g) = f(9~1) and R,(g) = Ru.(g,e). On the other
hand
Ry(9) = (f* Rox f)(9) + Bulg)  (A24)

where R, (g) = Ry,(g,e) and R,,(g9) = R,...(g, e). Thus, using
(A2.3) and (A2.4), (A2.1d) can be written in Fourier domain as
follows:

$aV)]
AeG. (A25)

~

Wope (V) = SN FT ) [F S0 FT ) +

Here, f T denotes the adjoint of the operator f , S, and S, are
the spectral density functions of z(g) and n (g), respectively.
Note that the spectral density function is positive definite and
hence its inverse exists.

The error covariance is given by

E [=(9)=(c)]
=E [0(9)a()| ~E [s(9)w+ [+ W)(0)]
+E [(n 5 W)(g) (s W)(O)| =B [(w+ [ « W)(g)a(e)]
+E [(ox f £ W)(g)(w = FW)(e)] .

In the Fourier domain, (A2.6a) becomes

(A2.62)

S:(\) = WS, (AW (N

4 [r= i) . [ - wovio]
AeG.  (A2.6b)

Thus, for the optimal filter given in (A2.5), the error power
spectrum is given by

S:) = [T=Wope N f ] 8. (0, A€ @a27)
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