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An Autonomous Reading Machine

RICHARD G. CASEY AND GEORGE NAGY, MEMBER, IEEE

Abstract-An unconventional approach to character recognition is
developed. The resulting system is based solely on the statistical
properties of the language, therefore it can read printed text with no
previous training or a priori information about the structure of the
characters. The known letter-pair frequencies of the language are
used to identify the printed symbols in the following manner.

First, the scanned characters are partitioned into distinct groups
of similar patterns by means of a distance measure. Each class (at
most 26 are permitted) is assigned an arbitrary label, and an inter-
mediate tape, containing these temporary labels of the symbols in
the original sequence, is generated.

In the second phase of the program, the matrix of bigram fre-
quencies of the labels is compared to a frequency matrix obtained
from a large sample of English text. The labels are then assigned
alphabetic symbols in such a way that the correspondence between
the two matrices is maximized.

The method is tested on a 100 000-character data set comprising
four markedly different fonts.

Index Terms-Adaptive, character recognition, clustering, cryp-
tograms, linear categorizer, pattern classification, reading machine.

INTRODUCTION

Tp HE SYSTEMI to be described presents a striking
contrast to the usual methods of character recog-
nition. The processor is exposed to an unlabeled

representation of each character in a passage of printed
text, but it is given no information regarding the signifi-
cance of the various elements in these patterns. Unlike
conventional classifiers, it is never "trained" on identi-
fied samples. In principle, this processor has no stored
data to aid it except contextual information in the form
of a table of letter-pair frequencies derived from other
samples of text.

In a sample of text several thousand words long, the
observed letter transition frequencies may be expected
to match the stored values quite closely. For printed
text in such quantity, it seems quite reasonable to base
recognition on the relatively invariant transition fre-
quencies, ratlher than on preconceptions of the structure
of the characters.

This idea is applied to reading text in a manner simi-
lar to the solution of a simple substitution cryptogram
puzzle. Tentative identities are assigned to groups of
similar clharacters. These identities are then permuted
until the text reads sensibly; good sense in this case
means an admissible set of transition frequencies.
Letter-pair probabilities are actually used by way of
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compromise between singlet frequencies, which are
insufficient on a sample of only a few thousand words to
identify any but the most common letters (e, t, a, o),
and longer sequences, which require a prohibitive
amount of computation.

In solving a cryptogram, each type of character is
labeled with the same (though incorrect) symbol to
start with. The processor described here, however, must
first perform the nontrivial task of determining which
samples should be classed together by the same symbol.
The system achieves this by means of a series of cluster-
seeking algorithms operating in the sample space.
Each point in the sample space is a 96-dimensional

binary vector obtained by applying quasi-random
n-tuples in all "shifts" to the binary version of a scanned
character. This device reduces the dimensionality of
the sample space (from 360 to 96) and provides registra-
tion invariance without eliminating the distinction
between classes.
There are very few restrictions as to the source of the

printed material. Whereas systems whose parameters
are determined on identified samples suffer when a
previously unseen font style is introduced, this cate-
gorizer relies only on certain properties of consistency
within the particular portion of the text to be read. The
"geometric" properties required of the input data can
be roughly stated as: 1) samples of the same alphabetic
category should be similar, and 2) samples of different
categories should be dissimilar.
The two phases of the recognition procedure, cluster-

ing of similar characters and assignment of identities,
have both been implemented by essentially the same
technique: minimization of a distance function. In the
cluster-seeking plhase, the mean-square distance from
the samples to the cluster centers is minimized. To
decipher the cryptogram, letter identities are assigned
to the clusters so as to maximize the statistical likeli-
hood of the corresponding letter-pair frequencies in the
text. A detailed description of these procedures is given
in Sections II and III.
The performance of the system is evaluated on

20 000-30 000 clharacter segments of text in a single
type-case in eaclh of four dissimilar fonts (Fig. 1). A
brief description of the experimental system, a table of
the overall error rates, and a detailed illustration of the
action of the algorithm on one particular font style
form the contents of Section IV.
The text was scanned on the experimental print

reader of the IBM\ Watson Research Center. The clus-
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caused him to suspect that taylor had poisoned him other witnesses

for the defense testified to defendant s good reputation for honesty

and integrity and clavell turner another castle employee recounted

a conversation with taylor eight months before the theft in which the
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the defendant was being tried and
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Fig. 1. Samples of text used as input. The 1403 chain printer tends to
lighten the right-hand riser of several characters; D-O-C con-
fusions are common. The Smith-Corona typewriter, a vintage
model (circa 1920), produces almost closed-in c's; hence c-o is a
problem here too.

IN IN
600, 000 character keypunched

sample of English text

101
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cluster label

25,000 letters 2 min.
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tering, recognition, and cryptogram decoding operations
were performed by an IBM 7094 at the same location.
An overall flow diagram, including processing times for
the various operations, is given in Fig. 2.

I. RELATED WORK
Rabinow122] has recently obtained a patent covering

the general concept of an autonomous reading machine.
He envisages combining an elementary clustering pro-
cedure with dictionary look-up techniques. To our
knowledge no theoretical or experimental results have
been reported so far which would allow a comparison of
Rabinow's system with that described here.
An excellent survey of cluster-seeking methods, in-

cluding an extensive bibliography, has been prepared
by Ball.21 Among the techniques reported, the ISO-
DATA distance-minimizing algorithm of Ball and
HallM31 is of particular interest here, since a modified
version of it was used as the basic tool for grouping
similar character samples in the experiments to be
described.

Abraham[1] has considered the problem of finding
clusters of related samples given a similarity matrix
whose ijth element is 1 if samples i and j are similar, and

OUT

Fig. 2. Flow diagram of programs. All but the SCAN and N-TUPLES
programs, which use the 1400 computer-scanner system, run on
an IBM 7094 II computer. The running times shown refer to pro-
cessing "features." The dotted CULL block makes use of the
CATEGORIZE and JOIN programs to derive references for rare
characters.

0 if they are not. The similarity matrix can be pictured
as an undirected graph with nodes representing the
samples; similarity of two samples is expressed by a
connection between the corresponding nodes. Each of
the disjoint subgraphs of such a graph defines a cluster
of related samples.

BonnerM51 has also applied cluster-seeking techniques
to character recognition. The objective of his work was
to design Boolean logic for reading magnetic characters.
As sets of similar characters are defined by means of his
cluster-seeking program, logical bit combinations are
specified to recognize each cluster. Here clustering is an
aid to a conventional design program rather than a step
in the recognition procedure itself.
An interesting discussion on the use of cluster-seeking

methods to organize data is presented by Ornstein.1181
Ornstein proposes to define a taxonomic structure on
given samples with a confidence measure indicating the

493



IEEE TRANSACTIONS ON COMPUTERS, MAY 1968

reliability of classification at each level. This operation
is considered primarily as a step in the process of induc-
tive reasoning. Clustering serves the added function of
distinguishing between the essential and inessential
attributes of the samples. In the present work, also, the
aim is to find the "natural" clusters in the input. A tax-
onomic structure is not necessary, however, since it is
known how many clusters exist.
Methods of sorting data so as to minimize several

rather sophisticated statistical measures have been
devised by Friedman and Rubin.[1"] One of their objec-
tives is to take the correlation within groups into ac-

count during the partitioning operation. Conceivably
these high-powered procedures would be capable of
resolving even coarctate clusters.

Algorithms developed for cluster seeking are usually
justified on intuitive grounds. Cooper and Cooper,[9] on

the other hand, have examined analytically the problem
of partitioning a sample space into subpopulations.
With their approach the problem is resolved into one

of estimating the statistical parameters of a composite
population. Results thus far have been limited to the
most elementary cases, e.g., two spherical normal dis-
tributions.
One of the striking features of the clustering literature

is that many of the experiments reported are based on

medical diagnostics, [6] botanical measurements, [23] etc.,
where it is difficult to evaluate or even compare the vari-
ous techniques since the desired clustering performance
on such data is usually not known. In the present work,
a clearly defined objective is postulated, namely, that
all the samples of each alphabetic category should con-

stitute a distinct cluster. Thus, it would seem that char-
acter recognition provides an excellent framework for
testing cluster-seeking methods.
For the cryptoanalytic portion of the work several

standard references have been consulted,[1211191,[21] but
none of the methods suggested seemed sufficiently gen-

eral and insensitive to categorization errors. In addition,
the detailed nature of the customary procedures renders
them tedious to program and difficult to formulate
analytically. If others have tried permuting indices to
minimize a distance function, the authors are not aware

of the pertinent studies.

II. DETERMINATION OF SUBGROUPS

There is no precise, completely general definition of a

"cluster." In intuitive terms a cluster is a subset of sam-
ples which are somehow related to one another (e.g.,
similar) but are not related to the remaining samples.
Perhaps the simplest way to formalize this notion is to
define a two-state similarity measure by means of which
any two samples can be labeled either "similar" or "not
similar." The clusters are then identified with the dis-
joint subgraphs of the graph associated with the simi-

larity matrix for the given samples. The key to this
method is the accurate assignment of similarity states.

Unfortunately, in the problem under consideration a
similarity matrix is not available a priori, nor can one
be readily inferred from the distribution of the samples.
It is, in fact, unwise to attempt to use the similarity
matrix on individual samples; the individual decisions
are so critical that changing the similarity relation
between only a few pairs of samples may completely
alter the cluster configuration. A more stable approach
is to form only the most clear-cut similarity groupings
at first, and to work thereafter with averages of the
grouped samples in attempting to determine additional
similarity relations. This is the strategy adopted here.

Since the cluster seeking must deal with real-world
data, it is designed to take in stride possible scanner
failures; additional restrictions are imposed by com-
puter running time and internal storage limitations. In
other respects the system is designed to be as free of
arbitrary assumptions as possible.
The cluster-seeking program operates on only a

portion of the text to be read. The sample population
selected consists of 3000 96-bit feature vectors, the
largest amount of data which can be comfortably stored
in an IBM 7094 computer core memory along with the
program itself. Each of the 96 bits in a sample vector
denotes the presence or absence of a particular feature in
the character represented.
The first step in the process (see Fig. 3) is to partition

these samples into a large number of subsets of the most
similar vectors. This partitioning, based on a distance
measure of similarity, divides the samples of each iden-
tity into a number of subsets. Some errors-samples of
one identity assigned to a subset largely occupied by
another identity-may occur. These are sufficiently
infrequent, however, to allow further operations to be
conducted on each subset as a whole (represented, for
example, by its centroid), rather than on the individual
samples.

Next, the closest pairs of subgroups are merged. This
step is iterated until a sudden increase in the minimum
pairwise distance between subgroups indicates that two
different identities are about to be joined. At this point
there may be more than 26 clusters remaining. The
larger ones are likely to consist of the most common
letters occurring in the text. The smaller clusters are
either rare characters (x's, z's, and q's) or stray samples
which cannot be definitely assigned to any of the larger
clusters. Since little intelligibility is lost if the former
are misidentified, the processor simply selects the 26
largest clusters to represent the alphabetic identities.
The 26 selected clusters are used to sort the remainder

of the text characters by means of a linear categoriza-
tion procedure. At the conclusion of this stage each
sample in the whole text has been assigned to a unique
cluster number from 1 to 26. The data are then in stan-
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Fig. 3. Clustering to minimize the mean-square distance. The solid
dots represent the position of the samples in measurement space.
The circled dots indicate the centroids of the clusters (which are

fixed), the x's are the variable cluster centers, and the solid lines
represent the partitioning boundaries. At each step the cluster
center moves to the center of gravity of the corresponding par-
titioned samples. This defines a new linear boundary halfway
between each pair of cluster centers.

dard cryptogram form, ready to be decoded into alpha-
betic symbols.
The number of similarity classes formed in the initial

stage is a compromise between two opposing desiderata.
A large number of similarity classes decreases the likeli-
hood that the clusters will be tainted by a mixture of
identities. No further partitioning is done after this
stage; hence a cluster containing more than one identity
is bound to contribute erroneous classifications. On the
other hand forming fewer clusters facilitates subsequent
operations, in which each cluster is treated as an entity.
In the experiments reported here, 128 initial clusters
were formed. This number permitted reasonable speed
(1-2 hours processing time on a 7094 computer), and
also conformed with storage allowances in the follow-up
program for combining the initial clusters.

Clustering by Minimization of Mean-Square Distance

The basic method used for partitioning the 3000
binary samples is the following. Let the m samples be
represented as n-component vectors Si, S2, , Sm.

These samples are partitioned into r subsets by asso-

ciating each Si with the closest (in Cartesian distance)
member of a set of vectors X1, X2, * * *, Xr.
The placement of these "cluster centers" determines

the partitioning achieved. A useful criterion, adopted
here for the X's, is that they minimize

1 m

d2= E S - Xj(,) 12
m i=j

where j(i) is the index of the cluster center closest to the
ith sample.
The quantity d2 is the mean-square distance from a

sample to its corresponding cluster center. It can also be

Fig. 4. Initializing procedure. The first cluster center is chosen
arbitrarily; the second is the sample furthest from the first. Suc-
ceeding samples are chosen to maximize the minimum distance to
the existing cluster centers. The sample marked by x and labeled
"1" constitutes the first cluster center, "2" the second, and "3" the
third. The circled dots indicate the centers of gravity of the
clusters.

interpreted as the mean-square error resulting if each
Si is replaced by Xj(,).[24] Its primary value in cluster
seeking is as an overall measure of the tightness of a set
of clusters.
An algorithm for obtaining a local minimum of d2 is

illustrated in Fig. 3 for a two-dimensional example. The
sample set, consisting of three well-defined populations,
is to be resolved into three clusters.
The first step of the algorithm is to choose three initial

cluster centers X1,0, X2,0, X3,o. The samples are then
partitioned into three subsets by assigning each sample
to the nearest cluster center, as shown in Fig. 3(a). The
center of gravity of each subset is chosen as the next
cluster center, and a new partitioning is obtained by the
minimum-distance rule [Fig. 3(b)]. In this example, the
procedure converges after four iterations.
The minimization and convergence properties of this

algorithm are discussed elsewhere. 31 [81 [15] In order to
cluster binary data efficiently, the X's are constrained
to be ternary vectors. The restriction to ternary values
lends additional speed and conserves storage with little
sacrifice in accuracy. In an extreme case the mean-
square error would be 33 percent greater than the value
attained with infinite precision in the X's, but for the
purpose of partitioning the samples into tight clusters,
the lower quantization is adequate.

Initial Cluster Centers

The mean-square distance achieved by the algorithm,
as well as the speed of convergence, depends on the loca-
tion of the starting cluster centers. In general, it is de-
sirable that the X's be distributed over the populated
region of the sample space rather than concentrated in
one part of it as in Fig. 3(a). The procedure used to
obtain such a distribution of cluster centers is the fol-
lowing (see Fig. 4). The first sample in the batch to be
processed is designated cluster center number one. The
distances of the remaining samples from this one are
calculated, and the farthest sample is called center
number two. The smaller of the two distances from
each sample to these two centers is listed, and the sam-
ple having the greatest minimum distance is selected.
The remaining centers are chosen in turn to have maxi-
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mum separation from the existing centers. These initial
cluster centers are well scattered over the sample space,
an intuitively desirable property. In the example of
Fig. 3, this initializing procedure would have led to
convergence after at most three steps instead of four.

Sequential Clustering
Applying the preceding algorithm directly to sort

3000 characters into 128 clusters has several disadvan-
tages. First of all, it is time consuming: the (128 X3000)
distances from samples to cluster centers must be com-
puted at each of the 10-20 iterations required to reach
convergence. Secondly, it does not give the best perfor-
mance in typical cases.

Related schemes which have also been experimentally
investigated are the following. The direct cluster-seeking
procedure is used to partition the given samples into 2k
clusters, where k may be any integer in the range 1 to 7.
Each of these clusters is split in turn into two sub-
clusters by reapplying the distance-minimizing algo-
rithm. This step gives 2k+i subclusters which can each
be split into two parts in the same manner again and
again until 27=128 clusters are obtained.

Fig. 5 shows how these methods compare on a particu-
lar batch of data. The value k = 7 corresponds to the
direct procedure of forming 128 clusters in a single stage.
The quantity plotted is the sum of the number of minor-
ity characters in each of the 128 clusters. These results
are not conclusive, but they do serve at least to justify
the more economical scheme, finally adopted, of cluster-
ing the data into 32 groups to begin with, then succes-
sively splitting each subgroup two times. This procedure
was about twice as fast as the direct (k = 7) method.
At k =4 and below, the groups contain a heavy mix-

ture of identities after the initial clustering. Splitting
into pairs tends to split the identities, especially when
more than two identities are present in a single cluster.
Thus, sorting directly into only 32 subgroups gave 60
misclustered characters, while starting with 2 clusters
and splitting in six more steps into 128 gave 254 mis-
clustered samples. It is evidently better to start with a
number which is on the order of the "natural" number
of subgroups in the data than to start with one which is
significantly smaller. This conclusion runs contrary to
generally accepted results on hierarchically structured
data.l11] [241

Cluster Joining
The 128 clusters consist of collections of adjacent

sample points distributed over the measurement space.
A logical approach to combining clusters is to define a
"distance" between collections of samples, and to join
those which are "closest." One such distance measure is
the amount of separation between cluster centers. A
more sophisticated function of the structure of the
clusters, e.g., one which allows for the size and shape of
the clusters, would perhaps allow clusters to be com-
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Fig. 5. Clustering performance for a sequential splitting procedure.
The sharp initial decrease occurs because the cluster-seeking
algorithm will often correctly sort mixed samples of two identi-
ties, but is unable to find a good dichotomy for samples of many
categories.

bined with more confidence. If the various categories
are well separated to begin with, the distance between
means forms a sufficient basis for this operation.
The procedure is implemented as follows. The dis-

tances between the mean vectors of all pairs of clusters
are listed in a table. The pair having the lowest separa-
tion is merged into a single cluster, and a new mean
vector is calculated. The pairwise distance table is up-
dated to eliminate entries corresponding to the joined
clusters, and to enter the distance from the combined
cluster to each of the others. The new minimum entry
is located, the corresponding clusters are joined, and the
process is allowed to iterate in this manner.

Since there are 26 alphabetic categories it might seem
proper to continue joining until only 26 clusters remain.
There are two reasons why this must not be done. On
the one hand, the rarer classes (x, q, z) may not occur
in the 3000 (or fewer) samples. On the other, the sample
population often contains poorly scanned, improplerly
segmented, or otherwise distorted characters which
tend to precipitate into clusters. These specimens are
usually quite dissimilar from samples of their own or of
any of the other categories; thus, on the basis of dis-
tance, a deleterious joining of similar character types
(such as 0 and C) will occur before these stray clusters
are combined with others.
A fixed distance threshold for joining is an alternative

criterion for stopping. However, the appropriate thresh-
old varies as a function of the font in which the text is
printed. Better results are obtained when the machine
itself determines a threshold on the basis of the cluster
distribution, by keeping track of the distance between
clusters to be combined, i.e., the minimum distance in
the table at each step. If the various categories are in-
deed well separated, the minimum entry in the table
will begin to increase rapidly at some point in the join-
ing routine. Fig. 6 shows the distribution of these values
as the clusters are successively combined almost to the
limit of a single collection of 3000 samples. The ap-
propriate threshold for terminating is clearly indicated
by the minimum in the distribution. Furthermore, the
choice for the threshold is less critical than it might
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Fig. 6. Determination of the threshold for joining clusters. This
plot (illustrating script font) has been smoothed by averaging
locally over seven values of the independent variable. As expected,
clusters of samples of the same category are close together and
join at a low distance threshold, while clusters corresponding to
different identities join at a very high threshold. The existence of
a dip separating the two regions enables the system to select the
proper joining threshold without knowledge of the identities.

appear since only very small clusters are being com-
bined in the neighborhood of the indicated value.
The presence of poor sample representatives, as im-

plied above, leads to serious problems in clustering
character data. For example, when such samples are
present, the corresponding clusters will be impossible to
distinguish from "q" or "x" or "z" clusters, which are
equally small in a total population of 3000 characters or
less. In addition, a "chain" effect may occur wherein a
stray cluster joined to a valid cluster shifts the ensemble
cluster center in the direction of a third cluster of a
different identity, so that all three are eventually com-
bined.
Such difficulties can be overcome if the characteristics

of stray samples are known. Multilated characters, for
example, excite very few of the n-tuple masks used for
dimension reduction in the experiments. These samples
were eliminated prior to joining by deleting clusters
whose centers had fewer than five 1 bits. In addition,
clusters of high internal variance are suspect. Often
these turn out to be composed of several stray charac-
ters of different identities. A threshold on the allowable
internal variance, as measured by the number of don't
cares in the ternary cluster center, is effective in elimi-
nating such samples, but was not included in the ex-
periments reported here.

Final Assignment of Cluster Numbers
After completion of the preceding stages, 3000 sam-

ples of text have been partitioned into 25-35 clusters.
The most populous clusters correspond to letter iden-
tities; the sparser ones may still contain either the infre-
quent letters or stray samples. Since only 26 character
types can be presented to the cryptogram stage, the
number of clusters is reduced on the basis of size when
necessary. Although selecting the 26 largest clusters is
liable to result in the loss of some categories, the overall
system error rate is not greatly increased by this
method.
The 26 remaining cluster centers are used as the

decision parameters of a minimum-distance categorizer.

The entire text, including the already clustered data, is
submitted to this categorizer in order to relabel samples
which were weeded out during clustering. Each char-
acter is tagged with the number of the closest cluster
center, and the numbers are recorded in sequence on an
intermediate magnetic tape The minimum-distance
classifying technique is in accord with the cluster-
seeking method in which distance to a fixed point was
the criterion for assigning a sample to a cluster.

III. IDENTIFICATION OF THE CLASSES
The class-pair frequencies observed on a 25 000-

character sample of unidentified text, and the letter-
pair frequencies derived from a 600 000-character sam-
ple of identified text, are shown in Fig. 7. What is re-
quired is a method of associating the symbols of the
alphabet with the numbered classes in such a way as to
maximize the resemblance between the two matrices.
A precise definition of "resemblance" will be helpful in
this endeavor.

The Bigram Distance Function
The observed class-pair frequencies are

Nj
fi=N i= 1,2,- *,27;j= 1, 2, **,27,

where Nij is the number of occurrences of a pattern of
class i followed by one of class j, and N-I is the total
number of patterns, including blanks. The fij's will be
regarded as independently distributed random vari-
ables, despite the slight dependence introduced by the
constraint

Efi= 1.
i,ji,

It is also known that the class-pair frequency corre-
sponding to the alphabetic symbols (k, 1), will have the
binomial density distribution

P{fkI} = ( )PklNfkl (1 - pkl)N-Nfkz

where Pkl is the frequency of occurrence of the letter-
pair (k, 1) in a very large sample of the English language.

For large N, and for values of fkl reasonably close to
the mean, the above distribution may be approximated
by the normal density function

P{fkl} - [2lrNPk1(1 - Pkl)]-112

*exp [-1/2 ( - ]
Npkl(1 - Pkl)

Now consider the one-to-one mappings, T8(i) =k,
s 1, 2, * * *, 26,' which assigns a symbol of the alpha-

'Note that while bigrams involving blanks are used to facilitate
the association of letters and classes, blanks are unequivocally identi-
fied by the scanner, and thus do not appear in the mapping proper.
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Q .004. 000.00J.COO.000.005 .000.0U0.000000O.000.000.000 .000.000.000.000.000.000. 000.000.000.000.000.000.000.000
R .057.063.005.006.003. 140.009.008.003.017.000.000.000.000.001.094.039.000.008.000.028.043.000.003.000.000.000
S .116.U00.UU3.COL.005.075.000.004.001.081.030.001 .00r.004.035.013.001.000.023.029.025.032.000.003.000.005.000
T.307.C99.001.043.UOO.022.004.001.OOd.078.000.000.005.000.087.032.007.000.043.072.01 1.024.000.000.002.000.000

U .024..I.010LI.0LJ.0C6.000.006.005..UJ3.0U0.013.000.006.004.004.051.006.010.01 1.032.013.000.000.000.000.000.000
-V .023.008.oOC.000.001.01L1.COO.000.000.010.000.000.002.000.003.011 .00U.000.005.000.030.000.000.000.000.000.000
W .075.Oul.000.000.001.001.000.CUO.031.000.000.000.00UL.000.002.018.000.000.001.00t.004.000.000.000.000.000.000
X .000.005.000.COO.000.015.000.000.000.001.OUO.000.300.000.000.001 .000.000.000.000.000.000.000.000.000.000.000
.005.011.I.U.C.0.U.U.0.U.0.O.i.0.0.0.0.0.1.0.1.0.0.0.0.0.0

Z.003.OOC.00C.000.OCO.000.000.000.000.0C2.000.000.J01.000.000 .000.000.000.000.000. 000.000 .000.000.000.000.O000

OBSERVED BIGRAt4 FREQUENCIES X 10

1 2 3 4 5 6 1 8 9 10 I1 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

1l00142.C62.OO.215.C04.009.146.L91.001.054.0087005o.08.035.002012ol.I.044.024.7.044.014.1050.043.213.001.364.002

3S.C79.002.0OI00C01.COCO.Il2.C3OO100.001.000.000.01100.OOO.000001000.00o0-010000.000.001 .001.017001005.002.001
56.0052.002UL.002.OU00C.000.008.C010.000.005.U030.02.000.ooC.OoU.000.011.0o.00.000.o.ooo.0l5.C05.001.o0 00.009000

720.032.14000.001.OCC.C000.003.2.OO7.00713.005.001d.j0.0021.001.001.001.0001.001.003.00102.067.18001.019.0945.002

97.O11.00o.o.0o0.OCo.000.0o001.00o.000.001.000.003.000.001.000.000 .001.000.001.001.000.001.0010.003.000.003.000
Fig.. Biram requncie.C The. matrixon0top0 contains5the0firstthree digits ofbthe2letter0pair8frequncies.derived.from0a06007.00lcharacte

sample oflega 9text.UThe UmatIx beOw. shows01 the.0class-pair00frequencies00(script0font)from 4about21.005.03.Chaacer.0 Ths,th.frqunc
ofhe airh-eis2.L.04u.01UIOU0402UOU60.0930216owhilethecorreponding1lass.pair(which hapens4to0e120-26) s20.0222

bet to veryclasi.7.00ItUOis .ourobject00to seOLect.00.themost T0-o.oom aximize1ths functio , it0is.ufficientto1choos
likelymaping1in iewof9. theG3.observed4.0bigram00frequen- T..00 such.0 that1 the0 bigram00 distance01.function0

ciesfqand the 4.known lete.pairC prJ.Obabilities00p. , i.e0.,(.tO.0.0.0.0.0.000 01010000.0.0
toselect a T 6.uch 00.02that OO )1),32CI.0.0,0,.090\. Io(0. 000.UO -0P0000.0800.0002.0

k,,I~ PkI(l Pk 1)

Pi Tt fll',f12, .
. yf27 27}

= mxi fly -- -) -is minimized. The heuristic algorithm used to perform= a {781flf2 f72J the minimization will be discussed after a brief digres-
sion.

According to the maximum likelihood principle, this is

equivalent to maximizing P(f11, f12, , f2 274 To),
which will now be computed according to the indepen-

dence assumption mentioned earlier.

Pfl) l 2 .. ,f27 271IT,4

=Hf PjfT._1(k),T-1(1)}I

H [27rNpkl(l pkl)]-1/2
k, I

(fT2s(k)TS.1(l) Pk12
~exp 1/2

k,1N kll kl

Estimation of the Class-Pair and Letter-Pair Frequencies
It is possible to improve upon our rather crude esti-

mates of fij and pij by postulating a uniform a priori
density function for each pair. The improved estimators
may then be derived either by postulating a square-loss
function and minimizing the risk, or from the maximum-
likelihood formulation.11'll
The resulting correction is particularly helpful in the

case of rare bigrams. It tends to reduce the effect of the
introduction of anomalous rare bigrams through recog-
nition errors on the intermediate tape, and through
typographical errors in the 600 000-character "standard
text." For example, without the correction, a nonoccur-
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ring letter pair in the "standard text" would play havoc
in the denominator of the distance function unless the
corresponding frequency were also zero in the "test
text. "
The a posteriori estimates for the frequencies are

Let aji,j= 1, 2, . . ., 27, constitute a list of the sym-
bols of the alphabet in order of frequency of occurrence:

27 27

: Ph,j . E ph,j+1
h_l h=l

I Nij + I Mii + I
fii and pij' =

N+2 M+2

where Nij and Mij are the number of occurrences of pair
(i, j) in the test and the standard text, and N and M are
the total number of pairs in the two sets.
The corrected values are used throughout the evalua-

tion of the distance function F(T8), but the primes have
been suppressed to simplify notation.

The Sorting Algorithm

A precise description of the procedure used to find a
satisfactory mapping from the classes defined by the
clustering algorithm to the symbols of the alphabet is
somewhat tedious; therefore, a quick outline will be
offered for the sake of readers lacking in stamina and/or
deep-rooted interest.

First, both the classes and the letters of the alphabet
are sorted in order of frequency of occurrence. The
program then interchanges pairs of classes, starting
with pairs close together at the head of the list. An inter-
change is allowed to stand only if it contributes to a
decrease in the distance measure. Only bigram frequen-
cies involving classes (and letters) above the more fre-
quent member of the pair are included in the calculation
of the distance measure.
The net effect of this procedure is to expedite the

assignment of the most frequently occurring, hence
most easily identifiable, classes. Since the singlet fre-
quencies alone constitute a poor identifier for any but
the two or three most common letters, consideration of
all the bigrams at each step would have a disruptive
effect on the ordering. Once the more common charac-
ters have been identified, the bigrams in which they
occur are sufficient to sort the letters with less depend-
able distribution.
The final value of the distance measure provides a

reliable indication of the success of the whole procedure.
If the clustering was inadequate, or the categorization
very poor, or if the total number of samples is insuffi-
cient for the operation of the decoding algorithm, then
the distance figure will remain at a level several orders
of magnitude above its normal terminal value.

For a more formal statement of the algorithm, the
following definitions will be needed.

Let the classes on the intermediate tape be repre-
sented by the index i, i=1, 2, * * , 27. The blank,
recognized and tagged as such by the scanning circuitry,
is denoted by i = 1; the remaining numbers carry no
information about the identity of the class they repre-
sent.

Thus a, is the blank, a2 = e, 0X3 = t, and a27 = Z.
The series of one-to-one transformations (from i to j)

evaluated by the program are denoted by Tn. The initial
mapping, depending only on the marginal frequencies,
is:

27 27

Ti(i) =j, fh.Tl Ij_1) > E fhoi.
h=1 h=l

The rule for the formation of successive mappings by
exchanging the assignments corresponding to the pair
of entries k and I is:

Tn+1(i) = Tn(i) i $ k, i 5£ 1,
k < I

Tn+1(k) = Tn(k) if
Tn+1(l) = Tn(l)J

k Ifi k - pTn(i),Tn(k)]2

i=i pT,,(i),Tn (k)[1 - PTn(i),T(k)]
k-+ [fk - PTn(k),T,(i)l]

-- r
i=l PTn (k),Tn (i P1Tn (k) ,Tn Mr
k [fi,k - pTn(i),Tn(Z)]2

< E
i=1 pTn(i).*Tn()[1 - PTn(i),Tn(l)]
k-1 [fk, - PT,,(I),Tn (i)]2

i=l PTn (l)Tn (i) [i - PTn (I)Tnw(i)]

and

Tn+l(k)
Tn+1(I)

= Tn(l) } otherwise.
= Tn(k)}

Each possible interchange is tried by permuting the
indices as follows:

k(1) = 2

1(1) = 3

k( n+1)=k(n) } if 1(n)#27
l(n + 1) = I(n) + 1

k(n + 1)k(n)+ otherwise.
I(n + 1) = k(n) + 2

A sample of the behavior of the algorithm, listing the
successive mappings, is shown in Fig. 8.

It is possible, of course, to devise many other heuristic
algorithms for obtaining the best mapping. Several of
these have been tried on segments of a 100 000-charac-
ter keypunched text artificially scrambled by a separate
program. The chief merits of the final algorithm, com-
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Fig. 8. Successive mappings for script features. The leftmost column

represents the classes labeled in the previous stage; on the right
appear the alphabetic identities assigned on the basis of the

bigram frequencies. New mappings are entered whenever success-

ful exchanges take place; therefore, adjacent columns always
differ in exactly two entires.

pared to the others, are simplicity, ability to decipher

relatively short samples, and ease of implementation on

a digital computer (on the average, a 25 000-character

sample requires 150 seconds on an IBM 7094).

IV. ExPERIMENTS

The data used to test the foregoilng ideas were scanned

at the experimental character recognition facility of the

-IBM Watson Research Center. Before passing on to the

behavior of the algorithms and the performance levels

obtained, the salient features of this system, copiously

described elsewhere,[41, [14], [16], [20] will be summarized.

Data Acquisition

The conversion of the printed character to a 15 X24

binary matrix representing the black and white points

is performed by a cathode ray tube reflection scanner.

Careful optical design and electronic compensation cir-

cuitry ensure adequate positional linearity and signal-

to-noise ratio over an 8 by 10 inch area of the page.

Details of the scanning unit may be obtained from

earlier work. [4], [20]

The location of the text on the page, document

changes, separation of adjacent characters, threshold

and line width control, and the suppression of stray

noise bits are accomplished by an IBM 1401 computer

through a buffered interface.[161 Samples of digitalized

characters are shown in Fig. 9.

To achieve registration invariance and to reduce the

number of bits to be processed, the video bits from the

scanner are shifted through every position of a long

shift register. A set of 96 AND gates, each with five to

nine inputs, are wired to the shift register to set latches

whenever the geometrical configurations they represent

-have occurred anywhere on the character. [16]

SELECTRIC PRESTIGE ELITE

SELECTRIC SCRIPT

*43OTU RNE

*~~~LC MTHC RN PRAL

Fig.9. Scne hrces.Tepito h iptdcmnsi
trnfre no iaynmerb oprn teitniyothe lih elce rmvrosprt ftecaatrt heh

od Th*hehl sajse ro hrce ocaatrb
men* o frul aedo teno ia wit*o*hlns

**~AB E
E PRIENA*RSUT

The irs tw coumn reer o th nuberof ispace saplein theclustering~~~~~~~~~~~~~~ ~oprtoso h*30 hrcesofpiayiptTh hr ounreest*h lssfcto nte 000smls
whl th* orhclm nldsalerr ntetx as prntd* u

*feh eoepae

Percent Error Rates

Data Initial Merged Categorizer Decoder
Clusters Clusters Output Output

Prestige Elite 0 0 0.2 0.2
Script 0.2 0.2 2.0 2.0
Smith-Corona
ManualType- 1.6 9.7--
writer
IBM 1403
Printer 2.2 8.1 - -

Results

The principal results of the experiments are sum-

marized in Table I, where the successive columns repre-

sent the overall error rate at the end of each stage. Al-

though only four fonts were tested, they are sufficiently

diverse to span a considerable portion of the space of

impact-printed characters.

The first font, selectric prestige elite, is typical of com-

mercial typescript. The performance of the various

algorithms o'n this material is shown in Fig. 10. While

with prestige elite 32 classes almost suffice for correct
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I - . _ R rSClassification
32clusters 64 clusters 128 clusters after joining of complete

Majority
268

1111571 7798cluste r s text C rypt
I.D. f1 #2 #3 #1 #2 #3 #4 #5 #6 #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #1 #2 #3 #1 #2

A 2Z68 8111 157 1 34 77 98 59 1268 * 1653(145) 1653 (14S)
B 17 10 8 9 9 1 7 1 5 4 3 6 1 26 1 288 (1H) 288 (1H)
C 96 42 54 18 24 26 28 96 694 694
D 125 48 4(Iq 91 34 24 24 4 60 31 7 27 2 22 6 18 2 2 173 2 1063 (4Q) 1063 (IQ)
E 204 202 55 147 107 97 45 10 122 25 23 84 85 12 406 2816 2816
F B0 44 36 15 29 7 80 561 '561
G 34(lS) 34 14 20 34 261 (1 S) 261 (S)
H 100 71 69 31 47 24 37 32 16 15 24 23 12 12 140 1170 (lB) 1170 (1B)
1 169 77 92 49 28 74 18 169 1428 1428
J 5 2 3 1 1 2 1 3 1 1 41 * 7 41
K 29(1X) 29 16 13 29 154 154
L 113 59 54 30 29 20 34 113 757 (1I) 757 (1I)
M 78 30 48 21 9 26 22 78 444 444
N 83 137(1H) 26 57 97 40(1H) 38 39 58 12 45 25 1 2(1 H) 149(1H) 1581 (2H, 1Q) 1581 (2H, 1Q)
O 194 76 118 75 1 37 81 194 1524 1524
p ;17 14 18 10 7 8 6 10 8 5 5 2 5 7 1 3 3 6 4 3 5 39 1 390 390
Q 1 1 1* 22(10D) 22 (1OD)
R 178 155 123 25 30 35 88 I178* 1275 1275
S i99 71(1X) 1 32 67 71 1 16 16 13 54 58 13 170 1 1129 (4Z) 1129 (4Z)
T 340 118 222 53 65 82 140 340 2219 2219
U 47 25 22 22 3 17 5 47 427 (1Q) 427 (1Q)
V 1l9 (3X) 19 12 7 19 215 215
W |61 42 19 21 21 17 2 61 395 (1I) 395 (11)
X 1 1 3 1 1 .1 2 4 1 48(3Z) 48 (3Z)
Y 561 25 36 17 8 29 7 61 382 382
z (7J)

Fig. 10. Details of splitting and joining. This table shows the makeup of the various subclusters existing at each stage of the prccessing of
the prestige elite font. After the final joining the starred clusters were eliminated (losing the only q cluster). Many of the q's were still
recognized correctly, however, because of the similarity with the small cluster of d's. The z's, on the other hand, were completely m:s-
identified in the output text.

Identity of unknown sample

A B C D E F G H I S K L M N O P Q R S T U V W X Y z

1 3 1 3

1

1

199
671 1

1021 1
1 1 1 34

2 87
7

1 1

1
8

580
269
2 1128

1081 5
355

5

2
1

28 1

1

1

36
2 1 1 973
1 13 2 1 1 3

1
1

3 1 4 1
1

1 1

1

983 1
1453

6

2 1

418 Z
l

1

2 1

206 26 15
216
2 35 11

139
32 _

Fig. 11. Categorizer output for the script font. The true identities of the classified samples are listed on top, while the labels of the classes
derived by the clustering procedure appear on the left. Ideally, all the samples of the same identity would be uniquely assigned to a
single class. The underlined diagonal terms denote samples correctly identified by the cryptogram algorithm.

ME VAMES ADAMS hHO WAS INDICTED BUT NOT TRIED WITH THE DEFENDANTS TESTIFIED
TtIAT HE WAS WITH THE DEFENDANTS AND SCHWARTE AT THE CANDY STURE ON THE NIGHT
PALMER WAS MURDERED-THAT THES LEFT THE STORE ABOUTS M IN THE TWO CARS THE 0

LOSMUBILE LEADING ANO THE CHRYSLER FOLLOWING HE IDENTIFIED THE OCCUPANTSOF E

ACH CAR BUT DENIED IHAT HE HAD AGREED TO ASSAULT ANVllNE OR THAT SUCH AN AGRE
EMENT WAS MADE IN HIS PRESENCE BV AN ASSISTANT STATE S ATTORNEV AND FOUR DEF
ENSE COUNSEL HE TESTIFIED THAT ALL OF THE CODEFENDANTS WERE AT THE CANDV STO

Fig. 12. Final output of processor on the script font. The readability of the output on the relatively difficult script font is decreased, beyond
the mistakes introduced by the processor, by the absence of all punctuation, and the omission of italics, boldface, numerals, and other
symbols in the original (Fig. 1).
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clustering, even here the salvage of the "x" category
yields some indication of the value of extending the
preliminary clustering to 128 classes.

Script font represents an additional degree of dif-
ficulty. Here also the major portion of the final error
rate is introduced in the categorization stage, as shown
in Fig. 11. Because the n-tuples are less effective in
representing script characters, the Hamming distance
between the cluster centers derived from 3000 charac-
ters is less than in prestige elite, with a corresponding
increase in misclassified letters. The cryptogram pro-
gram is not, however, affected by these misclassifica-
tions, and makes the best possible assignment of the
output of the categorizer. The labels assigned to each
sample are printed out in the original sequence in
Fig. 12.
A major difficulty is presented by the y's, which are

distributed among four different classes by the cate-
gorizer (two of the groups also contain other identities).
The larger "pure" y cluster is eventually called "z,"
mainly by default.

In order to extend the technique to the limit, two
problem fonts were also tried. In the IBM 1403 chain
printer outputs, the D's and O's are barely distinguish-
able by eye, while in the elderly L. C. Smith (1920
vintage) typewriter at our disposal, most of the o's and
c's are completely filled in, and so are many of the a's
and s's. The initial clustering algorithm is able to re-
solve all the classes in both fonts, but the merging
algorithm is not yet sufficiently sophisticated to keep
them separate. Except for the pairs just mentioned, the
performance of the clustering algorithm seems ade-
quate in both fonts (1.6 percent and 0.7 percent error,
respectively). The cryptogram program could not, of
course, make any headway with either of these fonts,
since the basic objective of the program-to match the
two bigram tables-was clearly impossible.
The legal case histories used in these experiments are

particularly challenging to the crypt-algorithm even
without the occurrence of misclassification because of
the constant repetition of proper names containing un-
usual bigrams. Perhaps the severest test encountered so
far involves the case of Hocker of Rockland County and
his black Buick. Anomalies of this nature are the main
reason for the large number of samples necessary for
successful operation of the algorithm.

V. CONCLUSION

It has been shown that printed characters of several
typical fonts are sufficiently well separated in hyper-
space, at least in the binary feature representation, to
allow an automatic clustering scheme to separate them
into distinct clusters corresponding to the letters of the
alphabet. The preliminary cluster assignments, based
on a simple iteratively minimized distance criterion,
have been further refined by "splitting," "joining,"' and
"omit" routines.

The cluster centers obtained from a few thousand
characters of a segment of English text were used to
classify all of the characters of this text. The transition
probabilities of the classes were correlated against the
known letter-pair probabilities of the English language
in order to establish the correspondence between the
class identities and the members of the alphabet. This
was accomplished by an iterative algorithm minimizing
a distance function defined on the observed and ex-
pected bigram probabilities.
The experiments reported here cannot be construed

as a demonstration of a practical automatic reading
machine. Much remains to be done, for instance, in
coping with punctuation, nonalphabetic symbols such
as numerals and mathematical symbols, and inter-
mixed upper and lower case letters. The recognition of
cast font material has not even been attempted yet be-
cause of the difficulty of separating adjacent characters
even on high-quality print.

Present work is directed toward application of the
clustering procedure to the video space itself.2 Because
of the systematic correlations between certain video bits
due to misregistration, the simple distance measures
discussed here are inadequate to separate the most dif-
ficult classes. Alternatives here are to include sophis-
ticated and time-consuming registration routines, or to
transfer operations to a registration invariant domain,
by means, for example, of the autocorrelation trans-
form.

Further decreases in the sample size required for
faultless performance in the decoding phase could be
obtained by resorting to the devices advocated by text-
books on cryptography. '2] 1[21 Although consideration
of common words, suffixes and prefixes, etc., would re-
duce the generality of the program, for specific applica-
tions these more sophisticated methods of cryptoanal-
ysis would certainly be resorted to.
While the accuracy of the categorizer is not sufficient

for many purposes, one may already envision applica-
tions to the customary goals of character recognition
devices such as language translation and automatic in-
dexing and abstracting. One particularly promising area
is the "natural language" search program developed by
Magnino,t17' which is relatively insensitive to spelling
errors. Error-correcting procedures based on dictionary
look-up[7'] may further enhance the usefulness of the
categorizer.
The experience gained in developing a recognition

method independent of the particular geometrical con-
figuration of the characters in the text has also been
applied to other tasks. Portions of the clustering
algorithm were used to group Chinese characters,[8] to
design ternary references for a commercial multifont
reader, to derive Boolean recognition logic, and to
classify the entries, on the basis of a philological ques-

2 Note added in proof: this endeavor has proved to be successful
and will be reported.
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tionnaire, in a dictionary designed for automatic trans-
lation. The figure-of-merit from the cryptogram pro-
gram was applied to detecting errors in the output of a
conventional categorizer.

ACKNOWLEDGMENT

G. Shelton, Jr. first proposed the notion of linking a
clustering program to a cryptoanalysis program in an
attempt to make up a self-sufficient reading system.
His attention and advice since the inception of the
project have been a periodic source of encouragement
to us. L. Loh, who programmed the majority of the
clustering algorithms, also contributed many excellent
suggestions for their improvement. Mary Ellen Barrett
is responsible for the coding of the "Crypt" algorithm.
We are grateful to-C. Marr and A. Sebastiano for their
careful supervision of the data scanning process.
We also acknowledge, as a possible source of inspira-

tion, sundry peripatetic conversations on the subject of
clustering with our colleagues in the Systems Science
Group, with Rubin, Friedman, Bonner, and Abraham
of other IBM departments, and with Ball, Hall, and
Singleton of Stanford Research Institute.

REFERENCES
[1] C. Abraham, "Evaluation of clusters on the basis of random

graph theory," IBM Research Memo., November 1962.
[2] G. H. Ball, "Data analysis in the social sciences: What about

the details?," 1965 Fall Joint Computer Conf., A FIPS Proc., vol. 27,
pt. 1. Washington, D.C.: Spartan, 1965, pp. 533-559.

[3] G. H. Ball and D. J. Hall, " ISODATA, a novel method of data
analysis and pattern classification," Stanford Research Inst., Menlo
Park, Calif., Tech. Rept., April 1965.

[4] H. G. Baskin, R. Bakis, R. J. Potter, J. Reines, and G. Shelton,
"System description of a multifont page reading machine," IBM,
Yorktown Heights, N. Y., Rept. RC 1052, October 1963.

[51 R. E. Bonner, "A 'logical pattern' recognition program,"
IBM J. Research and Develop., vol. 6, pp 353-359 July 1962.

[61 --, "On some clustering techniques," IBM J. Research and
Develop., vol. 8, pp. 22-32, January 1964.

[71 G. Carlson, "Techniques for replacing characters that are
garbled on input," 1966 Spring Joint Computer Conf., A FIPS Proc.,
vol. 28. Washington, D.C.: Spartan, 1966, pp. 189-192.

[8] R. Casey and G. Nagy, "Recognition of printed Chinese char-
acters," IEEE Trans. Electronic Computers, vol. EC-15, pp. 91-101,
February 1966.

[9] D. B. Cooper and P. W. Cooper, "Nonsupervised adaptive sig-
nal detection and pattern recognition," Information and Control, vol.
7, pp. 416-444, September 1964.

[1O0 W. D. Fisher, "On grouping for maximum homogeneity," J.
Am. Statistical Assoc., vol. 53, pp. 789-798, December 1958.

[11] H. P. Friedman and J. Rubin, "On some invariant criteria for
grouping data," IBM, New York Scientific Center, N. Y., Tech.
Rept. 39 001, April 1966.

12] H. F. Gaines, Cryptanalysis. New York: Dover, 1956.
13] I. J. Good, The Estimation of Probabilities, Research Mono-

graph 30. Cambridge, Mass.: M.I.T. Press, 1965.
[141 L. A. Kamentsky and C. N. Liu, "Computer-automated

design of multifont print recognition logic," IBM J. Research and
Develop., vol. 7, pp. 2-14, January 1963.

[15] J. MacQueen, "Some methods for classification and analysis
of multivariate observations," Proc. 5th Berkeley Symp. on Probability
and Statistics, pp. 281-297, 1967.

[161 C. N. Liu and G. L. Shelton, Jr., "An experimental investiga-
tion of a mixed-font print recognition system," IEEE Trans. Elec-
tronic Computers, vol. EC-15, pp. 916-925, December 1966.

[17] J. J. Magnino, "CIS-a computerized normal text current
awareness technique," Industrial Electronics (London), vol. 4, pp.
269-273, June 1966.

[18] L. Ornstein, "Computer learning and the scientific method:
a proposed solution to the information theoretical problem of mean-
ing," J. Mount Sinai Hospital, vol. 32, pp. 437-494, July-August
1965.

[191 E. A. Poe, "The Gold Bug" (1843), in Poe's Best Tales. New
York: Random House, 1924.

[20] R. J. Potter, "An optical character scanner," J. Soc. Photo-
graphic Instrumentation Engineers, vol. 2, pp. 75-78, February-
March 1964.

[21] F. Pratt, Secret and Urgent. New York: Bobbs-Merrill, 1939.
[22] J. Rabinow, "Diverse reading machine," U. S. Patent 3 237

161, February 1966.
[23] D. J. Rogers and T. T. Tanimoto, "A computer program for

classifying plants," Science, vol. 132, pp. 1115-1118, October 21,
1960.

[24] J. H. Ward, Jr., "Hierarchical grouping to optimize an objec-
tive function," J. Am. Statistical Assoc., vol. 58, pp. 236-244, March
1963.

Short Notes.

More Efficient Use of the F Matrix in Practical
Circuit Analysis Programs

S. R. SEDORE

Abstract-This note defines a general F matrix that arises from a
tree that is formed according to a specific element priority. An alter-
native based on this matrix is presented to the usual method of
repeated matrix manipulation for arriving at the solutions of various
network quantities. The conditions required for this alternative and
its limitations are also presented.
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Index Terms-Automatic circuit analysis program, economy in
machine time, F matrix derivation, fundamental circuit matrix, funda-
mental cut set matrix, row and column processing in lieu of matrix
manipulation.

I. INTRODUCTION

A number of automatic circuit analysis programs have been de-
veloped that operate along the general lines given by Bashkow [1I
and expanded by Bryant [2 ]. The A matrix given in that paper per-
mits the matrix equation

Y = AY+BU+NO (1)
which summarizes the general transient problem in terms of the
state variable vector Y. Another matrix, however, comes into promi-
nence when the practical solution of (1) is to be implemented. This
matrix, called the F matrix [3] here, can be derived from two basic
matrices of incidence [4]. It may then be used together with basis
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