
Classification Algorithms 
in Pattern Recognition 

Abstracf-Linear and  nonlinear  methods of pattern classification 
which  have been  found  useful  in  laboratory  investigations of various 
recognition tasks  are reviewed. The  discussion  includes  correlation 
methods,  maximum  likelihood  formulations  with  independence or 
normality  assumptions, the minimax  Anderson-Bahadur formula, 
trainable  systems,  discriminant  analysis, optimal  quadratic  bound- 
aries,  tree  and chain  expansions of binary probability  density func- 
tions, and sequential  decision  schemes.The  area of applicability,  basic 
assumptions,  manner of derivation, and relative  computational com- 
plexity of each  algorithm are described.  Each  method is  illustrated 
by means of the  same two-class  two-dimensional  numerical  exam- 
ple. The “training  set” in this  example  comprises four samples  from 
either  class;  the  “test  set”  is  the  set of all points  in the normal  dis- 
tributions  characterized  by  the  sample  means  and  sample  covariance 
matrices of the  training  set.  Procedural difficulties stemming  from 
an insufficient number of samples,  various  violations of the  under- 
lying  statistical  models,  linear  nonseparability,  noninvertible  covari- 
ance  matrices,  multimodal  distributions,  and  other  experimental 
facts of l i e  are  touched on. 
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A 
INTRODUCTION 

LTHOUGH research in pattern recognition  has  not 
yet solved many of the  problems which  were 
thought  to  be  within  easy  reach  ten  years  ago, 

there  has been  sufficient  progress to  encourage  abandon- 
ment of ad hoc  design  techniques  in  some  practical 
applications.  This  survey  is  intended as a guide  to  some 
of the  more  commonly used classification  algorithms. 
Only  methods  where  the  parameters  are  automatically 
derived  from  identified  samples  are  considered. 

In  the  hope  that some  uniformity of viewpoint wiI1 be 
appreciated  by  workers  only  peripherally  involved in 
pattern recognition, the discussion will emphasize ge- 
ometric  concepts  wherever possible. Alternative  vocabu- 
lary  and  notation  may be drawn  from  statistical  deci- 
sion theory,  the logical algebra of switching  circuits, 
linear  programming,  set  theory,  communication  theory, 
and  nerve  net  studies.  Which  of  these  disciplines will 
contribute  most  to  the  eventual emergence of a cohesive 
theory of pattern recognition  remains to  be seen. 

The  primary goal  in designing a pattern classifier is to  
have  it  perform well (achieve  a  high  recognition rate) on 
new data.  When  the  training  data  are  truly  representa- 
tive of the  test  data,  and  when a very  large  number of 
training  patterns  are  available,  it  is  usually  argued  that 
i t  is sufficient to design the classifier to  perform  ade- 
quately on the  training  set.  In  practice,  the  training  set 
is always  too  small,  and  this  argument  is,  therefore, 
fallacious. 

With  some a priori  information  about  the  nature of 
the  underlying  probability  distributions, i t  is,  indeed, 
possible to  predict  from a limited  training set the per- 
formance on the  test set. In real  problems,  however, 
even  the  probability model must be  inferred  from  the 
training  set.  In  the  face of this  dilemma,  the  reader 
must  be  cautioned  that  it is possible to  overdesign the 
classifier by  tailoring  it  too closely to  the  training  set at 
the expense of performance on the  test  set.  Matching 
the design  method to  the  number of samples  available 
is not  easy,  but a simple  rule of thumb is that   the more 
complicated  the  method,  the  more  samples  are  required. 

In the following  discussion, the  i th  pattern will be 
treated as a column  vector %i; 3;’ is the  corresponding 
row vector.  The  components xij  of gi denote  individual 
observations:  the  energy  around 300 Hz in the  first 100 
milliseconds of an utterance,  whether  the lower  left- 
hand  corner of a character is black or  white,  the  tem- 
perature of a hospital  patient,  the  location of the  peak 
in an electrocardiogram.  In  some  problems,  the choice 
of observations is critical.  In  others, a natural  set of 
coordinates,  such as the  gray levels in the  matrix  repre- 
sentation of a photograph,  exists. 

One  important  distinction  between  pattern recogni- 
tion  and  other  related  disciplines,  such as automatic 
control  theory,  switching  theory,  and  statistical  hy- 
pothesis  testing, is the high  dimensionality of the  vectors 
3;. Were  it  not for the  fact  that zi typically  runs to 
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Fig. 1. A linear  categorizer. The normalized  weight  vector W and 
the normalized  threshold @ define  a  two-class  linear  categorizer. 
The  pattern % is assigned to class C' because its  projection 
G'%i on the normalized  weight  vector is greater  than 0. Any  pat- 
tern  on  the  same side of hyperplane H a s  %< would be  assigned to 
C'. 

hundreds of components,  with  hundreds,  thousands,  or 
even  millions  (as in the  bank  font  problem) of samples, 
we  could undertake  calculations  far  more  sophisticated 
than  those  discussed  in  this  paper. 

In  the  beginning, we will confine our  attention  to two- 
class  problems.  In  principle,  any  multiclass  problem  can 
be  treated as a number of two-class  problems  involving 
the  separation of each  class  from the  remainder of the 
universe, but  this  does  not,  as a rule,  lead to  the  most 
economical  solution. The  class will always  be  denoted 
by a superscript. 

All of the  categorization  methods  where  the  coin- 
ponents of the  pattern  vector  are  not  limited  to  binary 
numbers will be  illustrated  by  means of the  same  two- 
dimensional  example. In  this  example,  there  are  eight 
patterns in the  training  set,  four  from  each  class. 

Fig. 2. Common types of linear  categorizers. The x's and  the 0's 
indicate  the  training samples in  Classes C' and C2, respectively. 
The ellipses are  the  equiprobability  contours on the  postulated 

hyperplanes and weight  vectors  pertain to the following  cate- 
distributions in the  test  data.  The  subscripts associated  with the 

gorlzers: 1) distance  to  means; 2) correlation; 3 )  approximate 
maximum  likelihood; 4) Anderson-Bahadur; 5) discriminant 
analysis; 6) approximate  discriminant  analysis; 7) trainable 
machine; 8) optilnal  quadratic  boundary. 

$1 3 2  z3 3 4  
with  the  above  parameters,  are  shown  in  Fig. 2. 

L I N E a R  CLASSIFICATION 

In  order  to  compare  the  performance of the  various 
methods,  it  is  assumed  that  these  samples  originate  from 
multivariate  normal  (or  Gaussian)  populations  with 
means p k  equal  to  the  sample  means,  and  covariance 
matrices Ak  equal  to  the  sample  covariance  matrices: 

The  samples,  and  the elliptical  equiprobability  con- 
tours of the  normal  density  functions 

A linear  categorizer  assigns  an  unknown  pattern zi 
to class C1 if 2: ' z# 2 0 ,  and  to class C2 otherwise. The  
coefficients wj of are  proportional  to  the  components 
of a vector  (through  the  origin)  onto  which  the  patterns 
are  projected.  In  the  two-dimensional  example in Fig. 1, 
all the  points  which  are  to  the  right of the  dotted 
straight  line  perpendicular  to  the  vector 

Wl 

( A 2  + w22 .\/w12 w 2  f w22 ) 
at a  distance O/z/w,z+w22 from  the  origin  are  assigned 
to  class C1. 

When xi has  more  than  two  components,  it is still 
projected  onto  the  vector @, but now a hyperplane, 
rather  than a line,  separates  the classes. The  vector a 
is  traditionally  referred  to  as  the  weight  vector,  because 
its  components  represent  the  relative  importance of each 
observation  in  deciding  the  class  assignment. 
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TABLE I 
COMPARISON OF DECISION METHODS 

Parameters 
7 0  Error  Rate 
on  Test  Data No. in 

Fig. 2 Method Unnormalized  Normalized 
- 
W 6 

-4.00 -6.00  -0.89  -1.34 
2 .oo 0.45 

Average 

1 1 Distance  from 
means 11.5 I 3.8 7.7 

- 1 .oo -0.71 I 0.00 
1 .oo 0.71 22 .7  I 3.7 13.2 2 I Dot product  with 

normalized  means 

-2.00 1 -3.50 1 -0.96 1 -1.70 
0.50  0.24 

6.5 3 Approximate 
maximum 
likelihood 

4 Anderson- I Bahadur 
- 2 . 2 7  1 -5.20 I -::I! 1 -2.26 

.50 5.9 I 5 .9 5.9 

-4.00 -9.15  -0.97 -2 .21  
1.00 1 0.24 1 6.3  1 6.3 6.3 Discriminant 

analysis 

-1.28  -3.10  -0.79  -1.21 
1.00 1 0.61 1 12.1 6 Approximate 

analysis 
discriminant 

1 machine 
-3.89 

3  .85 
-4.00  -0.72 -0.73 1 0.70 

12.5 ‘ 9.2 10.8 

-5.6 Optimum  quad- 
ratic  boundary 

The weights wi and  the  threshold 8 may  be  multiplied 
by  any  constant  without a change in the  resulting classi- 
fication. I t  is customary  to  normalize  the  weight  vector 
to  unit  length,  as  shown. 

In  the  two-dimensional  example we propose to  dis- 
cuss, the  test  set is assumed  to  consist of an infinite 
number of patterns  with  known  Gaussian  distributions. 
The  error  for  any  linear  categorizer  would  be  computed 
by  projecting  these  distributions  onto  the  weight  vector. 
The  projected  one-dimensional  distributions  are also 
Gaussian,  with  means w r p k  and  variances ziYAk@. The 
error  rate  can  be  readily  found  from a table of cumula- 
tive  Gaussian  probabilities: 

Boundaries of arbitrary  complexity  may  be  approxi- 
mated  by  the  resultant  profusion of hyperplanes.[111,[351 

CORRELATION 
The  simplest  method  to  compute  the  parameters of 

the  linear  categorizer is to  let a = 3-? ,  where 8 and 
C2 represent  “typical”  members of the  two classes. 
Customarily, 6’ is set  equal  to p l ,  the  centroid of class 
C’, and 6 = p2,  the  centroid of C2. Thus, 

-& = pl - P 2  

e = +(pi - p2)’(pl+ ~ 2 ) .  J 

and I (1) 

The  resulting  hyperplane is HI in Fig. 2. When  it is 
felt  that  the  magnitude of the  feature  vectors  matters 
less than  their  orientation, @ is set  equal  to 

P l  P2 
I P’I I P21 ’ 

with a threshold of 0. This  is  hyperplane HZ in Fig. 2. 
Such  a decision procedure  would  be useful, for  example, 
in classifying  sustained  sounds,  where  the  overall  in- 
tensity  depends  only  on  the  distance  from  the  micro- 
phone,  and  the  sound is fully  characterized  by  the  rela- 
tive  intensities of the  various  frequencies. 

The correlation  method is often  used  on  binary data ,  
where it is sometimes  referred  to as mask  or  template 
matching.  For  computational efficiency, the  number of 
mismatching,  rather  than  matching,  bit  positions is 
usually  computed,  and  the  calculation is truncated 
when  this  reaches a preset  threshold.  The use of additive 

where 

The weight  vectors,  hyperplanes,  and  other decision 
boundaries  obtained  by  the  various  categorization pro- 
cedures  about  to  be  described  are  shown in Fig. 2. The 
computed  error  rates,  which  appear  in  Table  I,  should 
be  considered  only  as  numerical  illustrations of the 
formulas. In  a real  problem,  additional  errors  would  re- 
sult  from  imperfect  estimates of the  population  parame- 
ters. 

Piecewise  linear  categorizers  simply  contain  more 
than  one  weight  vector  to  characterize a class  pair. 
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and  multiplicative  constants in normalization  sometimes 
results  in  startling  changes in performance. 

Theoretically,  the  correlation  methods  can  be  shown 
to be optimal  only  under  certain  very  restrictive  sym- 
metry  conditions on the  distributions. 

&~AXIMUiV LIKELIHOOD 
The  application of the  maximum  likelihood  principle 

to  pattern classification  makes use of Bayes'  formula for 
conditional  probabilities  to shoiv that  in  order  to  deter- 
mine  the  greater of PICII and P[C21 xi], i t  is suffi- 
cient  to  compare P[2; /  C1] and P [X;] C2] (for  equal  a 
priori  probabilities on the classes). The  determination 
of the  conditional  probability of the  pattern  vector, 
given the class, leads to a  linear  expression  in  the  com- 
ponents of t h e  pattern  vector  under  several  assumptions. 

When  the  components xij  are  statistically  indepen- 
dent of one  another, 

P[2 i  [ C k ]  = P[Xij [ CAI. 
7 

Geometrically,  this  condition  corresponds  to  having  the 
principal  axes of the  two  distributions  parallel  to  the 
coordinate axes. If, in addition,  the xi j ' s  are  binary, it 
can be shown[291 that  

PIC1 [ ~ i ]  2 P[C2 I ~ i ]  if and only if 2.i'.6 2 8, 

where 
P[Xij = 1 [ C1]P[Xij = 0 [ cq 
P[Xij = 1 I C2]P[Xij = 0 I cq wj = I n  

and 1 

Despite  the  fact  that  the  independence  assumption is 
very  seldom  satisfied  in  practice,  this decision method 
has been  widely  used in cases  where the high  dimen- 
sionality of the  pattern  vectors precludes  more  compli- 
cated  calculations.  Let us compute  the  parameters  and 
the  error rate using  this  scheme  in  another  two-dimen- 
sional  example  (where  the  patterns  are  restricted  to 
binary  components). 

Class Pattern Number of Patterns 
in Training  Sample 

C' (0, 0) 60 
(1, 1) 40 

C2 (1, 0 )  30 
(0, 1) 70 

The  probabilities needed to  estimate  the  components 
of the weight  vector  and  the  threshold  are  readily 
calculated : 

P [ ~ i l  = 1 I Cl] = 0.4, P[x~Z = 11 C1] = 0.4, 

P[Xil = 11 C2] = 0.3, P [ ~ i 2  = 11 C2] = 0.7. 

The  weight  vector  and  the  resulting  hyperplane  calcu- 
lated  from (2) are shown on Fig. 3.  Since  the  inde- 

Fig. 3. Categorizers  for  binary  patterns.  Class 1 is indicated  by 
circles, Class 2 by crosses. The size of the symbols is proportional 
to  the postulated  probability  density  distribution. H I  is the 
hyperplane  calculated  from (2); i t  is not as good as H2, which 
could be  obtained  by  inspection  because of the low dimensionality 

HI is (0.441,  -1.25), with a threshold of -0.41. 
of the problem. The unnormalized  weight vector  corresponding to 

pendence  assumption  is  clearly  violated, we need not be 
surprised  that  the 0.35 error  rate  obtained  with  this 
plane on the  training  sample is higher than  that ob- 
tained  with  other  planes.  The  plane  shown in dotted 
lines on Fig. 3, for  example,  yields  only 1.5 percent 
errors.  With a nonlinear  scheme, we could separate  the 
classes without  error,  since  there is no  overlap  between 
the  distributions. 

With a finite number of samples  in  the  training  set, 
i t  may  happen  that a numerator  or a denominator in 
(2) vanishes. T o  avoid  this  problem,  there is some  the- 
oretical  justification  for  estimating P [xij = 1 [ C k ]  by 
means of ( M j k + + ) / ( N k + 2 ) ,  instead  of iMjk/Nk as above, 
where Mjk is the  number of samples  in class k with  j th 
component  equal  to 1, and Nk is the  total  number of 
samples  in  class k.[l51 

Another  instance  where  the  maximum likelihood 
classifier is linear is in the  case of normal  distributions 
with  identical  covariance  matrices. The form of the dis- 
tributions  is  again 

where  the  elements of the  matrix A are  the  same which- 
ever class H is used to  derive  them. 

A = E[(Z - p k ) ( 2  - pk)'] 

and 
p'; = g.1. 

The  assumption of equal  covariances  is  reasonable, 
for  example,  in  digitized  photographs,  where  the  adja- 
cent cells are likely to  be positively  correlated  regardless 
of class,  because the  gray scale  seldom  contains  rapid 
transitions. 

In comparing  the  ratio of the  probability  distribution 
functions  to 1, the  exponents  subtract  and  the second- 
order  terms  in  the  pattern  components cancel. In the 
resulting  linear  expression, 

w = (pl - p2)'A-1 

and (3)  
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To  apply  this  method  to  our  example, we shall  ap- 
proximate A by  the  mean of the  covariance  matrices 
for the  two classes. Thus, 

The  resulting  hyperplane is H3 in Fig. 2. 
If the  distributions  are  spherical,  the  covariance 

matrix is proportional  to  the  identity  matrix,  and  the 
weight  vector  corresponds  to  the difference of the cen- 
troids,  as in simple  correlation. 

When  the  number of samples  in  the  training  set is 
small  compared  to  the  dimensionality of the  pattern 
vectors,  the  covariance  matrix  may  be  singular.  With- 
out  the  inverse,  it is necessary  either  to  guess  the  values 
of the  variance in the missing  directions,  or  to  confine 
the  solution  weight  vector  to  the  subspace  actually 
spanned  by  the  training set.[311~[331 

MINIMAX  DECISION  RULE-THE  ANDERSON- 
BAHADUR FORMULA 

With  normal  distribution  functions  characterized  by 
unequal  covariance  matrices,  the  maximum likelihood 
boundary is nonlinear.  Instead,  the  minimax  criterion, 
which  equalizes  the  probabilities of the  two  kinds of 
errors (for equal a priori  probabilities), is  used. 

The following  implicit  equation for the  weight  vector 
w has  been  derived  by  Anderson  and  Bahadur:[ll 

where 

pk = mean of class k, and 
Ak=covariance  matrix of class K .  

Equation (4) can be solved  with  conventional  itera- 
tive  methods,  using  matrix  inversion.  When  the  dimen- 
sionality is high,  it is desirable  to  avoid  matrix  inversion 
with  the  method of conjugate  gradients,  which is guar- 
anteed  to  converge  in, at most, a number of steps  equal 
to  the 

The  probability of  classification errors  with  the  opti- 
mum  threshold  can  be  computed in terms of the  weight 
vector 

(@j’~l~)l/Z(w’A2~)1/2 
P(error) = 1 - 4 1 

DISCRIMINANT ANALYSIS 
When  the  form of the  probability  density  functions 

governing  the  distribution of the  pattern  vectors is not 
known at all, the  minimum-error  hyperplane  cannot  be 
specified analytically.  In  this  case,  it  seems  intuitively 
desirable  to find at least  the  direction in which the  pro- 
jections of the  samples of each class fall as  far  as possible 
from  those of the  other class, but  the  internal  scatter of 
each class is minimized.  This is the  object of discrim- 
inant  analysis. [321 

More  formally, n7e wish to maximize 

(@.Zi - a.zj)’(@.zi - w.2.) 
ZiECl 
5jECZ 

subject  to  the  constraint 

3 9  

(a .  zi - . Z j ) ’ ( @ .  zi - a .  Z j )  
ZiECl 
rnjECl 

+ (wazi - w.zi)’(a+gi - aezj) = Constant. 
diEC2 
5j€C2 

I t  can be shown,  by  using  Lagrange  multipliers,  that 
the  vector  which fulfills these  conditions is the eigen- 
vector  associated  with  the  largest  eigenvalue X of 

(BA-’ - X1)a = 0 (5) 

where A is the  intraclass  sample  scatter  matrix, 

A = (ai - pl)($-. 1. - !.4 -1 ) ’ + c (3i - P2)(% - $2)’ 

ZiEC1 BiECZ 

and B is the  interclass  sample  scatter  matrix, 

F’ + P2 
2 2 

The solution  vector  w=A-l(p1-p2) is identical  to 
the  approximation we used to  the maximum likelihood 
solution in (3), but  explicit use of the  individual  covari- 
ance  matrices  to  equalize  the  two  types of errors  leads 
to a better choice of threshold.  The  hyperplane,  ob- 
tained  by  determining  the  value of 0 for  which 

4[ e - a’p1 1 and ~ [ w’pl - e 1 
(a’Ala)l/Z (@J’A2a)l/z 

are  equal, is Hs in  Fig. 2. 
Another possible approximation  consists of replacing 

the  intraclass  scatter  matrix A in (5) by the  identity 
matrix.  This  corresponds  to  maximizing  the  scatter of 
the  projected  points in the  two classes  pooled together, 
and is also  equivalent  to  principal  components  analysis. 
This  hyperplane,  with  0=$@’(p1+p2), is Hs in Fig. 2. 

where TRAINABLE CATEGORIZERS 

1 y  In applying  the  statistical  algorithms of the  preceding 
+(y) = -J e-(’/2)”2dy. 

d2a  --m 
sections, all of the  patterns in the  training  set  were  con- 
sidered  simultaneously  to  compute  the  weight  vector. 

The  Anderson-Bahadur  hyperplane is H4 in Fig. 2. In a trainable  categorizer,  however,  the  patterns  are 
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TABLE I1 
TRAINING A CATEGORIZER 

Step 

1 

3 
2 

4 
5 
6 
7 
8 
9 

10 
11 

13 
12 

14 
15 
16 
17 
18 

20 
19 

21 

27 
28 
29 

31 
30 

32 
33 
34 
35 
36 
31 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 

- I  i_ m a  e 

0.00 
-14.67 
- 1.66 

18.31 
- 6.46 

12.14 
5.96 

2.01 
17.31 

- 4.77 
0.72 

22.16 

13.93 
14.28 

13.30 
6.03 

3.78 
0.06 

17.02 

13.27 
0.34 

22.97 

-11.92 

- 0.92 

- 1.32 

- 1.32 
- 0.25 

28.88 
-14.38 

21.62 
20.10 

15.94 
9.41 

8.58 
0.78 

23.74 

8.08 
19.09 
2.06 

26.60 

1.46 
27.59 

15.99 
21.23 
6.08 

- 3.38 

- 7.88 

- 8.83 

22.60 
0.66 
0.80 

22.46 

15.99 
2.17 

21.23 
6.08 

0.00 

-4.00 
-4.00 

-4.00 
-1.55 
-1.55 
-1.55 

-1.55 
-1.55 

-5.55 
-5.55 
-5 .55 
-3.10 
-3.10 
-3.10 
-3.10 
-3.10 

-3.10 
-3.10 

-3.10 
-0.65 
-0.65 
-0.65 
-3.24 
-3.24 
-7.24 
-7.24 
-7.24 
-4.79 

-4.79 
-4.79 

-4.79 
-4.79 

-4.79 
-4.79 
-4.79 
-2.34 
-2.34 
-2.34 
-2.34 
-2.34 
-6.34 
-6.34 
-6.34 
-3.89 
-3.89 
-3.89 

-3.89 
-3.89 

-3.89 
-3.89 
-3.89 
-3.89 
-3.89 
-3.89 
-3.89 

4.83 
2 .oo 
1.17 
1.17 
3.17 
3.17 
3.17 
3.17 
3.17 

0.34 
0.34 

0.34 
2.34 
2.34 
2.34 
2.34 
2.34 
2.34 
2.34 
2.34 
4.34 
4.34 
4.34 
4.34 
4.34 
1.51 
0.68 
0.68 
2.68 
2.68 
2.68 
2.68 
2.68 
2.68 
2.68 
2.68 
4.68 
4.68 
4.68 
4.68 
4.68 
1.85 
1.85 

3.85 
1.85 

3.85 
3.85 
3.85 
3.85 
3.85 
3 .85 
3.85 
3.85 
3.85 
3.85 
3.85 

e 

-1 .00 
-0.00 
- 1 .oo 
- 1  .00 
-2.00 
-2.00 
-2 .00 
-2.00 
-2.00 
- 1 .oo 
-1.00 
- 1 .oo 
-2.00 
-2.00 
-2.00 
-2.00 
-2.00 
-2.00 
-2.00 
-2.00 
-3.00 
-3.00 
-3.00 
- 2 , O O  
-2.00 
-1.00 
-2.00 
-2.00 
-3.00 
-3 .OO 
-3.00 
-3.00 
-3 .OO 
-3.00 
-3.00 
-3.00 
-4.00 

-4.00 
-4.00 

-4.00 
-4.00 
-3.00 
-3  .00 

-4.00 
-3 .OO 

-4.00 
-4.00 
-4.00 
-4.00 
-4.00 
-4.00 
-4.00 
-4.00, 
-4.00 
-4.00 
-4.00 

Increment? 

* 
* 
* 

* 

* 

* 

* 
* 
* 
* 

* 

* 

* 

3 4 = (  ) -2.45 

2 .00 

CLASS c2: 
4.00 

2.83 

-26 =( ) 4.00 

-2.83 

5.41 

0.00 
- 3 7  = ( ) 

0.00 

been multiplied by - 1  to simplify the 
Note:  The X,’s in class C2 have 

computation by requiring a positive 
response for  every  pattern. 

presented  one a t  a time,  and  the  weight  vector is N patterns  available,  thejth  step involves the  ith  pat- 
changed  incrementally  throughout  the process. This  tern,  where i=j  modulo N .  The weights  change  accord- 
mode of operation offers some  advantage in implement-  ing to  
ing  the  algorithm in hardware,  but  the final error  rates 
achievable  by  the  two  approaches  appear  to  be  sub- “jtl = Gjj + %? if dj%j < 6 and xj E C‘ 

stantially-  the  same. = w j  - % j  if z i l j % j  >_ 6 and % j  E C2 
There  are  many  algorithms  which  guarantee  conver- 

gence to  the  optimal  weight  vector  under  various  condi- 
tions.[301 One of the  earliest  for  which a bound  on  the  The  weight  vector is changed  only  after a pattern  has 
maximum  number of steps  required  was  obtained is the been  misidentified. The initial  vector w0 may be the 
error  correcting  algorithm of perceptron fame.[371 Here, null  vector,  or,  better, a coarse  approximation  such  as 
all the  patterns in the  training  set  are  presented in se-  may  be  obtained  with (1). The  threshold  may  be  de- 
quence; when the  training  set is exhausted,  the  patterns  rived  by  extending  the  dimensionality of the  pattern 
are  presented  again  in  the  same  order.  Thus, if there  are  space  by  one,  and  setting  the  corresponding  component 
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of all the  patterns  equal  to 1. The  weight associated 
with  this  component is the  required  threshold. 

The  manner of  convergence  of the  algorithm is shown 
on the two-dimensional  problem  in Table 11. The  final 
weight  vector is H7 in Fig. 2. 

Since  1957,  when a proof for  the convergence of this 
algorithm  was  outlined  by  Rosenblatt, at least six or 
seven  more  or less independent  proofs  have  been  ad- 
vanced.  One  derivation,  and  the  corresponding  bound 
on the  number of steps,  is  given  by  in  terms 
of the  pattern  matrix B. The  ith  column of B is 3; if zi 
belongs to  C1, and --?i if i t  belongs to C2. 

The  theorem  states  that if 3 @ 3 B t . a > 0 ,  then 

This  means  that if the  categorization  problem  does 
have a linear  solution,  an  incremental  adaptation  pro- 
cedure will find i t  in a finite  number of steps.  The sim- 
ilarity  to  the  achievement of feasible  solutions in linear 
programming  has  been  repeatedly  pointed o ~ t . [ 3 ~ 1 , [ ~ ~ ]  

Unfortunately,  the  upper  bounds  given in the  litera- 
ture  for  the  number of adjustments  needed, all require 
that  at least  one  solution  to  the  problem be  known  before 
the  length of the  training  sequence  can be estimated.  In 
the  example in Table 11, the  bound  calculated  from (7)  
is 284 steps,  whereas  convergence is actually  reached in 
45 steps. 

Variations  of  the  theorem  deal  with  the  effects of 
varying  the  order of presentation of the  training  pat- 
terns, of changing  the  total  amount  added  to  the  weights 
depending on how  close the response  was to  being  right, 
of requiring a dead-zone  between  the  pattern  classes, 

for  example,  has  proved that  the  funda- 
mental  convergence  theorem  holds  even if the  number of 
levels in each  adaptive  link is finite, i.e., if the  storage 
elements  are  saturable.  has  a  similar  demonstra- 
tion  for  the  case of nonuniform  adaptation. 

Perturbations in the final values of individual  weights 
introduce  errors. HoffIZ0J has  shown  that  the  expected 
probability of errors, on patterns  with  a uniform  dis- 
tribution of ones and zeros,  is  roughly 

and of imperfect components.r161,[191-[221 ~ 1 ~ ~ 1 ~ [ 2 ~ 1 t 1 ~ 4 1  

where 6 is the  average  drift in the  weights, a is the solu- 
tion  weight  vector  (before  drifting),  and n is the  num- 
ber of weights. 

The convergence  theorem,  with  all  its  variants  and 
corollaries,  applies  only if a  solution  exists. I t  is not 
difficult  to  show  that  solutions  exist if and  only if there 
are  no  linear  dependencies  between  input  patterns,  con- 
sidered as vectors,  in  opposite classes. In other  words, 

conflicts of the  type seen  in the  example  in  Fig. 3 must 
not arise. 

I t  is no  trivial  matter,  however,  to  look at several 
thousand 100- or 500-dimensional  vectors,  and  spot  the 
linear  dependencies. A number  of  procedures,  some of 
which take  advantage of the  statistical  distribution of 
ones and zeros  in the  input  vectors,  have been  devised 
to  carry  out  this  operation,  but  the  most  common 
method  for  finding  out if a problem  is  linearly  separable 
is to  simulate  the  linear  categorizer on a  computer  and 
try  to  teach  it  the  required classification.~14~~~391~[401 If, 
after  many  presentations of the  pattern, i t  has  not been 
learned,  then  it is assumed  that  unwanted  linear  de- 
pendencies do occur.  Several  adapters  have  noticed  the 
oscillatory  behavior  of  the  weight  vector  when  presented 
with an insoluable task;  this  symptom of frustration 
provides a valuable  clue as to when to  stop  train- 

I t  would  be comforting  to know that, if the  problem 
is not  completely  solvable,  the  weights  converge  to  the 
values  guaranteeing a minimum  number of mistakes 
among  the  training  samples.  This,  however, is not neces- 
sarily  the  case;  the  algorithm  can  be  stranded on a local 
optimum. 

Chowr71 points  out  that  the  assumptions  leading  to  the 
procedures specified by (2) and (6), statistical  indepen- 
dence  and  linear  separability,  are  mutually  contradictory 
for binary  patterns,  except in trivial  instances. T o  cir- 
cumvent  this difficulty,  several  gradient  methods, which 
cover  the  gamut between the  “little  at  a  time”  and  the 
“all a t  once”  approaches,  have been ,[l71 ‘ [2s1 

NONLINEAR  CATEGORIZERS 

ing. I121 I 1231, I341 

With  the  exception of a few special  distributions, 
very  little is known about  approximating  the  optimum 
nonlinear  boundaries  in  classification  problems  involv- 
ing  pattern  vectors  with  numerical  (as  opposed  to 
binary)  correlated  components.  For  Gaussian  distribu- 
tions, the  optimal  separating  surface is easily  shown to 
be a  hyperquadric, specified by  the following equa- 
tions:[91 

(2 - p1)’A1-’(2 - p’) + log det A1 

= (3  - p2)’A2-’(z - p 2 )  + log det A 2  (8) 

where A k  is the  covariance  matrix of class k and p k  is 
the  mean  vector  of  class k. This  boundary is shown as 
Hg in Fig. 2 for  the  distributions used to  illustrate  the 
linear  methods. 

In addition  to  Gaussian  distributions,  the  hyper- 
quadric is optimal  for  Pearson  distributions  type  I1  and 
type  VII;  these cases  have  also been fully  analyzed  by 
Cooper. The  equations  for  the  separating  surface  for  a 
pair of parametric  distributions  can, of course,  always 
be obtained  by  setting  the  difference of the  density 
functions  equal  to zero, but since,  in a practical  situa- 
tion,  the  difficulty  usually lies in  estimating  the  pa- 
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rameters  from  the  samples,  this is really  begging the 
problem. 

In  an  n-dimensional  binary  classification  task,  every 
vertex of the  n-dimensional  hypercube  represents a 
possible pattern.  Thus,  the  general  solution  requires 
2” values  for  complete  specification,  as  opposed  to  the 
n values for the  linear  separation.  In  practice,  even  the 
n2 values  required  by  considering all of the  components 
pairwise without  additional  simplifying  assumptions 
represents  too  much of a burden  for  implementation  or 
simulation. 

The  probability  distributions we must  compare in 
order  to  decide  the  class  assignment  can  be  written as 
product  expansions.  In  the  following  expressions,  the 
single subscript refers to  the  components of the  pattern 
vector: 

P(al CA) = P ( x J  Ck)P(X2)  2 1 ,  C k )  . * * 

P(,j I Xj-1, xj-2, * . . , x1, C k )  . . . . 
Each  variable is conditioned  upon all the  variables 
appearing in the  preceding  factors.  The  product  can  be 
rewritten  as  a  sum of weighted  terms  by  taking  loga- 
rithms  and assigning  a  weight  component to  every pos- 
sible  sequence of ones  and  zeros in the  partial  pattern 
vector in each  term.  Thus, 

In P(Z I = wlx1+ w2(1 - xl) + w3x]xZ + wd(1 - x1)xZ 

+ W&(1 - x2) + wg(1 - x1)(1 - x2) . . * . 

The  customary  procedure is to  neglect  all  but  the 
second-order  terms  (each  component  conditioned on 
only  one  other  component),  and  to  select  even  among 
these  only  the  most  important  pairs.  In  some  cases, a 
natural  ordering is available.  For  example, if the  pattern 
is the  binary  matrix  representation of a character, it is 
reasonable  to  let  each xij  depend  only  on  its  “nearest 
neighbors.”I61  If,  however, the  binary  components  repre- 
sent  the  results of arbitrary  measurements  upon  the 
patterns,  then  a  natural  ordering is not  available,  and 
the  most  important  pairs  must  be  found  by  heuristic 
methods.  “Chain”  and  “tree”  representations  based on 
performance  criteria  have  been  advocated  by Chow.r81 
,4n alternative is to  let a trainable  machine  adapt  its 
weights on inputs  representing  every  pair  in all four 
possible  combinations,  and to  select the  pairs  with  the 
largest  weights  for  ultimate use. 

A simple  illustration  of.the effect of correlation  among 
the  pattern  components is given in Fig. 4. Here,  two 
patterns differ  from a  third  by  the  same  number of bits, 
but in one  case  the  mismatching  locations  appear  to  be 
highly  correlated, while in the  other  they  are  inde- 
pendently  distributed. 

The selection of correlated  points in a  pattern is 
closely related  to  the  problem of measurement  design 
or  feature  extraction,  which is outside  the  scope of this 
paper. 

X X X X X  x x  x x x x  
x x   x x  x x  

X 
X x x   x x  

x x x x  x x x x  x x x x x  x x % X  
X 
x x  

x x  
Y Y  

x x   x x  
x x  X x x  

X X  
X 

x 
X X 

X x x  X 
X X  
X x x  x x  x x   x x  

x x x x x x  
x x x x  

.. ~ 

X X  

X X X X X X  x x x x x x  
x x x  - x x x x  

Fig. 4. Correlations  in  binary  patterns. The center  pattern, which 

outside  patterns  (“templates”)  by 9 bit positions. The effect of 
may be  considered the  “unknown,” differs  from  each of the 

the  correlations  among  the  mismatch  bits  must  thus  be  taken 
into  account  for  correct  identification.  Although  this is an  arti- 
ficially constructed  example,  instances of such  neighborhood 
correlations  frequently  occur in practice. 

MULTICLASS PROBLEMS AND  SEQUENTIAL DECISIONS 
With m pattern classes, the  number of discriminants 

(hyperplanes or other  surfaces)  necessary  to  separate 
the means of the classes may  vary from logzm to m - 1, 
depending  on  the  location of the  means.  Fig. 5 gives 
examples of both  extremes. 

In general,  the  classes  must  be  assigned to  discrimi- 
nants before the  parameters  characterizing  the dis- 
criminants  are  determined  from  the  training  set.  Let a 
“one”  be  associated  with  the  positive  side of each  surface 
(as  with  the  hyperplanes),  and  a  “zero”  with  the  nega- 
tive  side.  Then,  each  sample is characterized  by a string 
of ones  and  zeros,  the  code  for  that  sample. 

Even  when all m discriminants  are  used  for  an m- 
class  problem,  the  natural  code of 1-out-of-m  may  not 
be the  best. I t  is sometimes  argued that a maximum  dis- 
tance code,  where  each  discriminant  attempts  to  sep- 
arate  several  pairs of classes,  would  be  superior. The  
question is which  classes to  lump  together  for  each  dis- 
criminant. In character  recognition,  for  example, O’s, 
C‘s, D’s, G’s, and Q’s are occasionally  assigned to  a 
single  hyperplane,  with  subsequent  separation  by  more 
detailed  criteria.  Kiessling  has  proposed  several  heu- 
ristics  which  bear  on  the  problem.[31~[241 

Once we consider  coding  the  classes in this  manner, 
we necessarily  introduce  another level in the decision 
process,  and  the  distinction  between  “categorization” 
and  “feature  extraction”  begins  to  blur.  There  also 
appears  the possibility of sequential  decision,  where 
whether we look a t   the  result of another  measurement, 
and which other  measurement,  depends  on  the  outcome 
of the  previous  measurements. 

Fu ,  Chen,  and Chien[51*[131 have  examined  in  detail  the 
economies in computation  which  may  be realized 
through  the  application  of  sequential  decision  models 
in pattern recognition. The  strategy is simple;  the  next 
measurement  chosen  is  always  the  one  which  gives  the 
most  information  about  the  class  pair  with  the  highest 
residual  probability of error. The  interrogation of mea- 
surements is halted  when  the  estimated  error  probabil- 
ity  reaches a preset  threshold,  or  when all the  measure- 
ments in a  particular  branch of the decision tree  are ex- 
hausted.  In  order  to  apply  the  theory  to  practical  prob- 
lems, a great  many  assumptions  must  be  satisfied. 
Nevertheless,  small-scale  experiments  show  promising 
results. 

210 IEEE TRANSACTIONS ON AUDIO AKD ELECTROACOUSTICS JUNE 1968 



Fig. 5. Multiclass  categorizers. The minimum  number of hyper- 
planes  necessary to partition a given  number of classes  depends 
on their  disposition  in  hyperspace. The  top  diagram shows an 

gram,  where the classes are roughly  colinear, 4- 1 = 3 hyper- 
example  where log2 4 = 2 hyperplanes suffice. In  the  bottom dia- 

planes are required. Of course, the difference  between logQm and 
m - 1 increases with  the  number of classes m. 

A much  simpler  form of sequential  decision,  involving 
only  two levels, has  been successfully applied  to  the 
recognition of both  English  and  Chinese  charac- 
ters. t4l ,1261 

OTHER  ASPECTS OF PATTERN RECOGNITION 

Practical  considerations of computer  economics  some- 
times  prevent  the  wholesale  application of the  methods 
mentioned  above  to real-life situations.  The  somewhat 
undignified and  haphazard  manipulation,  invoked  in 
such  cases  to  render  the  problem  amenable  to  orderly 
solution, is referred  to  variously  as  preprocessing, 
filtering or prefiltering,  feature  or  measurement  extrac- 
tion,  or  dimensionality  reduction. One distinction  be- 
tween  these  concepts  and  the  ones  mentioned  earlier 
is that here  the differences  between the  several classes 
of data  under  consideration  are  not necessarily taken 
into  account in the selection of the  parameters.  Instead, 
the  object is to  provide a simplified,  more  economical 
description,  which  applies  to  all  the  samples.  These 
matters  are discussed by the  author at greater  length 
in a forthcoming  state-of-the-art  report  in  the PRO- 
CEEDINGS OF THE IEEE. 

There  have been  several  attempts  to  readjust  param- 
eters  according  to  the  output of a recognition  system, 
and  to  track  data  sets  with slowly  changing  charac- 
teristics.  This  forms  the  subject  matter of unsupervised 
learning. [421 

The need  for automatic  methods  to  cluster  samples 
according  to  their  relative  similarity  first  arose in nu- 
merical  taxonomy, but  applications for the  resulting 
clustering  techniques  rapidly  emerged  in  many  areas 
of pattern  recognition.  Some  simple  clustering  algo- 
rithms  which  can  be  used  to  simulate a species of self- 
organizing  behavior  are  described in 

APPLICATIONS 
What  are all  these  schemes  good  for?  Only  character 

recognition  has  received  widespread  commercial  ac- 
ceptance so far.  Machines  are  gradually  upgrading  their 
reading  ability  from  the  simple  magnetic  symbols  used 
on bank  checks  to  the  somewhat less stylized  numerals 
on credit  cards  and  other  turnaround  documents,  and 
even  to  typescripts in more  or less arbitrary  typestyles. 
A really  general  purpose  page  reader is still  to be de- 
veloped,  but  the  problem  areas lie more in the  realm of 
format  than in character  recognition  per se. Several 
machines  have  already  been  marketed  to  read  hand- 
printed  numerals in  well-specified surroundings. 

Speech  recognition is probably  the  next  broad  area to 
reach  commercial  maturity.  Hopefully,  the  expanding 
vocabularies,  decreasing  sensitivity  to  variations be- 
tween  individual  speakers,  greater  overall  accuracy, 
and  the  capability  of  processing  longer  and  longer seg- 
ments of continuous  speech will prove  irresistibly  attrac- 
tive  to  system  designers  preoccupied  with  man-ma- 
chine  communications. 

Other  areas  where  much  effort is being  expended  to 
develop  viable  systems  include  aerial  and  microphoto- 
graph  processing;  particle  tracking in cloud,  bubble, 
and  spark  chambers; seismic  signal  analysis  for  both 
geophysical  exploration and explosion  monitoring; 
electrocardiogram,  electroencephalogram,  and  single- 
fiber recording in  medicine and  physiology;  fingerprint 
analysis;  and  weather  prediction. 

ADDITIONAL SOURCES O F  INRORivIATION 

New  results in pattern  recognition  are  presented 
every  year at some 20 conventions,  symposia, con- 
gresses, and  workshops of national  caliber. All of the 
major  computer  meetings  devote  one  or  more sessions 
to  pattern  recognition or signal  processing;  other  papers 
are presented a t   t he  meetings of learned  societies in sta- 
tistics,  automatic  control,  information  theory,  cyber- 
netics,  acoustics,  communications,  and in special  ap- 
plication  areas  of  physics,  chemistry, biology, and 
medicine. 

In  the  technical  press,  the I E E E  publishes  the  largest 
number of papers in this field. In 1966, about  four  dozen 
papers  were  published in the   IEEE TRA4NsACTIONs ON 

ELECTRICAL COMPUTERS, INFORMATION THEORY, SYS- 
TEMS SCIENCE AND CYBERNETICS,  AUTOMATIC  CONTROL, 
BIO-MEDICAL ENGINEERING, and AUDIO AND ELECTRO- 
ACOUSTICS. Other  publications  which  regularly  devote 
space  to  pattern  recognition  are I^lzJPormation and Con- 
trol, the Journal and Communications of the  Association 
for  Comeuting  Machinery, and  the Computer  Journal. 

A  far  larger  number of papers is published  annually 
in the  proceedings of the conferences  previously  men- 
tioned, as reports on government  contracts,  as  com- 
pany  reports,  and  as  dissertations at universities. 

I t  is to  be  hoped  that at least  some of this  work  proves 
applicable in the field of audio  and  speech  research. 
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