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P 
I. m P E C T I V E  

ERHAPS the reason why  relatively few reviews are 
published in the domain of pattern recognition is that 
prospective reviewers  realize at  the outset that  pattern 

recognition is hardly a cohesive discipline in its own right. 
At best, it is a vast collection of  highly  varied problems. 
Any technique which contributes to  the solution of any of 
these problems can therefore be considered as part  and 
parcel of pattern recognition. 

Vocabulary and  notation,  and, here and there, useful 
ideas, have  been contributed by the following disciplines: 
statistical decision theory [Chow ’571, switching theory 
[Winder ’631, automata theory [Pask ’601, set theory 
[Block  ’641, control theory widrow ’ 6 4 1 ,  linguistic analysis 
[Ledley ’ 6 4 1 ,  information theory [Kamentsky ’ 6 4 1 ,  mathe- 
matical programming [Rosen ’651, and nerve net studies 
[Rosenblatt ’622]. The single  reference  for  each  item  in this 
very incomplete list gives an example of  how the “pattern 
recognition problem” can be formulated in terms of  these 
disciplines.  Conversely, it is relatively  easy for the experi- 
enced pattern recognizer to describe almost  any  field of 
scientilic or humanistic activity in terms of pattern recogni- 
tion. 

In  an  attempt  to preserve some unity of viewpoint in the 
face  of this abundance of possible angles, geometric con- 
cepts will  be emphasized throughout this paper. The limits 
of the survey, and the no doubt tendentious organization 
imposed upon it,  necessarily  reflect  only the author’s bias. 
With this disclaimer, here is a brief rundown of what is to 
follow. 

In most of the early work in the field it is assumed that a 
statistically representative data set is available for designing 
or training the recognition apparatus.  The performance of 
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the machine is then evaluated on a test set comprising sam- 
ples not included in the training set. The design methods 
applicable in this context are reviewed in Section 11. 

In spite of the fact that completely satisfactory solutions 
have not yet  been obtained even under the restrictive as- 
sumption of stationariry, there have  been  several attempts 
to readjust the parameters of a recognition system to truck 
data sets with  slowly changing characteristics. More 
generally, unsupervised learning refers to experiments based 
on training sequences of unidentified samples. This forms 
the subject matter of Section 111. 

The need for  automatic methods to cluster samples ac- 
cording to their relative similarity first arose in numerical 
taxonomy, but applications for the resulting clustering 
techniques rapidly emerged in many areas of pattern recog- 
nition. Some  simple clustering algorithms which  can be 
used to simulate a species of self-organizing behavior are 
described in Section  IV. 

Practical considerations of computer economics often 
prevent the wholesale application of the methods mentioned 
above to real-life situations. The somewhat undigmiied and 
haphazard manipulation invoked in such cases to render the 
problem amenable to orderly solution is  referred to vari- 
ously as preprocessing,  filtering or prejiltering, feature or 
measurement extraction, or dimensionality  reduction. A dis- 
tinction between  these concepts and the ones mentioned 
earlier is that here the differences  between the several  classes 
of data under consideration are not necessarily taken into 
account in the selection of the parameters. Instead,  the 
object is to provide a simplified, more economical descrip- 
tion, which applies to all the samples. These matters are 
discussed at greater length in Section V. 

What  are all  these  schemes good for? Only character 
recognition has received widespread commercial accep- 
tance so far. Machines are gradually upgrading their reading 
ability from the simple magnetic symbols  used on bank 
checks to  the somewhat less  stylized numerals on credit 
cards and  other  turn-around documents, and even to type- 
scripts in more or less arbitrary type  styles. A really general- 
purpose page reader is still to be  developed  but the problem 
areas lie more in the realm of format  than in character 
recognition per  se.  Several machines have already been 
marketed to read handprinted numerals in well-specified 
surroundings. 

Speech recognition is probably the next broad area  to 
reach commercial maturity. Hopefully the expanding 
vocabularies, decreasing sensitivity to variations between 
individual speakers, greater overall accuracy, and capability 
of processing longer and longer segments  of continuous 
speech will prove irresistibly attractive to system designers 
preoccupied with man-machine communications. 
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Other areas where much effort is being  expended to de- 
velop viable systems include aerial and  microphotograph 
processing, particle tracking in cloud, bubble, and  spark 
chambers, seismic  signal analysis for both geophysical 
exploration and explosion monitoring, electrocardiogram, 
electroencephalogram, and single  fiber recording in medi- 
cine and physiology, fingerprint analysis, and many others. 
A few individual approaches to some of these challenging 
problems are outlined in Section VI. 

11. CONVENTIONAL CLASSIFICATION METHODS 
The primary goal in designing a pattern classifier is to 

have it perform well  (achieve a high recognition rate) on 
new data. When the training data  are representative of the 
test data,  and when a very large number of training patterns 
are available, it  is usually argued that it is sufficient to 
design the classifier  to perform adequately on the training 
set. In practice, the training set  is  always too small, and 
extrapolation of the performance figures to new data is 
hazardous [Allais '64, Glanz '651. 

With some a priori  information  about the nature of the 
underlying probability distributions, it is indeed possible to 
predict from a limited training set the performance on the 
test set. In real problems, however,  even the probability 
model must be inferred from the training set. In the face  of 
this dilemma, the reader must  be cautioned that it is possible 
to overdesign the classifier by tailoring it too closely to the 
training set at the expense of performance on  the test set. 
Matching the design method to the number of samples 
available is not easy, but a simple rule of thumb is that  the 
more complicated the method, the more samples are re- 
quired. 

In  the following discussion, the ith pattern will be treated 
as a column vector Xi, and Xi' is the corresponding row 
vector. The components xi j  of Xi denote individual observa- 
tions:  the energy around 300 Hz in the first 100  ms  of an 
utterance, whether the lower left-hand corner of a character 
is  black or white, the  temperature of a hospital patient, the 
location of the peak in an electrocardiogram. In some 
problems the choice of observations is critical. In others, 
a natural set of coordinates, such as the gray levels in  the 
matrix representation of a photograph, exists. 

One important distinction between pattern recognition 
and  other related disciplines, such as  automatic  control 
theory, switching theory, and statistical hypothesis testing, 
is the high dimensionality of the vectors Xi. Were it not for 
the fact that Xi typically runs to hundreds of components, 
with hundreds, thousands,  or even millions (as in the bank 
font problem) of samples, we could undertake calculations 
far more sophisticated than those discussed  in this review. 

In the beginning we  will confine our attention  to two- 
class problems. In principle, any multiclass problem can be 
treated as a number of two-class problems involving the 
separation of each class from the remainder of the universe, 
but this does not,  as a rule, lead to the most economical 
solution. Several heuristics which bear on  the problem of 
the optimal assignment of a given number of discriminants 
to more than two  classes can be found in [Braverman '621 

and in  [Kiessling '651. In the following, the class  will 
always  be denoted by a superscript. 

All  of the categorization methods where the components 
of the pattern vector are not limited to binary numbers will 
be illustrated by means of the same two-dimensional exam- 
ple. In this example there are eight patterns in the training 
set,  four  from  each class: 

class C' 
X 1  x2 x3 x4 
- - - - 

(2 + 3 ( 2  -:JZ)(f)( -?) 

(2>)( -;*x" + o a r  - 0 q  

In order to test the various methods, it  is  assumed that 
these samples originate from multivariate normal (or 
Gaussian) populations with means equal to the sample 
means, and covariance matrices A' equal to the sample 
covariance matrices : 

pl = @), p2  = (3. A ' = ( '  O)>. A 2 = ( l  O )  
0 4   0 4  

The samples, and the elliptical equiprobability contours 
of the normal density functions 

pk(X) = ( 2 ~ ) - " ' ~  (det A')-'/' exp [ -$X - pk)'Ak-'(X - pk)] 
with the above parameters, are shown in Fig. 2. 

Of course, in a real problem one could hardly expect the 
distribution of the test samples to correspond so precisely 
to the distribution specified  by the sample means and co- 
variance matrices, especially  with such a small training 
sample. For this reason, the computed performance figures 
for the different methods should be treated with extreme 
caution; the numerical results are really intended only as 
check points for readers interested in gaining first-hand 
experience  with some of the formulas. 

Linear  Classijication 
A linear categorizer assigns an unknown pattern Xi to 

class C' if X;. W 2 8, and  to class C z  otherwise. The co- 
efficients wj of 8 are proportional to the components of a 
vector (through  the origin) onto which the patterns  are 
projected. In the two-dimensional example in Fig. 1, all 
the Doints  which are  to  the left  of the  dotted straight line 
perpendicular to the vector (w,/,/-, w 2 / , / m )  
at a distance e/,/- from the origin are assigned to 
class C'. 

When Xi has more than two components, it  is  still pro- 
jected onto the vector 8, but now a hyperplane, rather than 
a line, separates the classes. W is traditionally referred to as 
the weight  vector, because its components represent the 
relative importance of each observation in deciding the 
class assignment. 
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Fig. 1. A linear  categorizer.  The  normalized  weight  vector  and  the 
normalized  threshold  define  a two-class linear categorizer. The 
pattern Zi is assigned to class C' because its projection E'Xi on the 
normalized  weight  vector is greater  than e. Any pattern on the  same 
side of hyperplane H as Xi would be assigned to C'. 

The weights wj  and the threshold 8 may  be multiplied by 
any constant without a change in the resulting classification. 
It is customary to normalize the weight  vector to unit 
length. 

In the two-dimensional example we propose to discuss, 
the set is assumed to consist of an infinite number of pat- 
terns with known Gaussian distributions. The error for any 
linear categorizer would be computed by projecting these 
distributions onto the weight vector. The projected one- 
dimensional distributions are also Gaussian, with means 
G'pk and variances W'AG. The error rate can  be  readily 
found from a table of cumulative Gaussian probabilities : 

p(error) = +#)[ 8 - F'F' ] [ - 3 
(w'A'W)'/2 + 5 - +#) ( g A 2 q 1 / 2  

where both classes are equally probable  and 

The weight vectors, hyperplanes, and other decision 
boundaries obtained by the various categorization pro- 
cedures are shown in Fig. 2. The computed error rates 
rates appear in Table I. 

Piecewise linear categorizers simply contain more than 
one weight  vector to characterize a class  pair. Boundaries 
of arbitrary complexity  may be approximated by the resul- 
tant profusion of hyperplanes [Duda '66, Rosen '661. 

Correlation 
The simplest method of computing the parameters of the 

linear categorizer is to let %=E' -Z2, where 2' and E 2  
represent "typical" members of the two  classes. Custom- 
arily, 2 is the set equal to p', the centroid of class C', and 
E 2 = F 2 ,  the centroid of C2. The categorization operation is 
then equivalent to a component-by-component correlation 
of the unknown sample with the sample means of the classes. 
Thus 

w=p'- F 2  
and 

The resulting hyperplane is  shown as HI in  Fig. 2. When  it 
is  felt that  the magnitude of the feature vectors matters less 
than their orientation, W is  set equal to ( p ' / ~ j i ' ~ ) - ( p 2 / ~ j i 2 ~ ) ,  
with a threshold of 0. This is hyperplane H, in  Fig. 2. Such 
a decision procedure would be useful,  for  example,  in 
classifying sustained vowel sounds where the overall in- 
tensity depends only on the distance from the microphone, 
and the sound is  fully characterized by the relative intensi- 
ties of the various frequencies. 

The correlation method is often  used on binary data, 
where  it  is sometimes referred to as mask or template 
matching. For  computational efficiency the number of mis- 
matching, rather than matching, bit positions is usually 
computed, and the calculation is truncated when this 
reaches a preset threshold. The use  of additive and multi- 
plicative constants in normalization sometimes results in 
startling changes in performance. 

For  continuous variables correlation with the sample 
means  is readily implemented with the Lernmutrix. This 
ingenious formalism allows the concatenation of several 
correlators, as well as "bidirectional" classification  [Stein- 
buch '631. 

Theoretically, the correlation methods can be shown to 
be optimal only under certain very restrictive symmetry 
conditions on  the distributions. 

Maximum Likelihood 

The application of the maximum likelihood principle to 
pattern classification makes use  of  Bayes' formula for con- 
ditional probabilities to show that in order to determine the 
greater of P[C'IX,] and P[C21Xi] it  is  sufficient to compare 
P[X,IC'] and P[XilC2] (for equal a priori probabilities on  the 
classes). This means that we must ask which  class was most 
likely to produce the observed sample vector. 

The determination of the conditional probability of the 
pattern vector, given the class, leads to a linear expression 
in the components of the pattern vector under several 
assumptions. 

When the components xii are statistically independent of 
one another, 

P[X,ICk] = JJ PIXijlCk]. 
i 

Geometrically this condition corresponds to having the 
principal axes of the two distributions parallel to the coordi- 
nate axes.  If,  in addition, the xij's are binary, it can be shown 
[Minsky '611 that 

PIC'IXi] 2 P[C21Xi] if and only if X:. i i  2 8, 

where 

P[Xij = lIC']PIXij = O(C2] 
P[Xij  = 11C2]P[Xij = OJC'] 

wj  = In 

and 

e = x l n  P[Xii = OIC21 
j P[Xij = 01C'] * 
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Despite the fact that the independence assumption is 
very  seldom  satisfied in practice, this  decision method has 
been  widely  used in cases  where the high dimensionality of 
the pattern vectors precludes more complicated calcula- 
tions. Let  us compute the parameters and the error  rate 
using this scheme in another two-dimensional example 
(where the  patterns are restricted to binary components): 

Class Pattern Number of Patterns 
in Training Sample 

C' (090) 60 
(1. 1) 40 

C2 (1,O) 30 
(0, 1) 70 

The probabilities needed to estimate the components of the 
weight vector and the threshold are readily calculated: 

P [ x i ,  = lIC'] = 0.4, P [ x i 2  = l(C'] = 0.4, 
P[x i1  = lICz] = 0.3, P[x i2  = llC2] = 0.7. 

The weight  vector and the resulting hyperplane calculated 
from (2) are shown ' i n  Fig. 3. Since the independence 
assumption is  clearly violated, we need not be surprised 
that the error  rate obtained with this plane on the training 1 sample, 0.35, is higher than  that obtained with other planes. 

Fig. 2. Common types of linear  categorizers. x and 0 indicate the The plane shown in dotted lines in Fig. 3, for  example, 

equiprobability contours on the postulated distributions in the test data. The with the hyperplanes and weight vet- we could separate the classes without error, since there is no 
tors pertain to the following categorizers: 1) distance to means: 2) overlap between the distributions. 
correlation; 3) approximate maximum likelihood: 4) Anderson- With a finite number of samples in the training set  it  may 
Bahadur ; 5) discriminant analysis; 6) approximate discriminant 
analysis; 7) trainable machine; 8) optimal quadratic boundary. happen that a numerator  or a denominator in (2) vanishes. 

training samples in classes C' and Cz, respectively. The ellipses are the only 15 percent erron. With a nonlinear scheme 

No. in 
Fig. 2 Method 

___ 

Distance from  means 

Correlation 

Approximate maximum 
likelihood 

Anderson-Bahadur 

Discriminant analysis 

Approximate discrimi- 
nant analysis 

Trainable machine 

Optimum quadratic 
boundary 

TABLE I 

Parameters I % Error  Rate on Test Data 

Unnormalized Normalized I 
~ on C' on C2 Average 

- 
\V e !! e 

l 

- 4.00 - 6.00 - 0.89 -1.34 ~ 11.5  3.8  7.7 
2.00  0.45 , 

- 1.00 0.00 
1 .00 

- 2.00 - 3.50 
0.50 

-2.27 - 5.20 
0.50 

-4.00 
1 .00 

-9.15 

-0.71  0.00 
0.71 

-0.96 - 1.70 
0.24 

- 0.98 -2.26 
0.21 

- 0.97 -2.21 
0.24 

22.7 3.7 13.2 

10.7  2.2  6.5 

5.9  5.9  5.9 

6.3  6.3  6.3 

- 1.28 - 3.10 - 0.79 - 1.21 ' 4.4 19.8 12.1 
1 .oo 0.61 1 

- 3.89 - 4.00 -0.72  -0.73 12.5 9.2 10.8 
3.85 0.70 i - 5.6 
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Fig. 3. Categorizers  for  binary  patterns. Class.1 is indicated by circles, 
class 2 by crosses. The size of the symbols is proportional to the postu- 
lated  probability  density distribution. H ,  is the  hyperplane  calculated 
from (2); it is not as good as I f 2 ,  which  could be obtained by inspection 
because of the low dimensionality of the  problem.  The unnormalired 
weight  vector  corresponding to H, is (0.441, - 1.25), with a threshold 
of -0.41. 

To avoid this problem there is some theoretical justification 
for estimating P[x,=  llCk] by means of (M!+ 1)/(Nk+2), 
instead of M$/Nk as above, where Mjk is the number of 
samples  in  class k with the j th component equal to one, 
and N k  is the total number of samples in  class k [Good '651. 

Another instance where the maximum likelihood  classifier 
is linear  is  in the case of normal distributions with identical 
covariance matrices. The form of the distributions is again 

where the elements of the matrix A are the same whichever 
class k is  used to derive them : 

A = E [(X - DL)(% - ,ii7'] 
k 

and 

i? = E [X]. 
k 

The assumption of equal covariances is reasonable, for 
example,  in  digitized photographs, where the adjacent 
cells are likely to be  positively correlated regardless of class 
because the gray scale  seldom contains rapid transitions. 

In comparing the ratio of the probability distribution 
functions to one, the exponents subtract and the second- 
order terms in the pattern components cancel.  In the result- 
ing linear expression, 

W = (ji1 - p2)rA-l 

and 
e = 1 -1 - -2 j ~ - l  

2 0 1  P ) (jil + P2).  (3) 
To apply this method to  our example, we shall approximate 
A by the mean of the covariance matrices for the two classes. 
Thus 

The resulting hyperplane is shown as H, in  Fig. 2. 
If the distributions are spherical, the covariance matrix is 

proportional  to the identity matrix, and the weight vector 
corresponds to the difference of the centroids, as in simple 
correlation. 

When the number of samples in the training set is small 
compared to the dimensionality of the pattern vectors, the 

covariance matrix may be singular. Without the inverse, one 
must either guess the values of the variance in the missing 
directions, or confine the solution weight  vector to the sub- 
space actually spanned by the training set [Penrose '55,  
Raviv '651. 

Minimax Decision Rule-The Anderson-Bahadur Formula 
With n o m 1  distribution functions characterized by un- 

equal covariance matrices, the maximum likelihood bound- 
ary is nonlinear. Therefore, the minimax criterion, which 
equalizes the probabilities of the two kinds of errors (for 
equal a priori probabilities), is used instead. 

The following  implicit equation for the weight vector W 
has been  derived by Anderson and Bahadur [Anderson '621 : 

(4) 

where 

p k =  mean of class k 
A'= covariance matrix of class k. 
Equation (4) can be  solved  with conventional iterative 

methods using matrix inversion.  When the dimensionality is 
high,  it  is desirable to avoid matrix inversion  with the 
method of conjugate gradients, which is guaranteed to con- 
verge  in at most a number of steps equal to the dimen- 
sionality [Hestenes ,521. 

The probability of classification errors with the optimum 
threshold can be computed in terms of the weight vector : 

where 

The Anderson-Bahadur hyperplane is  shown as H4 in 
Fig. 2. 

Discriminant Analysis 
When the form of the probability density functions gov- 

erning the distribution of the pattern vectors is not known at 
all, the minimum-error hyperplane cannot be specified 
analytically. In this  case  it  seems intuitively desirable to find 
at least the direction in  which the projections of the samples 
of each  class  fall as far as possible  from those of the other 
class, but the internal scatter of each class  is  minimized. This 
is the object of discriminant analysis [Wilks '60, Peterson 
'651. 

More formally, we  wish to maximize 

1 (W'Xi - *'Xj)y*'Xi - * 'Xj ) ,  
xi € e l  
xjEC2 

subject to  the constraint 
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It can be shown, by using Lagrange multipliers, that  the 
vector W which  fulfills  these conditions is the eigenvector 
associated with the largest eigenvalue 1 of 

(BA-' - A Z f i  = 0 ( 5 )  

where A is the intraclass sample scatter matrix 

A = (Xi - J')(Xi - PI)' + (Xi - P2)(Xi - p2)' 
xi€cc' q EC2 

and B is the interclass sample scatter matrix 

The solution vector W=A-' (p ' -  p z )  is identical to the 
approximation we used  for the maximum likelihood solu- 
tion in (3), but explicit  use of the individual covariance 
matrices to equalize the two  types of errors leads to a better 
choice of threshold. The hyperplane obtained by determin- 
ing the values of 8 for  which ~[(8-W'p1)/(W'A1E)*] and 
4[(E'ji1 - 8)/(W'A2W)*] are  equal is shown as H, in  Fig. 2. 

Another possible approximation consists of replacing the 
intraclass scatter matrix A in (5 )  by the identity matrix. This 
corresponds to maximizing the scatter of the projected 
points in the two  classes pooled together, and is also equiva- 
lent to principal components analysis. This hyperplane, with 
8 = $'(ji' + pz) ,  is  shown as H, in  Fig.  2. 

Trainable Categorizers 
In applying the statistical algorithms of the preceding 

sections, all of the patterns in the training set  were con- 
sidered simultaneously to compute the weight vector. In a 
trainable categorizer, however, the patterns  are presented 
one at a time, and the weight vector is changed incrementally 
throughout the process. 

In contradistinction to statistical methods, no formal 
hypothesis is postulated regarding the distribution of the 
samples. It is merely assumed that if all of the training 
samples are correctly classified, few mistakes will  be made 
on the test data. This mode of operation offers some ad- 
vantage in implementing the algorithm in hardware, but 
the final error rates achievable by these approaches appear 
to be substantially the same [Kanal'62, Bryan '63, Konheim 
'64, Casey '652]. 

There are many algorithms which guarantee convergence 
to the optimal weight vector under various conditions 
[Nilsson '641. One of the earliest for  which a bound m the 
maximum number of steps required was obtained is the 
error correcting algorithm of perceptron fame [Rosenblatt 
'571. Here all the patterns in the training set are presented in 
sequence ; when the training set  is exhausted, the patterns 
are presented again in the same order. Thus, if there are N 
patterns available, thejth step involves the ith pattern, where 
i = j  modulo N .  The weights change according to 

- 
wj+' = W j  + X j  if W j X j  I 6 and X j ~ C 1  

= W j  - X j  if W j X j  2 8 and Xj E Cz (6) 
= wj otherwise. - 

The weight vector is changed only after a pattern has been 
misidentified. The initial vector W,, may  be the null vector, 
or, better, a coarse approximation such as may  be obtained 
with (1). The threshold may  be  derived by extending the 
dimensionality of the pattern space by one, and setting the 
corresponding component of all the patterns equal to one. 
The weight associated with this component is the required 
threshold. 

The manner of convergence of the algorithm is shown  in 
the two-dimensional problem in Table 11. The final  weight 
vector corresponds to hyperplane H, in Fig. 2. 

Since 1957, when a proof for the convergence of this 
algorithm was outlined by Rosenblatt, at least six or seven 
more or less independent proofs have  been advanced. One 
derivation, and  the corresponding bound on the number of 
steps, is  given  by Singleton in terms of the pattern matrix B 
[Singleton '621. The ith colum of B is Xi ifXi belongs to C',  
and -Xi  if it  belongs to  Cz. 

The theorem states that if 3 W 3 B' * W > 0, then 

(E * E) max (BrB),, 

This means that if the categorization problem does have 
a linear solution, an incremental adaptation procedure will 
find  it  in a finite number of steps. The similarity to  the 
achievement of feasible solutions in linear programming has 
been repeatedly pointed out [Rosen '65, Smith '681. 

The upper bounds given  in the literature for the number 
of adjustments needed unfortunately all require that at 
least one solution to the problem be known before the length 
of the training sequence can  be estimated. In the example in 
Table I1 the bound calculated from (7) is 284 steps,  whereas 
convergence is actually reached  in 45 steps. This bound is a 
very sensitive function of the smallest distance of a pattern 
point from the separating plane used to estimate the bound. 

Variations of the theorem deal with the effects of varying 
the order of presentation of the training patterns, of chang- 
ing the total amount added to the weights depending on how 
close the response is to being right, and of using  imperfect 
components [Joseph '60, Kesler '61, Highleyman '62, Hoff 
'62, Ridgeway '62, GrifEn '63, Low '63, Mays '631. 

Judicious adjustment of the size of the corrective incre- 
ment,  for  example, depending on how  close the response is 
to being right and on the running average of the fraction of 
misidentified patterns, yields  convergence rates many orders 
of magnitude faster than the original algorithm. It appears 
customary, however, to demonstrate the power of  new 
methods of solving linear inequalities by comparing their 
speed to  the long disused equal increment algorithm. 

Consideration of the positive quadrant of the vector space 
containing the solution vector AZ of the system of linear 
inequalities Aw >O, rather  than the space containing E, 
leads to an elegant demonstration of a family of convergent 
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TABLE I1 
TRAINING A CATEGORIZER 

, 
Step ~ Pattern 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 

0.00 
- 14.67 
- 1.66 

18.36 
- 6.46 

5.96 
12.14 
2.01 

17.31 
- 4.77 

0.72 
22.16 

- 11.92 
13.93 
14.28 
6.03 

13.30 
3.78 
0.06 

17.02 
- 0.92 

0.34 
13.27 

22.97 
- 1.32 

- 1.32 
- 0.25 

28.88 
- 14.38 

21.62 
20.10 
9.41 

15.94 
8.58 
0.78 

23.74 
- 3.38 

8.08 
19.09 
2.06 

26.60 
- 7.88 

1.46 
27.59 

- 8.83 
15.99 
21.23 
6.08 

22.60 
0.66 
0.80 

22.46 
2.17 

15.99 
21.23 
6.08 

0.00 
- 4.00 
- 4.00 
- 4.00 
- 1.55 
- 1.55 
- 1.55 
- 1.55 
- 1.55 
- 5.55 
-5.55 
- 5.55 
-3.10 
-3.10 
-3.10 
-3.10 
-3.10 
-3.10 
-3.10 
-3.10 
- 0.65 
-0.65 
- 0.65 
- 3.24 
- 3.24 
- 7.24 
- 7.24 
- 7.24 
- 4.79 
-4.79 
- 4.79 
- 4.79 
-4.79 
- 4.79 
- 4.79 
- 4.79 
- 2.34 
- 2.34 
- 2.34 
- 2.34 
- 2.34 
-6.34 
- 6.34 
-6.34 
- 3.89 
- 3.89 
- 3.89 
-3.89 
- 3.89 
- 3.89 
- 3.89 
- 3.89 
- 3.89 
- 3.89 
- 3.89 
- 3.89 

4.83 
2.00 
1.17 
1.17 
3.17 
3.17 
3.17 
3.17 
3.17 
0.34 
0.34 
0.34 
2.34 
2.34 
2.34 
2.34 
2.34 
2.34 
2.34 
2.34 
4.34 
4.34 
4.34 
4.34 
4.34 
1.51 
0.68 
0.68 
2.68 
2.68 
2.68 
2.68 
2.68 
2.68 
2.68 
2.68 
4.68 
4.68 
4.68 
4.68 
4.68 
1.85 
1.85 
1.85 
3.85 
3.85 
3.85 
3.85 
3.85 
3.85 
3.85 
3.85 
3.85 
3.85 
3.85 
3.85 

L 

8 

- 1.00 
- 0.00 
- 1.00 
- 1.00 
- 2.00 
- 2.00 
- 2.00 
- 2.00 
- 2.00 
- 1.00 
- 1.00 
- 1.00 
-2.00 
- 2.00 
- 2.00 
- 2.00 
- 2.00 
-2.00 
- 2.00 
- 2.00 
- 3.00 
- 3.00 
- 3.00 
- 2.00 
- 2.00 
- 1.00 
-2.00 
- 2.00 
- 3.00 
- 3.00 
- 3.00 
- 3.00 
- 3.00 
- 3.00 
- 3.00 
- 3.00 
-4.00 
-4.00 
- 4.00 
- 4.00 
-4.00 
-3.00 
- 3.00 
-3.00 
-4.00 
- 4.00 
-4.00 
-4.00 
-4.00 
- 4.00 
-4.00 
-4.00 
- 4.00 
-4.00 
- 4.00 
-4.00 

Increment? 

* 

* 

* 

* 

* 
* 

* 

* 

* 

* 

class C’ : 

training algorithms [Ho ’651. For a large number of pattern Perturbations in the hal values of individual weights 
vectors,  however, computational difficulties  may arise in the introduce errors. Hoff has shown that the expected prob- 
determination of the required m x m matrix AA”, where m ability of errors, on patterns with a uniform distribution of 
is the number of patterns  and 8t denotes the generalized ones and zeros, is roughly 
inverse. 3 6  

Joseph has proved that the fundamental convergence P ( E )  = - 4 -&l 1 1 1  
theorem holds even if the number of levels in each adaptive 
link is  finite,  i.e., if the storage elements are saturable. Low 
has a similar demonstration for the case of nonuniform 
adaptation. 

1 1  

where 6 is the average drift in the weights, W is the solution 
weight vector (before drifting), and n is the number of 
weights. 
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The convergence theorem, with  all  its variants and corol- 
laries, applies only if a solution exists. It is not difficult to 
show that solutions exist if and only if there are no linear 
dependencies between input patterns, considered as vectors, 
in opposite classes. In other words, conflicts of the type 
seen in the example in Fig. 3 must not arise. 

It is no trivial matter, however, to look at several thousand 
1 W  or 500-dimensional  vectors and spot the linear de- 
pendencies. A number of procedures, some of which take 
advantage of the statistical distribution of ones and zeros 
in the input vectors, have  been  devised to carry out this 
operation,  but the most common method for  finding out if 
a problem is linearly separable is to simulate the linear 
categorizer on a computer and try to teach it the required 
classification  [Singleton ’62, Gaston ’63, Sheng ’641. If, 
after many presentations of the pattern, it has not been 
learned, then it  is  assumed that unwanted linear dependen- 
cies do occur. Several adapters have  noticed the oscillatory 
behavior of the weight vector when presented with an in- 
soluble task ; this symptom of frustration provides a valu- 
able clue as to when to  stop training [Ridgeway ’62, Kesler 
‘63, Efron ’631. 

It would be comforting to know that, if the problem is not 
completely solvable, the weights  converge to the values 
guaranteeing a minimum number of mistakes among the 
training samples. This, however,  is not necessarily the case ; 
the algorithm can  be stranded on a local optimum. 

Chow points out  that the assumptions leading to the pro- 
cedures specified  by (2) and (6), statistical independence and 
linear separability, are mutually contradictory for binary 
patterns, except in trivial instances [Chow ’651. To circum- 
vent this difficulty,  several gradient methods, which  cover 
the gamut between the “little at a time” and the “all at 
once” approaches, have  been  developed [Duda ’64, Groner 
’64, Koford ’641. 
Nonlinear Categorizers 

With the exception of a few special distributions, very 
little is known about approximating the optimum nonlinear 
boundaries in  classification problems involving pattern 
vectors  with numerical (as opposed to binary) correlated 
components. For Gaussian distributions the optimal sepa- 
rating surface is easily shown to be a hyperquadric, specified 
by the following equation; [Cooper ’641 : 
(X- p’) ‘A’- ’ (X - p’) + log det A’ 

- (X - p2)’A2-’(X - p 2 )  + log  det A2 (8) - 

where Ak is the covariance matrix of class k and pk is the 
mean vector of class k. This boundary is sketched as H, in 
Fig. 2 for the distributions used to illustrate the linear 
methods. 

In addition  to Gaussian distributions, the hyperquadric is 
optimal for Pearson distributions type I I  and  type V I I  ; these 
cases have also been  fully analyzed by Cooper. The  equa- 
tions for the separating surface  for a pair of parametric dis- 
tributions can, of course, always  be obtained by setting the 
difference of the density functions equal to zero, but  since in 

a practical situation  the difficulty  usually  lies in estimating 
the  parameters  from  the samples, this is  really  begging the 
question. 

In an n-dimensional  binary  classification task, every  ver- 
tex of the n-dimensional hypercube represents a possible 
pattern. Thus the general solution requires 2“  values for 
complete-specification, as opposed to the n values  for the 
linear separation. In practice, even the n2 values required 
by considering all of the components pairwise without addi- 
tional simplifying assumptions represent too much of a 
burden for implementation or simulation. 

The probability distributions we must compare in order 
to decide the class assignment can be written as product 
expansions. In the following  expressions the single sub- 
script refers to the components of the pattern vector : 

P(XJC9 = P(X,lC~)P(X,lX,, CL). . . 
. P ( X j l X j - ’ ,  Xj-2, . . . , X’, Ck) . . . . 

Each variable is conditioned upon all the variables appear- 
ing in the preceding factors. The  product can be rewritten 
as a sum of weighted terms by taking logarithms and assign- 
ing a weight component to every  possible sequence of ones 
and zeros in the  partial  pattern vector in each term. Thus 

In P(xlCk) = wlxl + w2(l - xl) + w3x1xz + w4(l - x1)x2 
+ W S X l ( l  - x2) + w,(l - x,)(l - x2) . * . . 

The customary procedure is to neglect  all but the second- 
order terms (with  each component conditioned on only one 
other component), and  to select  even among these only the 
most important pairs. In some  cases a natural ordering is 
available. For example, if the pattern is the binary matrix 
representation of a character, it is reasonable to let each 

. x i j  depend only on its “nearest neighbors” [Chow ’621. 
If, however, the binary components represent the results 

of arbitrary measurements upon the patterns, then a 
natural ordering is not available, and the most important 
pairs must be found by heuristic methods. “Chain” and 
“tree” representations based on performance criteria are 
advocated in [Chow ’661. An alternative is to let a trainable 
machine adapt its weights on inputs representing every pair 
in  all four possible combinations, and select the pairs with 
the largest weights  for ultimate use. 

A simple illustration of the effect  of correlation among 
the pattern components is  given  in Fig. 4. Here two pat- 
terns differ from a third by the same number of bits, but in 
one case the mismatching locations appear  to be  highly 
correlated, while  in the other they are independently dis- 
tributed. 

The selection of correlated points in a pattern is  closely 
related to the problem of measurement design or feature 
extraction, and will  be  discussed further from that point of 
view  in Section V. 

Another nonlinear method is the nearest neighbor deci- 
sion  (which  is not related to the nearest neighbor correla- 
tion discussed above). Here each pattern in the test set is 
assigned to the class of the  pattern closest to it (in terms of 
an arbitrary metric) in the training set. It can be shown that 
for  an infinitely large training sample the error  rate obtained 
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Fig. 4. Correlations in binary  patterns.  The  center  pattern,  which may be 
considered  the “unknown,” differs  from  each of the outside patterns 
(“templates”) by 9 bit positions. The  effect of the  correlations  among 
the mismatch  bits  must  thus be taken  into  account  for  correct  identi- 
fication. Although this  is an artificially  constructed  example,  instances 
of such neighborhood correlations frequently occur in  practice. 

with this classifier is at most twice as high as for an optimal 
(Bayes)  classifier  [Cover ’661. Of course,  even  for a finite 
training sample it may take a considerable amount of 
storage  to recall  every training pattern whenever a test 
sample is presented. 

In 1963, Highleyman offered for public use a quantized 
set of 1800 handprinted characters. Because  of the un- 
availability of any other  standard, these data have  been 
used,  in spite of their shortcomings, for numerous compari- 
sons of both linear and nonlinear methods of classification. 
The latest [Munson ,681 of the dozen or so published experi- 
ments on this material compares the nearest neighbor 
decision to several others, including human performance. 

Sequential Decisions 
Rather  than look at all of the available information 

simultaneously, we may proceed sequentially. Then whether 
we look at another point in the pattern (or combination of 
points), and which other point, depends on the outcome of 
the previous tests. This approach is closely related to dy-  
namic  programming, and is particularly well suited  for imple- 
mentation  on a digital computer. 

Fu, Chen, and Chien have  examined in detail the a n -  
omies in computation which  may be realized through the 
application of sequential decision models in pattern rec- 
ognition [Fu ’64, Chien ’661. The strategy is simple: the 
next measurement chosen is  always the one which  gives the 
most information about  the class pair with the highest 
residual probability of error.  The interrogation of mea- 
surements is halted when the estimated error probability 
reaches a preset threshold, or when  all the measurements in 
a particular branch of the decision tree are exhausted. In 
order  to apply the theory to practical problems, a great 
many assumptions must be satisfied.  Nevertheless, small- 
scale experiments show promising results. 

A much simpler form of sequential decision, involving 
only two  levels, has been  successfully applied to the rec- 
ognition of both English and Chinese characters [Liu ’66, 
Casey ’661. 

Potential Functions  and Stochastic Approximation 
Before  leaving the subject of classification  based on identi- 

fied samples, we should discuss the concepts of potential 
functions and stochastic approximation. These points of 
view represent theoretical schools of pattern recognition 
closely related to both  the statistical and  the trainable 
machine approaches. 

The object in  the method of potential functions  is to find a 
function $(Z), defined on the pattern space X ,  which,  in the 
cases of nonoverlapping distributions, is positive  for  all pat- 
terns X in C’, negative  for ? in C2, and either, or zero, else- 
where. The key assumption is that there exists at least one 
such function which is sufficiently “smooth”  to be  ex- 
panded in a finite number (m) of terms of some “ordinary” 
orthonormal system of functions : 

m 

The system q5 is to be  specified ahead of time. If the function 
IC/ is  sufficiently  well-behaved then it does not matter 
whether trigonometric, Hermite, Lagrange, or other “ordi- 
nary” functions are used, though in general m will depend 
on the system chosen. 

The next step is the transformation of the n-dimensional 
pattern space X into  an m-dimensional “linearization” 
space Z .  The new coordinates of a pattern Z are zl, z2 ,  . . . , z,, 
where zi=&(Z). This transformation maps the separating 

surface $(X) = 0 into  the hyperplane w i .  zi = 0. 
m 

It  can  now  be  readily shown that the error-correcting 
algorithm applies in the linearization space Z ,  and therefore 
the coefficients wi can be obtained after the presentation of a 
finite number of training patterns. Rather than dwell on  the 
convergence of the weight  vector  in Z ,  it  is more interesting 
to observe the corresponding evolution of the “potential 
function” $ in X .  Here every correction due to an incor- 
rectly  identified pattern X, results in the addition (or sub- 
traction) of an incremental potential 

i =  1 

K(X, = 1 4i(XWXxd 
m 

i =  1 

to the existing potential. 
The function K(Z, Zd has a maximum at X=?,. If the 

separating function $ is  highly convoluted in the original 
space X ,  and therefore rn is large, then the K’s will be posi- 
tive or negative spikes centered at the incorrectly identified 
patterns. If the separating function is  very smooth, the K’s 
will be broad hummocks affecting the potential in a wide 
area  around the misidentified patterns. 

In point of fact, we can dispense altogether with the 
linearizing process, and simply  guess at an appropriate 
incremental potential function such as 

e-u(x--y)’(P-y) sin alZ - J I  
I X - Y I  * 

or 

This is particularly advantageous when there are few pat- 
terns in the training set; for  each  test pattern the potential 
is quickly computed as the sum of terms due to the patterns 
misidentified during the training sequence.  When the num- 
ber of training patterns is large compared to the dimen- 
sionalities of X and Z ,  it  is of course more advantageous to 
store only the functions $J~ and the coefficients  wi. 

The framework of stochastic approximation provides a 
convenient means of formalizing some of these notions. 
Stochastic approximation is the statistical equivalent of hill- 
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climbing. There is a function to be approximated, an ap- 
proximating function, and some measure of the difference 
between these which  is to be minimized. The only informa- 
tion available to construct the approximating function con- 
sists of a sequence of noisy observations of the value of the 
function to be approximated (in general, the regression 
function) at randomly selected points. 

For  our purposes the sequence of randomly selected 
points consists of the patterns in the training set. Each I is 
selected  with probability p(I). The function to be approxi- 
mated may be taken as f(I)=P(C’II)-P(C’II), which  is 
positive wherever patterns belonging to C’ predominate 
and negative in the “region of influence” of C2. The ob- 
servations are  the sequence AXk), which take on the value 
+ 1 or - 1 depending on whether I& is in C’ or C2. Of course, 
these observations are noisy  only  in the case of overlapping 
distributions, since otherwise f(I) takes on no intermediate 
values  between + 1 and - 1. The approximating function is 

a sum of the form 1 w A i ,  where the 4i’s are given a 

priori. The measure of deviation to be minimized  is the mean 
square  error 

m 

i = l  

r r  m 1 2  

Under these circumstances, and provided that all the 
functions meet certain normative conditions, the theory of 
stochastic approximation assures us that the sequence of 
estimates 

m 

wi(k + 1) = wi(k) + p(kWi(x3 Y ( X ~  - 1 W i ( k ~ i ( x , ) ]  
i =  1 

will converge to the optimum wi’s. The p ( k )  are positive 
scalars decreasing with increasing k.  These scalars, which 
correspond to the step size in gradient methods, must de- 
crease sufficiently rapidly to avoid oscillations but not fast 
enough to lead to trapped states. More rigorously, 

m m 1 p ( k )  =m, and 1 p 2 ( k )  e co 
& =  1 & =  1 

If the  distributions do not overlap, and if the mean square 
deviation can be  reduced to zero, then stochastic approxi- 
mation has not added anything new to  our knowledge  since 
we have already shown that  the separating surface can be 
determined through the errorcorrecting algorithm operat- 
ing in the linearization space. The full  power  of this theory 
becomes apparent only when the  patterns in the training 
set cannot be separated according to class either because 
the distributions overlap or because the di’s are  inadequate 
to reproduce the separating surface exactly. 

In spite of the  attractive features of the construct just 
described, certain practical difficulties  have so far prevented 
widespread application of the theory to actual pattern 
recognition systems. The classical orthonormal systems  of 
physics do not provide very good “features”; the determi- 
nation of satisfactory alternatives is really the major part of 
any recognition problem. Furthermore, approximating a 

distribution function in the mean square (or other convex 
function) sense is not always salutary since to minimize the 
recognition error  rate a close approximation is needed 
above all near the class boundaries. 

The method of potential functions is  developed in [Aizer- 
man ’64’, ’64’1. These papers also contain references to 
earlier and less systematic treatments of this approach ; in 
particular, the genealogy  is traced back to Rosenblatt’s 
1957 simple perceptron. A direct application of the po- 
tential function (without the linearization space) is de- 
scribed in [Bashkirov ’ 6 4 1 .  The relation to stochastic ap- 
proximation is traced in  [Aizerman ’651, [Tsypkin ’661, 
[Blaydon ’661, and [Kashyap ’661. Speeds  of convergence 
are discussed  in [Kashyap ’661 and in  [Braverman ’66l]. 
Possible extensions to unidentified pattern sets (see the 
following sections) are considered in [Braverman ’662] and 
in [Dorofeyuk ’661. 

111. TRACKING SCHEMES AND UNSUPERVISED LEARNING 

It is clear that when a large training sample truly rep- 
resentative of the expected operating conditions is avail- 
able, one cannot do better than  to  train  or design a cate- 
gorizer to perform as well as possible on this training or 
design sample. If, however, the training set  is  small, or if one 
has reason to believe that the composition of the test pat- 
terns is  likely to undergo systematic changes, then it  may  be 
useful to resort to the mode of operation known as tracking, 
nonsupervised learning, self- or error-correcting behavior, 
or  adaptation. 

In practice, training sets are often too small  because  of 
the difficulty  of associating the correct identities with the 
samples. In character recognition, for example, one must 
choose between  using synthetic documents all containing 
the characters in the same order, or real documents, which 
must  be keypunched as well as scanned. If the scanner 
misses a single  very faint character, subsequent char- 
acters in the training sample will  be  misidentified,  unless 
the whole operation is  closely monitored. 

Another instance of the scarcity of training samples 
occurs in on-line speech recognition, where  each speaker is 
required, before using the system to enter data, to repeat a 
string of words in a sample vocabulary. It is  evidently 
advantageous to keep this interlude to a minimum. 

Finally, there are many applications where shifts in the 
nature of the pattern vectors during operation can be 
readily distinguished from the distortion introduced by the 
more uncorrelated effects of noise.  People’s  voices change 
more from day to day than in a given hour, common 
carrier telephone channels vary their characteristics from 
call to call but remain relatively constant during a transmis- 
sion, and a typewritten page usually contains material in 
only a single typeface (unknown a priori) among the 300 
or so currently marketed by United States typewriter 
manufacturers. 

In such cases  it  is often possible to take advantage of the 
“local consistency” in the  data  to improve the average per- 
formance. Theory, unfortunately, helps  us  even less in this 
endeavor than in the design  of  “fixed” machines; we shall  be 



846 PROCEEDINGS OF THE IEEE, MAY 1968 

forced more and more to resort to empirical proofs of the 
usefulness of various algorithms. 

An early (1957) example of simple adaptive behavior is 
supplied by MAUDE, a machine for the automatic rec- 
ognition of hand-sent Morse code [Gold ’58,  Selfridge  ’601. 
Only one variable, time, is measured, and there are only 
three classes of spaces and two  classes of marks, but  addi- 
tional structure is introduced by the statistical dependence 
of  successive symbols (marks or spaces). The problem is that 
some operators’ dots  are longer than  other operators’ 
dashes, and even  with the same operator the duration of 
the symbols tends to shift through the course of the trans- 
mission. 

MAUDE begins the analysis of a new  message  with a 
set of  fixed rules such as “the shortest of six successive 
spaces is almost always a symbol space.” On the basis of 
these rules the first few symbols are identified, and thresh- 
olds are established to recognize subsequent symbols by 
their duration. A running average is kept of the duration of 
the symbols assigned to the various classes, and the thresh- 
olds are continuously readjusted to improve the separation 
between the classes. The system also makes use of the con- 
straints imposed by the permissible symbol sequences in  the 
Morse alphabet,  but higher-order context is not exploited 
for  error correction or detection. 

These methods have  been applied in a very sophisticated 
manner to digital data transmission over common carrier 
lines  [Lucky ‘65,  ’661. The principal limitation on the rate of 
transmission of digital data  on voice telephone channels is 
intersymbol  interference. In this condition the tails of ad- 
jacent pulses  mask the pulse being detected. The adaptive 
equalizer, which is a technique of time domain filtering, 
keeps the  distortion of the pulses by the channel to a 
minimum by computing the tendency to commit a decoding 
error before an  error is actually committed. In  addition to 
the systematic distortion of the waveforms, the equalizer 
must also cope with random bursts of noise. 

During the recent upsurge of interest in unsupervised 
learning, the convergence properties of a number of algo- 
rithms operating on a sequence of unidentified samples 
have been theoretically studied [Cooper ’64, Fralick ’65, 
Scudder ’65, Patrick ’66, Braverman ’66’1. This problem is 
closely related to the decomposition of mixture distribu- 
tion functions, with the  added difficulty that  an  “optimal” 
solution is desired at each step, rather than only after all the 
samples have  been presented. Successful solutions require 
restrictive assumptions such as that the distributions of the 
two  classes  differ only by a translation,  or  that  the distribu- 
tions belong to a specific  family. 

Some of  these algorithms have  been programmed for a 
few simple cases (usually onedimensional Gaussian dis- 
tributions), but much work remains to be done before they 
can be applied to “practical” recognition problems. The 
difficulties inherent in the various approaches have  been 
thoroughly analyzed in a survey paper on unsupervised 
learning [Spragins ’661. 

It is clear that information other  than the identities of 
training samples may  be  used to improve the performance 

of a categorizer. In  addition  to the examples we have  seen 
already, this information may take  the form of context be- 
tween  successive patterns [Raviv ’67, Uesaka ’671, some 
long-term or overall success criterion [Widrow ’641, 
statistical confidence in the decision of the categorizer 
[Ide ’661, or  the degree of resemblance between the distri- 
butions of the unknown patterns  and some prior identified 
training set  [Sebestyen ’621. 

We shall now look at two intuitive, definitely nonoptimal 
methods of self-adaptation which  have  given promising re- 
sults on reasonably realistic pattern sets. Both of these 
methods are based on the expectation that the initial 
parameters of the categorizer already permit fairly accurate 
classification, and  that only slight adjustments are needed 
for further improvements. 

An  Adaptive  Algorithm for Batched  Data 
When the data  are divided into sets exhibiting internal 

similarity but with  differences from set to set, the method 
illustrated in  Fig. 5 may  be  useful. The original weight 
vector E,, and the corresponding hyperplane H,, are calcu- 
lated from an identified training set by one of the formulas 
given  in Section 11. For concreteness, (1) will  be used, so 
that H, is perpendicular to  the line joining the centroids of 
the two distributions. 

The first of the unknown sets,  whose distribution may 
differ considerably from the training set, is  now  classified 
by H,, as shown  in  Fig. 5. The centroid of the patterns 
assigned to class C’ is pi, while the centroid of the patterns 
assigned to class Cz is at. 

A new  weight vector El =pi - p: is  now calculated and 
all  the  patterns  are classified again. The process  is iterated 
until there are  no further changes in class membership. 
More formally : 

1 p’ = - x. 
N’ i d  ’ 

pj’ = ~ 

N - N ’ i ,  1 xi 
w. = p! - a? 
8. = 1 1 -  

J 2 wjl 

1 

J J J  

where id2 iff Ej- . X i 2 t l j - 1 ,  N‘ is the number of integers 
in 0, and N is the total number of samples in the set being 
processed. 

On the next batch of data, which  may bear little resem- 
blance to the last set, Eo is  used again for the first pass. 
The new  weight vector is then developed  completely in- 
dependently of the previous batches. 

While  it is easy to show that the process  will not oscillate, 
the general conditions under which  it  will  converge to  the 
correct classifkation are  not known. Casey has shown that 
a sufficiency condition for  two  classes uniformly distributed 
over spheres is that PZ1fPl1 <P22/P12, where the first 
superscript indicates the  true class, and the second the class 
assigned by w,. Thus P1’ is the fraction of patterns of class 
C’ assigned to class Cz by the initial categorizer. 
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(E) (dl 
Fig. 5 .  Adaptive batch processing. (a)  Hyperplane H, generated by 

bisecting the difference of the means on design data.  (b), (c), and (d) 
Adaptation on test data. The large dark  dots represent the centers of 
gravity of the  patterns in the shaded and unshaded areas. New planes 
are formed perpendicular  to the vector between  these points. H ,  results 
in 10 errors on the test data, H ,  in 6 errors, H2 in 3 errors, and H 3  
in 0 errors.  Thus H4 would be the same as H3 and the process  would 
come to a  halt in the next step. 

Fig. 6 .  Continuous tracking. The arrows show a  drift in the  populations 
which is being compensated by adapting the hyperplane. The  weight 
vector is changed only when patterns fall  in the shaded zones; otherwise 
the decision is considered either too  uncertain, or so secure that  it is 
not necessary to change the plane. In the first step  (top), f, is assigned 
to C’, so the new weight vector W, is proportional  to W,+f , .  In the 
next step  (bottom),  a new pattern f, is  assigned to C,, resulting in a 
weight  vector W 2  proportional  to W, -X2. The rotation of the plane 
from H ,  to H2 is seen to conform to the needs of the changing dis- 
tributions. 

An  Incrementally  Adaptive  Algorithm 
The error-correcting algorithm described earlier [see 

(6)] has been adapted to provide continuous  updating  of 
the components of the weight  vector  in  classdying  slowly 
changing  data. 

Only patterns classified  with a certain margin of safety 
are used to adjust the weight  vector.  When a pattern is 
either rejected  (i.e.,  it  falls  in the “no man’s land” immedi- 
ately adjacent to the current hyperplane between the 
classes), or so strongly assigned to a class that it does not 
make sense to modify the parameters  to change its projec- 
tion, the weight  vector is not altered. When the projection 
of the pattern falls,  however,  between the “reject” and the 
“safe” thresholds, the weight  vector  is  modified  by adding 
the pattern  to (if it is in  class 1) or subtracting it  from (if in 
class 2) the normalized weight  vector. A few  cycles  of this 
procedure are shown in  Fig. 6. 

This algorithm is described by the following equations: 

W i + l  = wi + s i x i  

= ei + si 
si = + 1 iff Oi + c1 < wixi Oi + c2 (10) 
si = - 1 iff Bi - E~ -= wixi < Oi - c1 
si = 0 otherwise. 

The choice of E~ and c2 is  critical to the success of the 
algorithm. In the absence of theoretical arguments  to guide 
the choice of thresholds, it is encouraging  that the same 
and c2 were  found to be adequate on a wide  range of data 
sets including both  spoken  and  handprinted  numerals 
[Ide ’661. 

IV. CLUSTER ANALYSIS 
So far we have  discussed  assigning patterns to predeter- 

mined  classes. In some problems, however,  even the number 
and  nature of the classes, if any, are unknown.  How  many 
distinct varieties of handprinted 2’s are there?  How many 
different  types of clouds can  one observe in satellite photo- 
graphs? Do the accumulated electrocardiac records of 
thousands of patients contain a clue to the possible  varieties 
of heart disease? Can the electrical  activity monitored by a 
single electrode implanted in the optic nerve be analyzed to 
reveal the number of characteristics of active fibers? Would 
a two-level procedure effectively  reduce  search  time in the 
automatic identification of Chinese ideographs? These and 
similar questions form the object of the range of techniques 
known as cluster analysis, numerical  taxonomy,  mode 
seeking, or unsupervised learning. 

Aside from their common quest for some manner of 
grouping, the outstanding feature shared by the above ques- 
tions is  vagueness. The  proper  measure of similarity to  be 
used for grouping  samples  cannot be rigorously deduced 
from the teleological  guidelines  offered in these applications. 
In the absence of an objective  performance criterion, similar 
to the error rate in pattern classification, a universal stan- 
dard  cannot be formulated for clustering methods. 

The examples in Fig. 7 illustrate both “easy” and “df i -  
cult” groupings in two dimensions; our  modest goal is to 
find automatic  methods for delineating the “easy” clusters 
in higherdimensional spaces. The difficulty  is that cluster- 
ing is so much a “gestalt” operation, particularly well suited 
to  the human being’s ability to consider multiple relation- 
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* *  

correlation ?:Xj ; this is sometimes normalized by the num- 
ber of ones in one  or  the other of the vectors, or  the  arith- 
metic or geometric mean of the number of ones  in both 
vectors. A somewhat more complicated measure with some 
desirable information theoretical properties but without all 
the attributes of a metric is the  Tanimoto criterion [Rogers 
'601 advocated for clustering in [Ornstein '651 : 

A number of other similarity measures are cataloged in 
an excellent  survey on multidimensional data analysis 
[Ball '651. 

Fig. 7. Examples of clusters in two dimensions.  Some of the  difficulties 
encountered in delineating  clusters are: bridges  between  clusters 
caused by  strays (b) and perhaps (c);  nonspherid covariance  matrices 
(d); nonproportional  covariance  matrices (e); unequal cluster  popula- 
tions  and  spurious peaks in the  projected  distributions caused by small 
sample size (f); and  linearly  nonseparable  clusters (g). In real applica- 
tions  all of these conditions may occur simultaneously; the  ideal  situa- 
tion  shown in (a) is the exception rather  than  the  rule. 

ships simultaneously. What a pity our power  fails  us  in 
hyperspace ! 

In digital computer simulation, on the other hand, we 
must compute the pertinent relations pair by pair  and com- 
ponent by component, and then study their relations to  one 
another. Raising the dimensionality usually imposes no 
penalty other  than a linear increase in processing time. 

Distance  Measures 
Gestalt or not, the first step in clustering a data set  is to 

define some measure, albeit arbitrary, of the similarity be- 
tween  two  samples. In order  to apply  some of the previous 
concepts about  the manipulation of objects in hyperspace 
to this problem, it  is convenient to choose a measure of 
similarity with the properties of a distance  function. These 
properties correspond to our intuitive notions of similarity 
with respect to symmetry and the triangle inequality. In 
any case, it is always possible to imbed the objects in a 
metric space in such a way that the rank order of the pair- 
wise distances corresponds to  that of the similarities 
[Shepard '62, Kruskal '641. 

For  patterns with numerical components, a simple dis- 
tance measure is the mean square difference or Cartesian 
distance 

diZj = (Zi - Xj)'(Zi - Ej). 
This measure is proportional  to the correlation between the 
two  vectors normalized by the mean square length. When 
the relative sizes of the components have no intrinsic sig- 
nscance, it  may be useful to transform the pattern space to 
normalize the mean square distance between the pattern 
pairs along every coordinate axis before computing the 
similarity relations [Sebestyen '621. The relations of several 
other invariant criteria for grouping data have  been studied 
both analytically and experimentally [Friedman '66, Rubin 

For binary patterns, the most common measure is the 
'661. 

Clustering Methods 
The principal objective of cluster analysis is to gain more 

information about  the structure of a data set than is  possi- 
ble by more conventional methods such as factor analysis 
or principal components analysis. The level  of detail we 
can reach depends on the dimensionality of the data  and 
the number of samples we propose to examine. 

When  it  is  necessary to minimize the number of distances 
computed, and there is reason to believe that the individual 
clusters are tight and widely spaced, the chain method may 
succeed [Bonner '62, '643. Here the lirst sample is taken as a 
representative of the first cluster. The distance of the second 
sample to  the first sample is computed, and if this distance 
exceeds a preset threshold, a second cluster is started. 
Otherwise, the second sample is also included  in the first 
cluster. In like fashion the distance of each new sample to a 
representative of every established cluster is thresholded, 
and a new cluster is started only if none of distances is 
below threshold. It is not, of course, difficult to think of 
examples where this procedure fails. 

When  sufficient computing power  is available to calcu- 
late the distance between  all of the iN' pattern pairs, the 
similarity  matrix approach gives better results. Here also 
the distances are thresholded. The similarity matrix is a 
symmetric N x N matrix which contains ones in the entries 
corresponding to below-threshold pattern pairs, and zeros 
elsewhere. The similarity matrix is  now  considered as the 
characteristic matrix of an undirected  graph, of which  all 
the disjoint subgraphs must be determined [Abraham '621. 
There are several algorithms which do this efficiently 
[Baker '62, Warshall '621. 

With lo00 patterns of 100 components each,  which con- 
stitutes a relatively  small problem, 5 x lo7 multiplications 
and  additions  are required to compute the similarity matrix. 

Thresholding the distances is a rather coarse operation, 
and in general better results can be  achieved by working 
with the numerical values. When the expected number of 
clusters is known, a suitable objective is to partition the data 
set  in  such a way that the average scatter of the clusters is a 
minimum. Fortunately, there is a family of simple iterative 
algorithms which guarantee at least a local minimum in the 
mean distance of each sample from the closest cluster center 
mall '66, MacQueen '67, Casey '67l, Dorofeyuk '66, 
Braverman '66'1. 
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Let us denote the distance between  two  vectors ii and 6 
by d(ii, b), let the set of pattern vectors comprising the kth / 
cluster at the j th step be C;, and let the corresponding 
“cluster center” be $. The two steps of the algorithm are: 

1) Assign  every pattern vector x i  to one and only one 
cluster 

xi E C; iffd(xi, E;) = min d(zi, E! ). (12) c 
2) Define  new cluster centers \ 

:. :. 
<+ 1 3 1 d(Zi, q, 1) = ngn d@i, J) .  

FIE c: y Y,EC? 

The initial cluster centers may be specified by one of the 
procedures mentioned earlier, or even  set at  random. 
For d(ii, 6) = 12 - 61, the second step reduces to computing 
the mean vector of each cluster. Then the distance from  every 
pattern  to each new cluster center is computed and the cycle 
is completed by reassigning the patterns where  necessary. 
Since the mean distance between the patterns  and the ap- 
propriate cluster center decreases in both steps,  convergence 
is certain. 

Fig. 8 shows the action of the algorithm on three clusters. 
With arbitrary initial cluster centers, convergence takes 
three cycles; with a more fortuitous  start, one cycle would 
be  sufficient. 

The choice between a hierarchical and a single-level pro- 
cedure depends on  additional knowledge about the struc- 
ture of the sample set. Thus, we could partition a set into 
32 clusters either directly or by successive dichotomies. 
Hierarchical methods are particularly appropriate in 
taxonomic applications [Michener ’57, Sokal ’631. It is 
also sometimes advantageous, in order to conserve process- 
ing time, to split the  data  into a number .of very small 
groups, and then treat each group  as a single sample as 
represented by its mean vector. 

In some applications overlapping clusters are permissible; 
a single pattern may  be  assigned to several clusters. Algo- 
rithm (I  2) is  still applicable if in step l) the pattern assign- 
ment is determined by thresholding rather than minimiza- 
tion. 

Mavericks, or patterns mutilated by the transducer, 
bursts of  noise, keypunch errors,  and the like, present a 
far more serious problem here than in conventional rec- 
ognition methods. When they are  far removed from the 
main body of data, they monopolize cluster centers, while 
if they fall  between legitimate clusters, forming bridges, 
they  may cause spurious mergers.  Special rules, aimed at 
eliminating pocket boroughs at one end of the scale, and 
cartels at the other,  are required to deal with these 
anomalies. 

Heuristics are also useful  when the number of clusters is 
not known in advance. Here new clusters must  be created 
to accommodate samples far from the existing ones, and old 
clusters must be destroyed when their members have  been 
taken over by the new constellations. The “birth”  and 
“death” processes are usually based on a “one change at a 
time” philosophy which can lead to trapped states, but 

Fig. 8.  A convergent  clustering  algorithm.  The  black dots are  the  pattern 
vectors, x is the  variable  cluster  center,  and  the solid lines represent  the 
partitioning  boundaries. At  each  step  the  cluster  center  moves to the 
center  of  gravity of the corresponding  partitioned  samples. This defines 
a new linear boundary halfway between each  pair of cluster  centers. 
The  process  terminates  when the  cluster  centers  become  coincident 
with  the  true  centers of gravity  of  the  clusters  (indicated by circled dots). 

anything more complicated is computationally prohibitive 
[Ball  ’66, MacQueen ’671. 

In general, algorithms based on the minimization of a 
distance function [Ball  ’66, Fortier ’65, MacQueen ’661 are 
most appropriate for fairly isotropic clusters [Fig. 7(b), 
(c),  (e), and (01,  while methods maximizing the minimum 
distance between the members of two distinct clusters 
[Bonner ‘62, Abraham ’621 are good for dense, clearly sep- 
arated clusters of whatever shape [Fig. 7(d) and (g)]. 

V. FEATURE EXTRACTION 
In some pattern classification problems (and also in data 

sets intended for cluster analysis) the  patterns in the various 
classes (clusters) are so intermixed that only a highly non- 
linear method can separate them to the required degree of 
accuracy. Rather  than resort to the few nonlinear algorithms 
available, some workers prefer to arbitrarily divide the 
process into two stages, the first of  which consists of sim- 
plifying the problem sufficiently to render it tractable for 
the second. This is particularly helpful  in multiclass prob- 
lems. 

The design of the first, or feature extraction, stage may be 
approached from two points of  view. Either one attempts 
to transform the sample space in such a manner that  the 
members of each class exhibit  less variability and the rela- 
tive separation between the classes is increased, thus allow- 
ing the use  of a simpler decision mechanism, or one reduces 
the dimensionality of the sample space, permitting the 
application of more complicated decision schemes. Ideally 
one could accomplish both objectives  with the same trans- 
formation,  but unfortunately the transformations ap- 
propriate  for the first objective generally increase the 
dimensionality. 

The chief theoretical difficulty in feature extraction is 
that the features must be evaluated in terms of the decision 
stage rather  than on their own. Convenient numerical 
criteria like error  rate can only be used to evaluate the whole 
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system, thus the performance of the optimum (or best 
available) second-stage classifier should really  be computed 
for  every measurement procedure under consideration. 
However,  some shortcuts are available, and will be men- 
tioned in a later section. 

Several current approaches to feature extraction in the 
broad sense  will  now  be  reviewed without much regard for a 
common theoretical framework. 

Preprocessing 
The first step in preprocessing, object  isolation, is  all too 

often ignored in laboratory studies. Yet touching characters 
are responsible for the majority of errors in the automatic 
reading of both machine-printed and handprinted text, the 
segmentation of  speech remains an unsolved problem, and 
the recognition of chromosomes and blood cells, and of 
objects of interest is reconnaissance photographs, is greatly 
hampered by shortcomings in this area. 

In simpler tasks, such as reading typescript, heuristic 
algorithms based on the relative uniformity of size, texture, 
or spacing of the patterns  are often successful  [Brain ’66’, 
Hennis ’661. In general, however, it seems that the isolation 
problem can only be solved by including it  in a loop with 
the recognition process by trying different partitionings of 
the overall pattern until the individual components “make 
sense.” The heuristic techniques involved here are now  be- 
coming known under the name of scene analysis. 

More success has been  achieved  in noisefiltering. Simple 
filters remove isolated dots in scanned patterns or extra- 
neous noise outside the normal frequency range of speech, 
while more sophisticated filters can restore smudged areas 
in fingerprints and fill in long gaps in particle tracks in 
bubble chamber photographs [Wadsworth ’661. Averaging 
operations  are used to good advantage in studies of evoked- 
response electroencephalograms and single-fiber prepara- 
tions [Moore ’651. The noise encountered in pattern rec- 
ognition applications (as elsewhere!) is seldom white; un- 
welcome correlations are introduced through improper 
registration and limitations of the transducers. 

Size and  shear normalization for two-dimensional pat- 
terns can be carried out rather elegantly by applying a 
linear transformation which transforms the 2 x 2 moment 
matrix of the pattern  into the identity matrix [Casey ’672]. 

The corresponding time  scale normalization in  speech  is 
more difficult,  since a linear transformation is usually in- 
sufficient. Variations in the relative lengths of the differ- 
ent segments of a word depend not only on the speaker, 
but also on the precise nuance he  wishes to express 
Beetle ’671. 

Amplitude normalization may be accomplished by auto- 
matic gain control  (AGC) of the overall speech waveform. 
More sophisticated methods use ratios of the frequency 
components, usually obtained by taking logarithmic dif- 
ferences. 

Complex images can be transformed by the iterative 
application of simple neighborhood operators whose output 
at each step depends only on the values of their nearest 
neighbors. Propagation effects ensure that  the final  value at 

each point comprises information originating at every 
point of the original picture. These methods are suitable 
for following tracks (as in cloud chamber photographs), 
tracing ridges and valleys,  defining boundaries, and  obtain- 
ing certain other geometric and topological features of the 
patterns [Narasimhan ’ 6 4 1 .  For binary patterns, a skeleton 
characterizing the general shape of the pattern may  be con- 
ceived  of as  the locus of mutual extinction of ‘‘grass  fires” 
simultaneously ignited at every .zero-one transition in the 
image  [Blum ’67, Rosenfeld ’66, Pfaltz ’671. 

Contour information may also be obtained more directly 
by means of gradient methods. A convenient technique of 
scanning line drawings (such as handprinted characters) is 
provided by the flying-arc curve follower. Here the output 
is a coded version of the  path followed to track the curve, 
rather than a point-by-point representation of the whole 
retina [Greanias ’631. 

Registration 
There are  at least three common approaches for taking 

advantage of the fact that in some pattern recognition prob- 
lems, such as character and spoken word recognition, some 
members of each class differ from one another only by a 
translation of the coordinate axes. 

The first approach is preregistration. In character rec- 
ognition edge registration (after removal  of stray bits), 
center of gravity registration, and median registration 
(which  is faster on a digital computer) have  been used. In 
speaker verification it is customary to select phrases with an 
initially rapidly rising envelope to trigger the sampling 
apparatus. 

Another approach is to try all the measurements, what- 
ever  they are, in every possible position, and use the number 
of “hits” or a thresholded function thereof,  in the final 
feature vector. This is the path taken in Rosenblatt’s 
similarity  constrained  perceptron [Rosenblatt ’62l], and in 
many template matching schemes. There is some physiolog- 
ical  evidence to show that the mammalian visual cortex also 
contains cells  which are responsive to the same feature 
occurring almost anywhere on the retina [Hubel ’621. An 
efficient hardware implementation for binary patterns  con- 
sists of shifting the digitized patterns  through a one- or two- 
dimensional shift register, and using the outputs of the cells 
to drive the measurement logics  [Andrews ’62, Booth ’62, 
Griffin ’62, Rabinow ’621. Fig. 9 shows this configuration. 

The third approach consists of using translation invariant 
measurements. The best-known class of translation in- 
variant measurements are the autocorrelutionfunctions. The 
first-order autocorrelation function, defined  in one dimen- 
sion by 

cpm = j x ( t )x ( t  + w ,  (13) 

was first applied to  character recognition in 1958 [Honvitz 
’611. Its main shortcoming is that it  is not a one-to-one 
transformation; several patterns, differing in more than just 
translation, may  have the same autocorrelation function. 

This difficulty is avoided by use of higher-order auto- 
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Fig. 9. Cylindrical  representation of a  shift  register  for  two-dimensional 
patterns.  The  shift  register,  conveniently  thought of as wrapped around 
a  cylinder, has direct (+) and  inverted (-) outputs to allow  the  extrac- 
tion of features  comprising  both  black  and  white points. The  feature 
shown  is  responsive to white-black  vertical  edges  over  the whole field. 
Up to 100 such  measurements  may be coupled to the register.  The 
buffered outputs  serve as the  input to a  linear  categorizer  or  other 
decision device. 

correlation functions, which can be  shown to be unique, 
for n 2 2, except  for translation [McLaughlin '671 : 

43fb f2, ' . . , f,) 

= x(f )x( f  + ?,)x@ + S 2 ) .  . .  x ( f  + f,)df. (14) s 
If the inner product is  used  for  classification in the auto- 
correlation space, the immense amount of computation 
necessary to obtain these transforms for large n can be 
reduced through the relation 

Even this calculation is impracticable for a large number of 
patterns  and classes, but good recognition results have  been 
recently obtained on small alphabets [McLaughlin '671. It 
seems  even  the  simple correlation technique is adequate for 
classification in these  very high-dimensional spaces. 

Other translation invariant functions which  have  been 
used to characterize patterns  are the Fourier transform (here 
also computational  shortcuts are available [Cooley '651) 
and higher-order central moments [Alt '62, Hu '621. Un- 
fortunately they  lack the desirable property of uniqueness. 

Invariants can also be derived for scale changes and for 
rotation. 

Intuitive  Measurements 
An enormous  amount of ingenuity has been applied over 

the years to devising  "good" measurements for various pat- 
tern recognition tasks. Since the measurements favored by 
different investigators are seldom compared on the same 
data sets, objective evaluation of the merits of the different 
systems  is  difficult. The following  is  merely a sampling of the 
range of techniques available. 

Simple geometric  features, such as straight lines,  edges, 
arcs,  comers,  and circles  of various sizes, can be detected 

Fig. 10.  Masks  for  extracting  geometric  features.  One  hundred  features 
are obtained  simultaneously by  means of this  mask plate,  a fly's eye 
lens  assembly,  and  a  set of photocells. A  more  recent  version of the 
apparatus  with lo00 apertures  is  responsive  to  elementary  features  such 
as  black-white  edges in various  orientations in  different regions of the 
object image. The  device  was  developed  at  the  Stanford  Research  Insti- 
tute  under the  sponsorship of the U. S. Army  Electronics Command. 

with mask-type threshold devices (Fig. IO). Topological 
information, such as the number of line segments  en- 
countered by a slice  of  specified orientation  through  the 
pattern  and the existence of bays, enclosures, indentations, 
and symmetry conditions, is  easily obtainable by means of 
logical tests on a digital computer [Doyle '60, Freeman '62, 
Kuhl '63, Perotto '63, Clemens '65, Munson '671. 

Stroke information is valuable in character recognition, 
especially on handprinted letters and numerals [Bernstein 
'64, Groner '671. The Iocation and kind of horizontal and 
vertical extrema have also been  used to good advantage 
[Teager '651. 

In tracking particles in cloud chamber and bubble cham- 
ber photographs, the intersections of tracks, and their de- 
gree of curvature, are significant. Intersections and end 
points can  be  readily found by means of iterative neighbor- 
hood operators of the kind already mentioned [Mc- 
Cormick '631. 

Formant extraction, or localization of the ridges  in the 
energy-frequency-time spectrum, is a common technique 
in speech recognition. To eliminate variations due to slow or 
fast speech, samples can be obtained only  following marked 
transitions [Flanagan '651. 

Texture information, or the relative constancy of gray 
levels, has been  used to  separate woodlands, cultivated 
areas, urban centers, and lakes in aerial photographs 
[Hawkins '661. The size and location of the peaks in the 
gray level histogram of blood cells  is  sufficient to discrimi- 
nate several  types prewitt '671. 

Heuristic methods such as these are largely responsible 
for almost all of the pattern recognition devices  which  have 
been incorporated in practical systems to  date. 
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Random Measurements 
We have  seen that a nonlinear decision boundary in the 

original sample space appears as a linear boundary in the 
space spanned by the  products of the original variables. In 
general, nonlinear combinations other  than products also 
exhibit the same effect. It is often possible to solve linearly 
nonseparable problems, without increasing the dimen- 
sionality, by means of a random nonlinear transformation. 

One example of such a transformation is furnished by the 
layer of A-units in the simple perceptron (Fig.  11). Each 
A-unit implements a threshold function. It has been shown 
that the relative effectiveness  of the A-units is a strong func- 
tion of the  parameters guiding the  random assignment of 
input points [Rosenblatt '621. Some problems, particularly 
those involving topological distinctions, cannot be  solved 
with any assignment [Papert '671. 

Random  transformations  are also helpful in reducing the 
statistical dependencies among  the original variables. 
Random n-tuples  have  been  used  by  Bledsoe and Browning, 
and by Kamentsky and Liu, in improving the performance 
of maximum likelihood classifiers  [Bledsoe '59, Kamentsky 
,631. In these instances the improvement was obtained 
despite a sigmficant decrease in the dimensionality of the 
space. 

When we see the gains obtained with random features, 
we inevitably wonder how much more we could improve 
matters by judicious selection. This brings us to  the subject 
which  follows. 

Selection  Algorithms 
We must first dispose of the expectation that there exists a 

selection algorithm by means of which we can find an opti- 
mal  set of measurements of the type discussed above. Let 
us consider 7-tuples  defined on 20 x 20 binary patterns. 
Then, even if we restrict ourselves to sets of only 100 mea- 
surements we must evaluate no less than 
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Fig. 1 1 .  Simple percqtron. The  input  vector  appears  on  the  layer of 
sensory  units.  Feature  extraction  may be considered as taking place  in 
the associative  layer.  The  result of a  linear c a t e g o h  scheme  is  the 
output  of  the response unit.  Although  the  simple  perceptron was 
originally  intended merely as the  next  step  above  a  single  threshold 
unit in a  hierarchy of functional blocks  to be used  in  brain  modeling, 
it  has been extensively  applied to pattern  classification tasks. The 
optimal  assignment of origin points and thresholds for  the  A-units 
remains  an  unsolved  problem. 

for consideration is 
m 

Z(y3 = lg m + P(yk = 0) 1 P(c'lyk = 0) 1g P(C'(yk = 0) 
i =  1 

m 

+ P(yk = 1) 1 P(C'lyk = 1) lg P(cilyk = 1) (16) 
i =  1 

where yk is a binary measurement and m is the number of 
equiprobable classes. 

This gives a measure of the number of class pairs sepa- 
rated or partially separated by the n-tuple yk. Its value  is 1 
if the measurement is  always "on" for  half the classes and 
"off' for the other half, and 0 if it is '-'on" with the same 
probability for  every  class. 

In making up  the final measurement set, the information 
measure I is supplemented by the pairwise distance (not 
really a distance at all !) 

Df = Ilg P(yklci) - lg P(yklc')I (17) 

which  is summed over k to yield an indication of the class 
pairs most in  need of additional separating power  [Liu 
'641. 

A 

distinct sets ! Another measure of pairwise separation is the mean-to- 

hope to sample more than an infinitesimally  small fraction 
of all  possible  n-tuples. This argument is sometimes used 
against expanding the search to more complex, and there- 
fore more numerous, measurements, such as threshold where 

Of course, even  with the fastest computers, we cannot ratio LBakis '681. 
.. (Pi - P{)Z F;i = 

Pi( 1 - Pi)  + Pi(1 - Pi )  (18) 

functions. 
The measurements should not be selected individually 

without regard for other measurements already included or 
about  to be included in the set, because we might be extract- 
ing redundant information, or even duplicating measure- 
ments. Nevertheless,  most  selection  schemes  assume that 
the measurements are independent. Because of the large 
number of measurement sets to be tried in order to even 
skim those available, an easy-to-evaluate criterion is  es- 
sential. 

An information  measure  used  by  Liu to select  n-tuples 

All three of these measures can be used either to build up 
a measurement set from a pool of available candidates, 
or to  pare down the pool by dropping the least promising 
members.  Estes has shown that under certain liberal as- 
sumptions the two procedures lead to equivalent results 
[Estes '641. There is ample empirical evidence that such 
methods are far superior to purely random selection, al- 
though they are  not as good as selection by means of a 
direct performance criterion. 
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(b) 
Fig. 12. Electroencephalograms  (EEG's)  and  principal  components 

analysis.  (a)  Examples of spontaneous  electroencephalograms ob- 
tained  with  the  subject's  eyes  closed. (b) "Eyes  open" EEG's. (c) 
The  first six principal components  (eigenfunctions) derived  from 
a  sample  containing  both  types.  The  data were  supplied  by  the Mayo 
Clinic,  and  processed by Drs. J. Raviv  and D. Streeter of IBM 
Research. 

Dimensionality  Reduction 
Although  some of the feature extraction methods we 

have  examined result in a decision space of dimensionality 
lower than the original sample space, the phrase "dimen- 
sionality reduction"  is  usually  reserved  for linear trans- 
formations. 

The easiest approach,  that of principal components analy- 
sis,  is to ignore the labels of the samples  [Wilks '601. The 
transformation then emphasizes the directions in  which the 
samples  show the greatest scatter. This is equivalent to 
finding the subspace  in  which the original vectors may  be 
approximated in the least mean square error sense. It may 
also be thought of as generalized spectral  analysis. 

If the patterns  are discrete versions of time functions, the 
coordinates  obtained by solving (19), below, are  also dis- 
crete time functions, orthogonal with respect to a weighting 
function, but not confined to sine  waves. An example is 
given  in Fig. 12. 

The method is also known as Karhunen-Loeve analysis 
and principal factors, and is sometimes included under 
discriminant analysis. The eigenvalue equdtion  which  must 
be solved  is 

( A  - iZ)W = 0 (19) 

where A is the sample covariance matrix. 
The basis of the transformed space consists of the eigen- 

vectors associated with the largest eigenvalues of (19). If 
we  wish to transform  down to m dimensions, the eigen- 
vectors of the m largest eigenvalues are taken. To find the 
coordinates of a given sample, it is  simply projected onto 
the eigenvectors : 
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where y ,  is the kth  coordinate of the ith sample in the trans- 
formed space and Wk is the eigenvector associated with the 
kth eigenvalue of (19). 

A disadvantage of this procedure is that it does nothing 
to preserve the separation between the classes.  As  we 
eliminate the  information  contained in the subspace 
orthogonal  to  the reduced space, we  may  be throwing the 
baby out with the  bathwater. 

To  take  into  account  the  distribution of the classes,  we 
may resort  to the  generalized  eigenvalue method presented 
in Section 11, the subsection on  “Discriminant Analysis,” 
and use  several eigenvectors, instead of just  the first 
[Sebestyen ’62, Raviv ’651. 

A more sophisticated  procedure, which attempts  to mini- 
mize the  error  rate  obtained in the reduced space with linear 
discriminants  rather  than  just  the  ratio of intraclass  scatter 
to  interclass scatter, has been  developed  [Casey ’65l]. The 
transformation is obtained by means of a  gradient  tech- 
nique on a power  series expansion of a lower bound on this 
error rate. It is assumed that  the projection of the samples on 
the normal  to  the  optimum  hyperplane  has  a  Gaussian dis- 
tribution. This assumption is somewhat less  restrictive 
than  requiring  Gaussian  distributions  to begin with. 

Linear dimensionality reduction techniques are most ad- 
vantageous when the number of pattern classes  is  large. 
Otherwise, computing the linear combinations for each 
sample offsets  any  gain in computation which  may be 
obtained in the decision stage. 

VI. EXPERIMENTS IN PATTERN RECOGNITION 

Almost all of the  methods discussed  in the previous sec- 
tions have  been subjected to  a  certain  amount  of experi- 
mental investigation, mainly through digital computer 
simulation.  Nothwithstanding, really  large-scale,  well de- 
signed experiments on realistic data sets are still the excep- 
tion  rather  than  the rule. 

This section represents  an  attempt  to give the reader 
some idea of the  nature of the experimental data sets and of 
the  results  obtained in  several possible applications of pat- 
tern recognition techniques. Although only one example 
has been  selected from each area,  the degree of achievement 
in the various  applications may  be taken as an  indication of 
inherent difliculty rather  than of the relative  skill of the 
experimenters. One of the main accomplishments of the 
past decade has been, in fact, the establishment of a gross 
ranking of the feasibility of proposed recognition tasks. 

We have seen that, in a large number of applications, 
obtaining  suitable dab in computer-readable form is the 
main source of difficulty. In others, as in electroencephalog- 
raphy  and  other bmmedical applications,  evaluation of the 
results is the critical problem.;  comparison  to  human  stan- 
dards, especially at intermediate stages of processing, is by 
no means necessarily the most suitable criterion. 

It is hoped that the rather sketchy descriptions of actual 
experiments which are  to follow  will  serve to emphasize 
these and  other  procedural difficulties common to  large 

segments of pattern  recognition, as well as to illustrate 
positive achievements. 

Impact Printed  Characters 
The  study described here  [Liu ’661 reports  performance 

figures on a  data set comprising  about 70 000 typewritten 
characters (Fig. 13)  in 13 different type styles, with  a full 
range of ribbon life, and several document sources for each 
font. 

Double-spaced samples of both upper and lower case 
are scanned on a  cathode ray tube scanner controlled by a 
small general-purpose  computer.  The scanning program 
takes  care of character  localization,  character  centering, 
and linewidth control by means of video threshold  adjust- 
ment. Ninety-six n-tuple measurements are extracted with 
special-purpose digital hardware.  The  resultant  feature 
vectors are categorized by means of a variety of decision 
algorithms. 

Error  rates range from 0 percent substitution  errors with 
0.1 percent rejects on fonts which  were represented in the 
design material to 7.5 percent errors  and 18 percent rejects 
on new fonts with marked stylistic  eccentricities. 

A two-level decision scheme  is  used to conserve computa- 
tion time. It is shown that the number of candidates re- 
tained in the first level affects the overall error by several 
orders of magnitude. Multiple hyperplanes per  class  speci- 
fied  with  low accuracy (few bits) are compared to single 
hyperplanes specified with high accuracy. The piecewise 
linear  boundary is superior when the total number of bits of 
storage is the same; this is no  doubt due to the multimodal 
structure of the  data. 

The  authors  properly  point  out  that  although  a large 
data set was used, the results  cannot be  readily interpolated 
to expected recognition rates  in  the field,  where segmenta- 
tion  errors,  poorly  adjusted  typewriters, overstrikes, and 
document  mutilation would  result in markedly inferior 
performance. The usefulness  of the study must be seen in 
terms of its application  to the optimization of parameters  in 
a  practical  multifont reading machine. 

Handprinted Characters 
Repeated demonstrations have  shown that  without con- 

text  even human recognition of handprinted  alphanumerics 
is surprisingly poor.  It takes  considerable  courage  just  to 
tackle the problem in  its  full  generality, without  restricting 
the material  to one or  a few writers or imposing severely 
handicapping stylistic constraints. 

One inexhaustible source of data consists of the output of 
computer  programmers;  in the investigation reported here 
[Brain ’ a 2 ]  FORTRAN coding sheets are used, as shown in 
Fig. 14. It is expected that copy produced under actual work- 
ing conditions would be considerably worse than  the test 
material,  but even  these ordered  alphabets offer  sufficient 
challenge for  the initial phases of the  investigation. 

Some 8000 characters, representing 10 repetitions of the 
&character FORTRAN alphabet by 16 writers, are scanned 
with a television camera and quantized on  a 24x 24 bit 
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F G H I J K L H N O P U R S T U V Y X Y Z A B C D ~  

f g h i j k l m n o p q r s t u v w x y z a b c d e  

Hermes-Techno  Elite 

F C H I J K L M N O P Q R S T U V Y X Y Z A B C D E  

I g h i J k l m n o p q r s t u v v x y z a b c d e  

Selectric  Elite 

I O E I J K L H l O P Q B S T U V Y X T Z A B C D ~  

i g h i j k l ~ n o p q r s t n r r x 7 r . b c d .  
Royal Manual Standard Elite 

F G H I J K L H N O P Q R S T U V W X Y Z A B C D E  

f g h i j k l n n o p q r s t u v w x y z a b c d e  

Selectric Adjutant 

F G H I J K L H N O P Q R S T U V W X Y Z A B C D E  

f g h i j k l m n o p q r s t u v w x y z a b c d e  

IBM Model B Artiman 

F G H I J K L M N O P Q R S T U V W X Y Z A B C D E  

P g h i j k l m n o p q r s t u v w x y z a b c d e  
IBM Model B  Courier 

V W X Y Z A E C D E F G H I J H L M N O P q R S T U  

v w x y z a b c d a f g h i j k l m n o p q r ~ t l ~  

Olympia  Senatorial 

F G ~ ~ I J K L M N O P Q R S T U V W X Y ~ A B C ~ E  

f g h i j k l r n n o p q r s t u v w x y r a b c d e  
Selectric  Delegate 

F ~ ~ H I J K ~ l l ~ ~ O P ~ R S T U V I ! X Y Z A B C D ~  

f g h i j k l w n o p q r s t ~ v w r y t a b c d e  

IBM Model B  Prestige  Elite 

F G H I J K L M N O P Q R S T U V W X Y Z A B C D E  

f g h i j k l m n o p q r s t u v w x y r a b c d e  

Remington  Regal  Small 

A B C D E F G H I J K L Y N O P O R S T U V W X Y Z  

IBM 403 

F G H I  J K L M N O P Q ~ S T U V W X Y Z A B C D E  

: ? h i  j i ~ l m n o p q r s ~ r u v w x y z a b c d e  

IBM Model B Dual Basic IBN 4 0 3  Inverted 

A B C D E F G H I  J K L M N O P Q R S T U V W X Y Z  

Fig. 13. Typefaces used in a multifont character recognition  experiment.  These fonts were  selected  be- 
cause  they span a considerable fraction of the variations encountered in a normal business environment. 
The sample includes  serif and sans-serif characters, roman  and gothic fonts, “special effect”  styles, 
as well as exaggerated aspect ratios. 

( 0 1  

(el ( f )  

Fig. 14. Handprinted characters on FORTRAN coding  sheet. An aug- 
mented FORTRAN alphabet is shown  by  each of twelve  different  writers. 
The range of variation is considerable  even though the writers  were  in 
no particular hurry. These data were  collected at the Stanford Research 
Institute under sponsorship of the U. S. Army Electronics Command. 

field. Eighty-four simulated edge detectors are applied to 
the patterns in each of 9 translated positions. The sets of 9 
feature vectors form the input to  a trainable linear classifier. 

The lowest error rates obtained on characters generated 
by writers not represented in the training set are of the 
order of 20 percent. Without  translation, this error  rate is 
roughly doubled. 

Further experiments are planned to improve the feature 
detectors, to evolve “specialist” hyperplanes for difficult 
class pairs, and to generate new heuristic measurements. 
First results with  these techniques are only moderately en- 
couraging, with error rates of 15  percent  for authors not in 
the training set, and 3 percent for “individualized” systems. 
It is  believed that it  is  necessary to  obtain  a recognition 
rate of about 95 percent to allow a FORTRAN-oriented con- 
textual error correction scheme to boost it to the -99 
percent required to compete with keypunchmg. 

Automated Cell Image Analysis 
CYDAC (CYtophotometric DAta Conversion) is a 

general-purpose sensor and transducer for microscopic 
images, developed at the University of Pennsylvania for 
quantitative studies of blood cells, chromosomes, and simi- 
lar preparations [Prewitt ’661. The instrument consists of a 
flying spot scanning microscope, a photometer, an analog- 
todigital  data converter and associated digital recording 
equipment, and  operator  controls  and monitoring systems. 
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The resolution of the scanner is about 0.25  micron in 
the plane of the specimen and the optical density is  measured 
on a 256-level  gray  scale. A 50-by-50-micron  field  is  sensed ; 
thus for a single sample 40 OOO eight-bit observations are 
recorded. 

For the classiication of leukocytes  (white  blood cells; 
see Fig.  15)  it appears that the  frequency  histogram of the 
optical density of the entire cell contains enough informa- 
tion to identify the four major types sought in  the study re- 
ported by Prewitt. The  components of the histogram  due 
to the nuclear and cytoplasmic  regions are readily isolated 
by finding the local  minima  in the distribution. Shape in- 
formation would be redundant. 

Altogether 35 different measurements were  investigated 
in the study. Examples  of  these are: cell  mean optical den- 
sity; skewness of the nuclear optical density distribution; 
nuclear optical density range; kurtosis of the cytoplasmic 
optical density distribution;  standard deviation of nuclear 
optical density; and other derived parameters of the overall 
optical density distribution. No single one of these parame- 
ters is sufficient to separate all four cell  types, but four pairs 
and 21 triplets are  adequate for linear discrimination of all 
the samples. 

The 50 leukocytes  used  in the study are sufficient  for  re- 
sults significant at the 95  percent  confidence  level. 

Particle  Tracking in Bubble Chambers 
PEPR (Precision Encoding  and Pattern Recognition) was 

initiated at the Massachusetts Institute of Technology  by 
Pless and  Rosenson in 1961 to automate the laborious 
process of locating and  measuring particle tracks in process- 
ing bubble  chamber  photographs. This tool is widely  used 
for studying the production  and interaction of  high-energy 
nuclear particles; at present about 10 OOO OOO frames of 
film are processed annually in the United States. A single 
frame is shown in Fig. 16. 

Although the PEPR system  now  requires manual pre- 
scanning of the photographs in order to locate the tracks, 
it is designed for eventual conversion to completely auto- 
matic operation. The most timeconsuming portion of the 
operation is,  in  any  case, accurate digitization. When the 
momentum of a particle must be determined  from the curva- 
ture of a very short segment of track, measurements accu- 
rate to better than  one  part in 30 OOO are necessary. 

The precise position of the track is determined by collect- 
ing the light transmitted through the film from a defocused, 
astigmatic spot on the face of an accurately calibrated 
cathode ray tube. The orientation of the axis  of elongation 
of the spot is swept through a full  circle at every location 
tested;  thus the system detects at once  not only the presence 
of a line  segment on the film, but also its direction. 

Once the spot latches onto a track, a multilevel  predictive 
program ensures that the track is  followed  with a minimum 
of wasted  excursions.  After rough  identiikation of the track 
parameters, the step size  is  decreased, and the locations of 
the various portions of the track are measured to within 
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Fig. 15. Four types sf white blood cells. These slightly  distorted photo- 
micrographs show the  differences in the  areas of the  image  at  various 
levels of the  gray  scale  which  allow  the  cell  types to be reliably  differ- 
entiated  with  relatively  simple  measurements.  Permission to use this 
illustration  was  granted by  Mrs. J.  M. S. Prewitt of the University of 
Pennsylvania. 

about 25 microns. In addition to highly sophisticated optical 
and electronic design, this degree of precision requires 
computed polynomial interpolation with  reference to a 
fiducial grid. 

Details and additional references on this very large- 
scale endeavor in pattern recognition are available in 
[Pless  ’651 and  [Wadsworth ’661. 

Programmed Terrain  Classification 
The study described  explores automatic detection of 

orchards, wooded areas, lakes,  oil tank farms, and railroad 
yards in aerial photographs  taken  at 1 : 50 OOO scale [Haw- 
kins ’661. 

Since a typical  9-by-9-inch aerial photograph contains 
upwards of lo9 bits of information, it is advantageous to 
avoid storage of the digitized  video  inside the computer by 
extracting the relevant  features  with a  programmable flying 
spot scanner. The scanner looks at overlapping  $-inch 
squares brought within range of the cathode ray tube by an 
x-y table which  moves at 70 steps per  second. In each 
position of the table 256 x 256 addressable points are avail- 
able. At  each point the video is quantized into 16 gray 
levels. 

Examples  of the “masks” used  for  processing the images 
are shown in  Fig.  17.  1024  mask points, divided into  any 
number of masks, can be accommodated by the system. 
At  each  mask point the optical density is multiplied by the 
corresponding weight. The results are accumulated for each 
mask and thresholded. The  masks are shifted  over the whole 
subregion. 

Heuristic algorithms based on the frequency and spacing 
of  satisfied (above-threshold) masks are used to  determine 
the contents of each subregion. The thresholds are estab- 
lished on the basis  of the average  gray  level  in  each  region, 
and may  be readjusted during operation. 

Although separate design and test  sets  were not used 
in this study, the authors claim about 85 percent correct 
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Fig. 16. A bubble  chamber  photograph  showing particle tracks.  The  discontinuous  nature of the  tracks  and  the noisy background 
is  inherent  in  the  process.  Two or three  simultaneous  exposures  are  generally  obtained,  for  three-dimensional localization of the 
tracks. Note the  fiducial  marks.  The  photograph  was  obtained  through  the  courtesy of the  Stanford Linear Accelerator  Center. 
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Fig. 17. Programmed  masks  for  terrain  classification  from  aerial photo- 
graphs.  These  masks were designed to detect small dots, vertical, hori- 
zontal, and tilted  edges and  straight lines, and arcs. The masks are cor- 
related with small  subregions of the  patterns. A mask is considered 
“on” whenever  the  correlation e x d  a certain threshold. These 
masks  are used in experiments on photointerpretation at the  Ford- 
Philco  Corporation. 

recognition over  all the classes  in 11 24 classification de& 
sions. The experimental system, while  still  much too slow 
for realistic evaluation, is an improvement over previously 
reported  studies on only one or two photographs  or on 
completely synthetic data. 

Teleseismic  Event  Classijication 
In this study  [Manning ’661 nuclear explosions are dif- 

ferentiated from earthquakes  on the basis  of the character- 
istics of the compressional or P-wave, which  travels a refrac- 
tive  ray path  through  the earth’s mantle. At distances 
above a few thousand miles,  which  is the minimum range 
of the contemplated  detection system, the P-wave arrives 
well ahead of the other  components. Its dominant fre- 
quency is above that of the  shear waves and surface waves, 
and seismic  noise can be more easily eliminated from it by 
frequency filtering. 

In general it  is considered sufficient  to  differentiate explo- 
sions from shallow earthquakes, since deep earthquakes 
can be readily  identified by the depth of  focus. Seismograms 
of both shallow earthquakes  and nuclear explosions are 
shown  in  Fig. 18. 

The very  small  sample  size available (38  events) renders 
the choice of measurements particularly difficult. Considera- 
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Fig. 18. seismograms of earthquakes  and  nuclear explosions The top 
four tram are seismograms of shallow  earthquakes; the bottom four 
are underground nuclear explosions. The onset is clearly  marked in 
every case.. These seismograms  were obtained from Bolt Beran& and 
Newman, Inc. 

tion of the physics  of the  situation  and  a  certain  amount of 
computational  experimentation led to  the selection of 
average amplitudes in six 6-second time windows. These am- 
plitude measures are shown to be superior for the task at 
hand to spectral measures involving zerocrossing rates. 

The  parameters of a maximum likelihood classifier  were 
derived according to a  normality  assumption (see Section 
11) from ten samples of each of the two classes. Of the re- 
maining events, 15 were  classified correctly by this method. 
Equivalent results  were obtained with human  judgment 
aided by a display system  which enables  the  operator to 
look at  twodimensional  projections of the  parameter 
space. 

Electrocardiograms 
Most  attempts to automate  the screening of electro- 

cardiograms rely  heavily on heuristic methods aimed at 
imitating  the decision processes of trained  electrocardiol- 
ogists. Specht, on the  other  hand,  reports  considerable 
success with an elegant method based on nonlinear matched 
filters [Specht ’671. 

In  one experiment 90 percent  correct classiilcation  was 
obtained  on  “abnormal”  traces,  and 97 percent on “nor- 
mal” traces. The  training set in this experiment contained 
200 patterns  and the test  set only 60 patterns, so the  usual 
caveats  about limited data sets apply. 

By way of comparison, however, electrocardiologists 
basing their decision only on  the ECG scored only 53 per- 
cent on the  “abnormals”  and 95 percent on the  “normals.” 
The  “correct” decision was determined from several doc- 
tors’ diagnoses based on the ECG, full  clinical history, 
examinations,  laboratory tests,  and,  sometimes, the au- 
topsy. 

The  nonlinear matched filter corresponds  to  a curved 
decision boundary  obtained by smoothing the sample 
distribution with a  suitable filter “window.” Such a  bound- 
ary  can  accommodate even the multimodal  distribution of 
“abnormals.”  Second-order terms turn out to provide a 



NAGY: PATTERN  RECOGNITION 859 

sufficiently  close approximation of the boundary poly- 
nomial; Specht’s algorithm eliminates all  but 30 of the 370 
starting weights corresponding to combinations of the 
amplitude-time samples of the waveforms. 

The method may be implemented either through a small 
digital computer or by means of a trainable hardware de- 
vice. So far no comparisons with competing methods, on 
identical data sets, are available. 

Spoken Words 
The recognition of words in a continuous utterance is 

still  only a remote possibility, but numerous experiments 
have  been reported [Sebestyen ’62, Sokai ’63, Widrow ’63, 
Flanagan ’65, Tappert ’661 on the classification of isolated 
spoken words and syllables. The ten digits form an often 
used vocabulary, although experiments on as many as 30 
words have  been attempted. 

With a single speaker, performance on test utterances 
may reach 97 to 99 percent. When the investigator uses  his 
own  voice,  special care must be exercised. In one experi- 
ment on adaptive speech recognition, for example, improve- 
ment of the system performance with  time turned out  to be 
caused by the speaker learning to modulate his voice  in such 
a manner that his words were  always correctly recognized 
by the unchanging (due to a “bug”) decision parameters. 

With a small group of speakers, whose previous utter- 
ances are used to train the classifier, recognition rates of 
90 to 95 percent have  been reported by several investigators. 

When the speakers are chosen completely at  random, 
and include females, foreign nationals, victims of the com- 
mon cold, and  other hard-to-deal-with species, performance 
falls to about 70 percent on  the ten digits. 

Some recognition schemes mentioned in Flanagan’s 
book use the whole quantized energy-frequency-time spec- 
trum of a word and obtain the decision by cross correlation 
with stored references. Others depend on detection of the 
principal formants. Time normalization is sometimes re- 
sorted to. Related experiments deal with speech compres- 
sion for transmission and storage, speaker identification 
and verification, and the design of voice-actuated phonetic 
typewriters. 

VII. ENVOY 
We have accompanied the reader into the labyrinth of 

pattern recognition, pointed out some of the salient land- 
marks, and offered battle on his behalf to the Minotaur of 
semantic difficulties. We hope that we have  given  him 
enough string to encourage him to return. 
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