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Abstract-The recognition of hand-printed numerals is studied on
a broad experimental basis within the constraints imposed by a
raster scanner generating binary video patterns, a mixed measure-
ment set, and a statistical decision function. A computer-controlled
scanner is used to acquire the characters, to adjust the raster
resolution and registration, and to monitor the black-white threshold
of the quantizer. The dimensionality of the decision problem is
reduced by a hybrid system of measurements.

In the measurement design, three types of measurements are
generated: a set of "topological" measurements, a set of logical
"n-tuples," both designed by hand, and a large set of n-tuples
machine generated at random under special constraints. The
final set of 100 measurements is selected automatically by a pro-
grammed algorithm that attempts to minimize the maximum ex-
pected error rate between every character pair. Computer simulation
experiments show the effectiveness of the selection procedure, the
contribution of the different types of measurements, the effect of
the number of measurements selected on recognition, and the
desirability of size and shear normalization.
The final system is tested on four data sets printed under dif-

ferent degrees of control on the writers. Each data set consists of
approximately 10 000 characters. For this comparison, a first-order
maximum likelihood function with weights quantized to 100 levels is
used. Error versus reject curves are given on several combinations
of training and test sets.

INTRODUCTION

THE STEADY accumulation of recognition methods,
techniques, and algorithms has brought the com-

mercial reading machine for hand-printed numerals to
the threshold of realizability.1 Nevertheless, papers which
quote error and reject rates on hand-printed material are
still in the minority, and performance figures on other
than greenhouse data sets remain rare. This lack of
published reports on large data sets probably reflects the
fact that most of the research to date has been directed at
exploring new methods instead of aiming at the best
possible overall perfornmance. In an attempt to obtain
results significant from an engineering viewpoint, we
worked with data sets larger by an order of magnitude
than customary; even these sets may not be large enough.
The various components of our recognition system were

tested and modified on the basis of experiments per-
formed on a 7000 character data set to be referred to as
"Backroom I." For a final performance test, we reserved
another 30 000 characters of diverse origins, described in
detail in the Appendix. The decision experiment on this
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data set was run but once in order to guard against
"implicit inference" from the test set. All too often the
scrupulous separation of data into "analysis" anid "test"
sets is observed only in the derivation of the hyperplane
coefficients. Yet, the selection of other design parameters
and alternative configurations on the basis of comparisons
of the test data is conducive to highly misleading expecta-
tions.

Previous work on machine recognition of haild-printed
numerals is summarized in the literature.[1][-] We have
been influenced most by Doyle's ['] "topological" measure-
ments and Kamentsky and Liu's [6] n-tuple schemes.
The n-tuples were modified by the introduction of local
rather than global shifts. iVIany of the ideas for pre-
processing are the result of previous work on multifont
character recognition as described by LiuM and Liu
and Shelton.[8] The linear decision schemes we used are
well known. [9] Highleyman[10] was one of the first to
apply them to hand-printed numerals.
We have avoided three methods ofteni inivoked to

improve recognition. On-line scanning by meanis of a light
pen or captive stylus does, indeed, yield better signal-to-
noise ratio, but its use must surely be restricted to special
applications. Individual training of each writer by means
of labeled training sets also does not seem to be widely
acceptable. The third artifice involves dot arid line con-
straints;[11] the difficulty of introducing such restrictions
in the field can hardly be appreciated by those who have
not tried it.[12]

Anotlher fundamentally different approach, taken by
Greanias et al. [4] in hardware, and Kuhl['3] in software, is
the teelhnique of curve following, i.e., tracinig the inner
and outer edges of each line forming the character. Al-
though the features derived are quite powerful, and may
be designed intuitively, line following itself is troubled by
tics, and broken, noisy, and misshapen characters. Our
work was principally motivated by the development
of the IBAI multifont recognitioni system. 6 -[8] [14] This
system uses a program-controlled flying spot scanner, a
set of registration-invariant n-tuple measuremeints, and a
digitally implemented hyperplane decision. The n-tuples
have s"hown surprising capability for line anid feature
detection.

In the character acquisition phase, each sample numeral
was coynverted into a 25 X 32 binary matrix by means of a
cathode-ray tube scanner. Under the supervision of an
IBM 1401 computer, the scanning system controls
documenit changing, character localization, separation of
adjacent characters, noise suppression, threshold and line
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IBM 1401 IBM 7094

Fig. 1. Flowchart of the recognition system.

width, and size normalization. The volume of data pro-
cessed requires that manual intervention be held to a mini-
mum.
The remaining portions of the recognition cycle, shown

in Fig. 1, are carried out on the IBM 7094. Before the
final categorization, the dimensionality of the data,
viewed as vectors in binary n space, is reduced from 800
(25 X 32) to about 100 by the extraction of features, or
measurements.2 These measurements representthebestof
a composite set generated partly by machine, partly by
hand. The selection rule is completely automatic; while
the underlying assumptions are only approximately true,
experimental results testify to its efficacy. The 100-bit
feature vectors serve as input to several piecewise-linear
hyperlane categorizers, whose performance is then com-
pared to one another.

EXPERIMENTAL SYSTEM

The opaque scanner is a light-tight box containing the
document and cathode-ray tube (CRT). A lens assembly
focuses the light from the phosphorescent spot on the face
of the CRT onto the document. The intensity of the re-
flected light is measured by monitoring the sum of the
cathode currents in eight photomultipliers (PMTs) facing
the document. The PMT current is then quantized in
both time and amplitude to provide a binary input to the
remainder of the system.

Three additional PMTs directed at the screen are
used in conjunction with subtraction circuitry to com-
pensate for phosphor irregularities in the CRT. Pin-
cushion correction and dynamic electromagnetic focusing
help maintain linearity over the 2400 X 2000 grid which
constitutes the 10- by 8-inch working area of the scanner.
Additional details about the scanner may be obtained
elsewhere. [14]
A special purpose digital-to-analog interface unit

accepts "macro" commands from an IBM 1401 computer
and translates them into deflection and threshold voltages.
The approximate vertical and horizontal location of the
start of each vertical sweep, the length of the sweep, the

2 The terms are used interchangeably.
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Fig. 2. Scanned samples from the three different data sets after
size normalization and quantization. The backroom data
was the most constrained, while the Tufts set was written without
any control. The aspect ratio is distorted by the printer.

horizontal increment between sweeps, the size of the spot,
and the video threshold level for differentiating between
"black" and "white" are controlled by the IBM 1401.
Each sweep, irrespective of its length, is quantized into
32 bits to represent one vertical column of a character.
The vertical resolution of the system is thus inversely
proportional to the sweep length. Fig. 2 illustrates the
quantized video image of scanned hand-printed characters.
During "search" mode scanning, the horizontal resolu-

tion is decreased (i.e., spacing between scans is increased)
and the spot zig-zags back and forth across the page
until it encounters a black area. After a preliminary
check of the number and configuration of black bits to
reject stray dots, the system switches into the "center"
mode. The entire line is centered approximately on the
basis of the mean vertical cross section of the characters.
Then the machine alternates between "individual center,"
"threshold," and "normalize" modes until the parameters
are adjusted to produce a video pattern about 29 bits
high with a white row above and below it, and an average
line width of about 3 bits. For some characters, even ten
iterations are insufficient to arrive at a satisfactory setting.
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Fig. 3(a). An overall flowchart for the scanner program.

A flow chart for the scan program is shown in Fig. 3(a).
Different document formats, margin bars, fiducial marks,
background, and other details may be met by modifying
the program flow and including suitable logical tests.
The ease with which these changes can be made is a major
advantage of :a program-controlled scanner.
Two size normalization techniques were used. The

coarse technique of Fig. 3(b) attempts to predict the
final position and resolution settings to achieve the
desired height. A histogram of the character heights
obtained by this method is shown in Fig. 4. Accordingly, a
fine normalization was added, shown in Fig. 3(c), which
begins with the coarse estimate and adjusts the registers
one step at a time until there are two adjacent bits in
the top and bottom rows of the desired character matrix.
The improvement achieved is also shown in Fig. 4. The
large number of rescans necessary with this method
slowed the processing time to about 5 seconds per charac-
ter.
Adjacent characters are separated by looking for a

"white" path between them. Only paths slanting from
left-bottom to right-top are permitted in order to retain
the tops of disconnected fives. The threshold was adjusted

by monitoring the average line width as described else-
where.i81
A method of shear normalization was also investigated

by simulation on the IBM 7094. Each horizontal row in
the character was shifted by an amount proportional to
its height, the constant of proportionality beinig chosen to
minimize the inclination of the principal axis having the
smallest moment. Some sample characters illustrating the
action of the algorithm are shown in Fig. 5.

\/lEASUREMENT DESIGN
The specificationl of measurements which will si-

multaneously yield significant iniformation about several
categories is certainly the most difficult part of the char-
acter recognition problem. Not only do we not know how
to design a good measuremenit set, we are not even sure
we will recognize a good one when we see it. Nevertheless,
it is easier to discard worthless measurements than to
synthesize good ones; for this reason, most feature ex-
traction schemes reported in the literature operate by
selection.
The role assigned to the computer may conlsist only of

testing hand-designed measurements, [4J[5][ [13J or the
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Fig. 3(b). Flowchart for the coarse normalization subroutine, which attempts to set the size and resolution predictively.

computer may perform the selection on the basis of some
more or less readily computed success criterion, [6] [171 or it
may even take part in generating the measurements under
some previously specified constraints.15, [16] Our com-

puter has been helpful in all three ways.
Of the many types of measurements which could be

applied to raster-scanned data (stroke and sequence data
not available), we restricted our attention to "topological"
measurements (for lack of a better name), and to "in-

tuples." Threshold gates, of which n-tuples form a sub-
class, were deliberately avoided in the absence of any
systematic design procedure.

Mleasurement Selection
The automatic selection of a subset of measurements

from a large pool to optimize the error rate (with a specified
decision procedure) must cope with certain difficulties.
The large number of possible subsets of a pool of reason-

able size makes exhaustive computation of the statistics of

each subset impossible. Calculation of actual error rates
on a valid character sample is also impractical. Taking the
statistical dependencies of the measurements into account
also broadens the computations. (A rigorous treatment of
measurement selection, taking dependencies into account,
can be found in Estes.[171 Another method has recently
been developed by Chow.[1"]) It is thus tempting and
practical to use some readily calculated figure of merit,
defined for any number of measurements and related
to the discriminating power of the whole set. An informa-
tion measure has been used successfully by Kamentsky and
Liu,N6] but the computing time becomes lengthy for large
numbers of measurements. In a two-class problem with
linear decision and uncorrelated measurements, another
measure, loosely related to the error rate, may be derived
as follows.

Let the two classes be 1 and 2. The ith measurement,
xi, is known to have mean 1Aj- and variance r0j (j -
1, 2) within class . The discriminant is
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VP- Vertical Position

R = Resolution

Fig. 3(c). Flowchart for the fine normalization subroutine, which rescans the character until the desired height,
as measured between the topmost and bottommost horizontally adjacent black bits, is achieved.
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UNNORMALIZED

NORMALIZED

Fig. 5. Quantized version of test characters with and without
shear normalization.

50

T0

F
(I)
LU

ct 4H

3
LL.
0

z 2

LU

a.



IEEE TRANSACTIONS ON SYSTEMS SCIENCE AND CYBERNETICS, JULY 1968

n
d = E axi.

i=1
(1)

UInder the assumption that the measurements are un-
correlated, we have

Mj _ E aiiJ j = 1, 2 (2)

and

Vg EZ aoi(i)
i

(3)

so that from (10) and (4),

MI-M2 = (Z fi)IP2*

We now define a "figure of merit" F* for the set of measure-
ments:

F (-1(M - 112)2
VT(+ h2

Then from (8)'and (11),
where Ml/j and V1 represent the mean and variance of d
for class j. As in discriminant analysis,[19] we wish to
choose the coefficients at such that the difference between
the means M -M2 is as large as possible, while keeping
the variances to some prescribed value, say

Vl + V2-1. (4)

Then using Lagrange multiplier X, we must solve the set of
equations

a(M1 - M2)
+

where X is chosen to satisfy (4). Evaluating the derivatives
from (2) and (3), we find

F*Zfi. (12)

Thus F* is the total figure of merit for all the measure-
ments, defined in terms of the means and variances along
the normal to the best separating plane. If the measure-
ments are independent, then F* may be obtained also by
summing the individual f,. If the independence assumption
is violated, F* is less than z fi. We use F = z fi as the
measured figure of merit.
Using the optimum threshold to equalize the prob-

abilities of both types of errors between the two distri-
butions

M1V2'12 + M2V11/2
ao -V- -

vlll + 12
(13)

Ai(]) - i(2) + 2Xai(ai(') + aX(2)) = 0

and solving for at,
1 , -

2,\ (1) + ¢(2)

(6)

(7)

it can easily be shown by Chebyshev's inequality that the
total probability of misclassification PE is

iF + 2\VV12 1 2
PE <I1+ <

FL-(VI+V2)j- F' (14)

But

V1 + V2 = E at2(o-tT1) + o/(2))

1 ((2(1) _ i(2)) 2

4X2 (oj1) + i(2)

4X 2

where

J X (1) + 07 i(2)

so that from (4)

x= (E fi) 12.
2 i

Similarly,

MlM- 12 E ai(i(1_-(2)

I1 (}X%(1) Ai(2))2
2X ¢(1) + C (2)

1
_ _Zv
-2XLJ

When both distributions are symmetric, the bound may be
divided by 2. Unfortunately, use of this bound in a precise
way is iiupossible. The effects of measurement dependencies
usually make F* far lower than 2 fi, while the Chebyshev
bound is usually a large overestimate. Nonetheless, since
these two factors tend to cancel, one may hope that 2/F is

(8) a rough estimate of the order of magnitude of the error
rate.

This figure of merit is used to select subsets of measure-
ments from a larger pool in a multiclass problem as follows.
Each measurement of the pool is evaluated on the analysis

(9) set of characters and ft estimated for every class pair.
The total F for each pair is then calculated by summing the
individual ft. Then the measurement contributing the
smallest fi to the character pair having the smallest

(10) original F is deleted. The procedure is then repeated until
only the desired number of measurements remain.
The computation could be modified to add measure-

ments to a set; Estes [l7] has shown that under certain
circumstances the two procedures of sequential selection
and sequential reduction lead to equivalent results.

Computer Generated n-Tuples

(11) Our first attempts at generating the n-tuples at random
produced a very low yield of acceptable measurements.
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(For a given character pair, the fi of the pseudorandomly
generated measurements is normally distributed. The
variance of this distribution is as an indication of the
"yield" of a set of constraints since the higher the variance,
the higher the fraction of measurements above any desired
threshold.) The restriction of the n-tuples to specific
regions of the character (zones) resulted in a higher yield,
but also in an increase in the number of free parameters.
The zones were eventually fixed at the entire character,
one of its halves, or one of its quadrants. The best results
were obtained with the following set of "line-seeking"
constraints. A black point was placed at the matrix
center. The next black point was chosen from a two-
dimensional spherical Gaussian population with a mean
distance of 3 from the center. Three black points were
then chosen by proceeding a random distance down the
line defined by the previous two points, and then adding a
perturbation from another spherical Gaussian generator.
Three white points were then chosen from another two-
dimensional distribution. A set of 1800 measurements was
generated in this manner.

Topological Measurements
This family of measurements consisted of a set of sub-

routines designed intuitively (but with the aid of com-
puter-generated statistics to optimize parameters) to
detect certain prominent characteristics of the characters,
such as symmetries and number of line segments. Most
were chosen from Doyle '] because they lend themselves to
hardware implementation with a raster scanner. Addi-
tional measurements of this type may be readily designed
in this manner to discriminate among the worst confusion
pairs. Such programmable measurements make it possible
to introduce characteristics that are evident to the eye.

Eight of the original pool of seventeen measurements
were selected for the final set.

Five measurements turn on when the maximum num-
ber of segments (a string of 3 bits or more) encountered by
a vertical (or horizontal) slice passed through the entire
character exceeds some threshold. The measurements
which test for one to three vertical and one or two hori-
zontal segments have significant information.
Two measurements involve the counting of bits to test

for symmetries. Thresholds are set by computing the
sample distributions on the analysis set and calculating
the best separating value. One measurement, designed for
the character pair 5/3, turns on if more than 80 percent
of the black bits occur within the leftmost 80 percent
of the character width. The other measurement, for 6/8,
turns on if more than 45 percent of the black bits occur
within 40 percent of the character height from the bottom.
The last measurement is used to detect bays (CAV

LEFT in Doyle[51). Successive scans from left to right
are "ORed" together. The number of segments is counted
and if it decreases within z percent of the character width,
the measurement is set on (z = 30 was eventually
chosen).

xlx Ix-3-1 xt0 xQ_____
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BASIC CONFIGURATIONS
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O = WHITE POINT
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(b)
Fig. 6. (a) Four basic measurement configurations. (b) Six

overlapping zones governing the acceptable position of the lowest
rightmost bit of each n-tuple.

Hand-Designed n-Tuples
The four basic configurations illustrated in Fig. 6(a)

are rotated in four cardinal directions and applied to the
characters in the six zones shown in Fig. 6(b). Thus, when-
ever one of the 16 n-tuples fits a character anywhere
in a specified zone, the corresponding feature bit is set
on. This accounts for 96 bits; four more similar "zoned
n-tuples" round the number out to 100.
The measurements are designed to respond, both

singly and in conjunction with one another, to lines, line
ends, and sharp bends of various orientations and in
various portions of the character. The final configurations
and the locations of the zone boundaries were reached
after about twenty 1401 runs on 1000 characters from the
Backroom I set. The information used to improve the
measurements consisted of the probability matrix specify-
ing the frequency of occurrence of each measurement on
each class and printouts of the digitalized versions of
erroneously identified characters.
The n-input AND gates and the required character-

shifting mechanism were readily implementable on the
experimental system: both zones and measurements are
specified by means of a convenient plugboard. Later, the
measurements were also programmed on the IBM 7094
for participation in the final measurement selection.

DECISION METHODS

Both decision procedures tested are of the statistical
hyperplane variety. It is not our intention to enter the
controversy between the advocates of sequential tree-
type decisions and of parallel-probabilistic methods;
the latter simply seemed more suitable for our proposed
machine organization, and the automatic methods for
generating the coefficients were already at our disposal.
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Hyperplane categorization requires, by definition, the
comparison of expressions of the following variety:

m

a = E aijxi + a0j (15)
i= 1

where xi is the outcome of a measurement on an unknown
pattern and ai1 is a coefficient determined from analysis
data.

Bayes' Method
The application of the maximum likelihood ratio for

categorization is well known.[191 With the assumption of
independence betweef the inputs, the coefficients are
computed as follows:

aij = log pij
1 - Pti

where pij is the probability of occurrence of measurement i
on class j. The character class giving the maximum sum in
(15) is chosen, provided that its supremacy is not too
closely contested.
Some improvement in recognition may be obtained by

taking into account the correlations between measure-
ments by means of iterative procedures. [20] The ultimate
performance is similar to that obtained by adaptive
perceptron-like algorithms. These more time-consuming
methods were not attempted.

Anderson-Bahadur Method

This procedure [211 requires a decision plane between
every pair of classes, and so becomes uneconomical for
larger alphabets. For the numerals, however, the 45
planes represenit only a moderate increase over the strictly
linear methods, and with 100 measurements they can be
readily accommodated in core storage.
The normal to the plane separating the jth class from

the kth class is calculated by

bj7 = (aCj + dCk) aljk (17)

EXPERIMENTS AND RESULTS

The experiments about to be described were designed
with a twofold purpose: to provide a guideline in the
selection of useful features and to establish performance
levels on the data sets available.
Some 150 separate computer runs, totaling about 50

hours of IBM 7094 time, were required (in addition to the
preparation and testing of the programs and the scanning
of the data). Fig. 7 is a flow chart showing the relationship
of the various programs.

Size of Measurement Set
' From a pool composed of 96 hand-designed, and 1800
computer-designed features, the best N were selected by
means of the figure-of-merit criterion. The selection took
place on the basis of the first 1000 characters of the 10 517
character (Backroom I) data set. N was varied from 50 to
200, and a Bayes' decision was implemented on the full
set. The recognition results, with no rejects allowed
(forced decision). are shown in Fig. 8.
The eventual rise in error rate with the number of

measurements has been observed by other investigators
and may be attributed both to the suboptimal estimation
of the categorizer parameters on the basis of an analysis
sample of finite size, and to violation of the independence
assumptions. These phenomena are discussed fully by
Allais[2I] and Chow. [18]

Generalization Capability of Measuremnent Selection Scheme
The initial measurement pool contained 100 hand-

designed and 1800 machine-designed n-tuples, and 17
topological measurements. Two sets were selected using
the figure of merit in order to determine, in spite of the
nonhomogeneity and relatively small size of the data
sets, whether the measurement selection scheme is too
tightly data-dependent. Table I shows that the particular
set of characters used to select the measurements has
little influence on the recognition results (1000 characters
were a sufficient sample for the figure-of-merit selection
algorithm).

where Ci is the covariance matrix of the ith class, a and d
are scalars, and 8k iS the difference of the mean vectors of
the jth and kth classes.

If there is a disagreement between several planes in the
classification of an unknown sample, the sample is rejected.
Although this intuitive reject procedure does not really
minimize any risk function based on uniform penalties
for errors, and uniform, though different, penalties for
rejects, more rational reject criteria require elaborate
computation.
The Anderson-Bahadur procedure is the statistical

counterpart of Highleyman's linear decision functions.
An experimental comparison would be required to deter-
mine which is superior in a problem, such as this one,

where neither linear separability nor multivariate nor-

mality obtains.

Figure of Merit versus Random Selection
While the restrictiveness of the underlying assumptions

allow no claims of optimality on behalf of the figure of
merit, we can at least compare it to one often-used scheme,
random selection. [16] [17], [22] [23] Thus a third set of
measurements was chosen at random from the pool of
1917 measurements. The three measurement sets were
then tested using Bayes' decision. The forced decision
error rate is shown in Table II for both methods of selec-
tion. The performance is about 6 to 1 in favor of the
figure-of-merit selection.

Generalization Capability of Weight Selection Algorithm
To investigate how closely the weights selected by the

maximum likelihood program were tailored to the par-
ticular character set on which they were designed, Bayes'
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Fig. 7. Overall flowchart for measurement design and recognition.
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Fig. 8. Error rate on Backroom I data as a function of the niumber
of measturements selected.

analysis and test runs were conducted on the next two
3000-character sets of the Backroom I tape. The two
were then reversed to nullify the effect of any nonhomo-
geneity. The results are shown in Table III. Although the
second character set is of better quality than the first,
by averaging the error rates on 'new" samples and also
on "training" samples, one can see clearly that there is a

twofold decrease in performance to be expected on going

from training set to new data. In a statistical weight
design algorithm of this type, the number of "training"
characters is considered sufficient only if recognition
performance on "test" and "training" sets is substantially
the same.

Thus, while even as small a sample as 1000 characters
seems sufficient to yield a good "general purpose" measure-
menat set for this data, a much larger sample than 3000
characters is needed for the more finely tuned weight
calculating algorithms.

M/easurement Types

Of what benefit is the merging of these different measure-
ment types? To answer this question, we selected sets of
100 measurements from several combiniations of the
three types and ran training and recognition runs on 7000
characters. The results appear in Table IV. The final set,
consisting of 56 randomly generated, 36 hand-designed,

2%p
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TABLE I
GENERALIZATION CAPABILITY OF FIGURE-OF-MERIT

MEASUREMENT SELECTION

Measure-
ment

Selection

#1-#1000
#1000-#2000
#1-#1000
#1000-#2000

# Denotes the serial
tape.

FIGURE OF'

Method of
Selection

Figure of merit,
selected on
#1 #1000
Figure of merit,
selected on
#10004#2000
Random

# Denotes the serial
tape.

Baves'

and 8 topological measurements, yields the lowest error
rate on the Backroom I tape.

Error
Preprocessing

Weights Error Rate These observations, while not directly related to
Computed Rate (Forced

on on Decision) measurement design and decision methods, are reported
#1-#1000 #1-#1000 0.8%7o in order to emphasize the role of simple preprocessing
#1-#1000 #1 #1000 0.6% techniques.
#1000-#2000 #1000-#2000 0.5% The importance of adequate normalization was con-
#1000-#2000 #1000-#2000 0.6%6 firmed on examination of the printouts of misidentified

characters of the design set. Frequent failure of the
number of -the character on the Backroom I normalization routine was shown by the histogram of

character height distributions (Fig. 4). Removal of 3000
characters less than 27 bits from the analysis set re-

TABLE II duced the forced decision error rate from 1.3 to 0.6
MERIT VE-Rsus RANDOM SELECTION percent with the hand-designed measurement set. The

other experiments described up to this point were run on
Error this "doctored" set, but the normalization routine was

Bayes' Rate
Weights Error (Forced improved in time for the experiments reported further on.

Computed on Rate on Decision) Shear normalization was programmed too late for
#1-#2000 #1-#2000 0.6% inclusion in the complete series of experiments. Its promise

was shown by the reduction of the error rate on the size-

#1-#2000 i1-#2000 0.6% selected analysis data from 0.61 to 0.42 percent with
the hand-designed measurements. The zoning of the
n-tuples had to be changed to make effective use of shear

#I-#2000 #1-#2000 3.7% normalization. While this is a simple procedure with the
hand-designed measurements, other priorities on computer

number of the character on the Backroom I utilization prohibited recycling through the automatic
measurement design and selection routines to include
shear normalization in the subsequent experiments.

TABLE III
GENERALIZATION CAPABILITY OF BAYES' DECISION ALGORITHM

Measure- Error Rate
ment Training Test (Forced

Selection Sample Sample Decision)

#1- #1000 4#1000-#4000 #1000-#4000 0.47%
#1-#1000 #4000-#7000 #4000-#7000 0.15%

Average 0.31%

#1-#1000 #1000-#4000 #4000-#7000 0.68%
#1-#1000 #4000-#7000 #1000-#4000 0.65%

Average 0.66%

# Denotes the serial number of
tape.

the character on the Backroom I

Decision Experiments
A set of weights for the Bayes' decision was estimated

from each data set, and the decision carried out on all four
data sets. The reject-error curves for these runs are shown
in Figs. 9 through 12. As expected, recognition performance
on each data set is best when its own statistics are used.
On the other hand, the relative degree of care taken in
the printing tended to swamp the other considerations.
For example, the uncontrolled Tufts data gave a forced
decision error rate of 8.25 percent on its ownl references,
while the Backroom I set gave an error rate of 0.33
percent on its own references.

TABLE IV
COMPARISON OF VARIOUS TYPES OF MEASUREMENTS

Measurement
Pool

R1800

R1800JI100
RisooHffooTV7

Measurement
Selection

#1-#1000
#1-#1000
#1-#1000
#1-#1000

Bayes' Weight
Computed on

#1-#7000
#1 #7000
#1-#7000
#1-#7000

Error Rate
on

#1-#7000
#1-#7000
#1-#7000
#1-#7000

# Denotes the serial number of the character on the Backroom I tape.
The subscript refers to the number of measurements of that type available.
R is randomly generated n-tuples, H intelligently designed n-tuples, T topological measurements.

Error Rate
(Forced

Decision)
1.20%
0.61%
e0.43%
0.42%
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Fig. 9. Reject error curves using Bayes' decision with references Fig. 11.
estimated on the Backroom I data with Anderson-Bahadur re-
sults shown.
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Fig. 10. Reject error curves using Bayes' decision with references
estimated on Backroom II data.

Typical error patterns are shown in Fig. 13. Many of
these errors are due to failure of the normalization because
of stray bits, to misshapen characters, or lack of mea-

surements to sense some peculiar stylistic variation.
However, it must be conceded that many well-formed
characters are also misrecognized, as shown in Fig. 14.
A set of 45 planes was designed by the Anderson-

Bahadur method on the 7000-character Backroom I
subset. The design took approximately 15 hours on the
IBM 7094. (The program, which can accommodate up to
108 measurements, operates by a relaxation method and
was developed by Casey. 1241) The results are shown in
Table V and for purposes of comparison on Fig. 9. In
all cases, the performance was very close to that of the
maximum likelihood decision. This indicates that either
the independenice assumption was indeed satisfied or

that there was an insufficient number of design samples.
Because of the large amount of computer time required
and our policy of one decision run, the planes were not
redesigned on a larger data set.

This data was previously used by Greanias et at.[41
on their curve follower. Recognition results were 8-pereent
reject plus error on the Tufts data, they were 0.67-
percent reject with 0.137-percent error on the Backroom I
data.3

3 Personal communication.

BACKROOM I
2 BACKROOM II
A FRNsT PnnM
4 TUFTS

123

D 2 4 6 8 10 12 14 If
REJECT RATE (x 10-2)

Reject error curves using Bayes' decision with references
estimated on frontroom data.

xr

M.

0O 2 4 6 8 10 12 14 16
REJECT RATE (x102)

Fig. 12. Reject error curves using Bayes' decision with references
estimated on Tufts University data.

CONCLUDING REMARKS

The design and testing of a complete system for rec-

ognition of hand-printed numerals has been described.
Using raster-scanned binary video, a mixed measurement
set designed partially by machine, and linear decisions,
it has given recognition rates from 86 to 99.7 percent
(forced decision) depending on the quality of the data
set and the appropriateness of the particular set of ref-
erences used. The dominant factor affecting performance is
the degree of care taken in the printing.
A novel measurement selection algorithm was used

yielding a subset of measurements considerably better
than one selected at random. It was found that 1000
characters were a sufficiently large sample for the selection
procedure, and that combination of all three kinds of
measurements resulted in recognition performance superior
to that obtained by one kind alone, illustrating that the
information extracted by each type is, to some extent,
additive.
Height and shear normalization for each character

decreased the error rate. This is certainly related to the
size and position sensitivity of the zoned n-tuple measure-

ments. But this type of invariance can be obtained by a

program-controlled scanner with relatively straight-
forward logic and seems worth having in any event.
The Bayes' decision assuming independence gave bett-er

results than the Anderson-Bahadur method, although the
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Fig. 14. Printouts of well-formed characters that are misidentified.

latter used more weights and more design time. The
Bayes' procedure uses the probabilities for each measure-

ment within each class, which may be estimated with
fewer samples than the covariance matrix required in the
Anderson-Bahadur method. The niumber of samples

Errors

24/6918 = 0. 347%
65/11999 = 0.542%

492/11996 - 4. 10%
675/6746 = 10.01%

Rejects

11/6918 = 0. 159%
47/11999 = 0. 392%

469/11996 = 3.910%
727/6746 = 10.78%

used for design appeared insufficient even for the Bayes'
procedure. This illustrates how the choice of decision
method must be influenced by the number of design samples
available. Hand printing is ordinarily of such variability,
that it may be the case that the large design samples
required will make more complex procedures impractical.
Amoiig the promising techniques that should be in-
vestigated are clustering of the design set by machine,
and self-adaptive procedures which continually update
the decision weights. The latter seems attractive where
the system has knowledge of the writer or of the document
length.
A method for geineration of random n-tuples using

"line-seeking" constraints was developed. Existing meth-
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6799a>sgiZ>j?
6F Z75.7

Fig. 1o. Original data cards from Ttifts University data set. The
backgrounid is light blue which appears white to the scanner.

Fig. 16. Samples of the department store backroom data. Context
information and check digits were not used in the experimenits.

ods were not applicable because they rely on the presence
of stable points. It is interesting that this family of
constraints gave significantly better results than any
others tried. In a sense, we found our adaptive measure-
ment design procedure trying to design curve-following
measurements. It seems reasonable that the heuristic
curve-following features do indeed extract the significant
information from hand printing, and that an n-tuple
machine, with enough zones and majority statements,
could successfully accomplish the same feat. The ad-
vantages of automatic design for larger alphabets and a
multiplicity of operating environiment are obvious. Thus
it would seem that the course to follow is to combine
curve-following type measurements (derived either directly
or from a raster scan) with automatic feature selection
and parallel decision logic.

APPENDIX
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DATA SETS
Recognitioni results on hand-printed material depend

markedly on the source of the data. In order to obtain a
representative cross section, experiments were performed
on data generated in widely varying circumstances over a
period of about four years.

Tufts University Data Set

The 7000 characters in this data set were obtained
from 120 college students, .52 high school students, 29
sales clerks, and 22 "statistical clerks and miscellaneous"
at the Institute of Psychological Research at Tufts
University, Medford, Mass., in 1962. Details of the data
collection are discussed in Crook and Kellogg. 1121 This set

Fig. 17. Samples of the department store frontroom data prinited by
btusy sales clerks.

was printed freely, without any stylistic specifications.
Samples of the original characters are shown in Fig. 1.5.

Department Store Backiroom Data Set
The 20 000 numerals in this set are a subset of a larger

sample produced in the course of routine operations by
four inventory clerks in an Ohio department store.
Characters were to be formed according to the followiiig
rules.

1) Gaps (as in top of .5) are not permitted.
2) Bays (as in 2, 3, .5) are required to be opeii.
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3) Loops (as in 6, 8, 9, 0) are required to be well rounded
and closed.

4) Lines cannot cross over materially where they close a
figure (at top of 8 and 0).

5) Fancy strokes and extra-long tails are to be avoided.
6) Numerals are to be well proportioned, with proper

balance between upper and lower portions.

The preprinted IB1Mv cards on which the numerals were
written were fed into an experimental character-recogni-
tion machine installed on the premises. Daily feedback
was thus provided to maintain a relatively high level of
neatness. Examples of this material are shown in Fig. 16.
The background outlining the number fields is blue,
which appears as white in the scanner.

Department Store Frontroom Data Set

About 40 sales clerks from 6 departments of the store
contributed to this set of about 10 000 characters. Al-
though each of the clerks had been subjected to a brief
lecture outlining the desired print quality, subsequent
supervision and feedback was lax. The clerks were often
under time pressure in making out the preprinted sales
slips, thus erasures, overprints, and crossed-out characters
were common, despite instructions to begin a new card
rather than make corrections. Typical samples of this set
are shown in Fig. 17.
The identities of all the characters were keypunched

and stored on magnetic tape to be copied later onto the
scanned binary versions of the patterns. These identities
were used to keep tally of errors and rejects. Whenever
the number of characters obtained from a document did
not match the number of identities stored on tape, a
flag was set to indicate a scanning failure. About 15 percent
of all the characters were thus rejected. These could have
been recovered by manual labeling, but as the rejected
frames were caused principally by random stray bits
from the margin, this was not deemed necessary.
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