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I n t r o d u c t i o n  

The subject of this study is a family of pattern normali- 
zation techniques based on geometric projection. These 
techniques are applied to a file of handprinted numerals, 
some samples of which, both before and after normaliza- 
tion, are shown in Figure 1. 

In principle, geometric projection is best suited to the 
recognition or classification of objects in the three-dimen- 
sional world, where it is clear that projective transforma- 
tions are introduced by changes in the point of view. In 
terms of plane figures this kind of distortion is equivalent 
to oblique observation, from a point outside the plane of 
the figure, of a perfectly formed prototype. 

In applying the method to handprinted characters, we 
must show by experiment that a significant degree of 
standardization can be attained. The success of the en- 
deavor depends on the appropriateness of our hypothesis 
regarding the way people print. 

* Dep~r tement  d ' In format ique .  This  paper  is abs t rac ted  from a 
technical  report  of the Depa r t emen t  d ' In fo rma t ique  of the Uni-  
versitd de Montrea l  [6]. The  work was done under  the financial 
aegis of the  Canadian  Nat iona l  Research Council.  
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Standard preprocessing methods in character recogni- 
tion include simple scaling, height and width normaliza- 
tion, and size and shear correction through linear trans- 
formation [1, 2]. I t  is of interest to compare the results 
achieved by geometric normalization with those obtained 
by the better-known methods. 

The experimental work is based on a file of 13,000 
numerals obtained from department store clerks in the 
course of routine sales operations. The sales slips were 
scanned at the experimental character recognition facility 
of the IBM Thomas J. Watson Research Center, and the 
digitized characters were recorded cn magnetic tape. 
Coarse height and line width normalization was included 
in the scanning routine. A detailed description of the data 
and further information about the scanning hardware can 
be obtained from [3]. 

M e t h o d  

Our goal is to reduce each incoming pattern to a canoni- 
cal form which would, we hope, enhance the similarity be- 
tween patterns in the same class without obviating the 
distinguishing characteristics of the different classes. For 
example, under projective transformation every quadri- 
lateral can be reduced to a square of arbitrary dimension, 
and every ellipse to a circle (see Figure 2), thus permitting 
the differentiation of quadrilaterals from ellipses by simple 
template matching. 

Since we regard our canonical transformation merely 
as the first step in the recognition process, we do not wish 
to be encumbered by the details of the pattern. The trans- 
formation is based solely on the vertices of the convex hull 
[4] of the pattern, which are easily determined for the 
digitized numerals, as follows. 

We find all the black points which are x or y extrema 
(the "envelope") and select from these a black point which 
is necessarily a vertex of the convex hull (such as, for 
example, the rightmost point of the bottom row). Succes- 
sive vertices are then determined by selecting at each step 
the point in the envelope with the smallest positive angular 
displacement with respect to the last point selected. Only 
ratios of y-increments to x-increments are computed, and 
the pattern is rounded only once. 

Four points are required to specify uniquely a projective 
transformation [5]. These are derived from the slope of the 
convex hull; the 45 ° points are simply spread to allow 
complete framing of the pattern, as shown on Figure 3. 
These four points (fiducial marks) become the corners of 
the standard sized rectangular array (24X18 in most of 
this work) which contains the transformed pattern. 

We have arbitrarily chosen, after much discussion and 
some experimentation [6], to use the vertices of the quad- 
rilateral circumscribing the pattern with sides parallel to 
the sides of the quadrilateral formed by the four vertices 
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where the slope of the sides of the convex hull passes 
through the intercardinal directions (45 °, 135 ° , 225  ° , 315°). 

This method of projective normalization is size and 
registration invariant within the limits imposed by mesh 
noise. I t  is also rotation invariant to the extent that  the 
45 ° points arc far apart, i.e. the convex hull is not 
"pointed." 

We must be careful, however, not to apply the trans- 
formation blindly; a quadrilateral with a very large ratio 
i n  the lengths of opposite sides might be better repre- 
sented by a triangle than a square, while if we allow full 
rotational invariance the distinction between " 6 "  and 
" 9 "  is irrevocably lost. 

The program includes safeguards against mutilation of 
numerals such as " 7 "  and certain types of " 4 "  which do 
not conveniently fit into a quadrilateral frame. If  one side 
of the quadrilateral is abnormally small (in the extreme 
case it may be a single point) and the opposite side is 
large, then the form is considered "triangular," and the 
transformation is performed on one of the four possible 
parallelograms obtained by completing the triangle. No 
provision has been included against the fattening of the 
numeral "1" since this presents only an esthetic drawback. 

Bilinear Approximation 

For implementation on a digital computer it is conveni- 
ent to approximate the geometrical projection by means 
of the transformation shown in Figure 4. While analytically 

this transformation is less tractable than the projection, 
it can be computed more rapidly on a set of grid points. 

The maximum deviation between the two transforma- 
tions is calculated in [6] for trapezoid envelopes. An exam- 
ple of the difference on a sample of handprinted numerals 
is shown in Figure 5. Although the deviation may occa- 
sionally exceed the quantization error resulting from the 
imposition of a coarse grid on the transformed characters, 
it has the advantage of reducing the unsightly fattening 
of the lines close to the focus of the geometric projection. 

S s 

F ie .  2. Geometric projection. Any quadrilateral  can be projected 
into a square by suitable choice of the focus and plane of projec- 
tion. Arbi t rary  ellipses are t ransformed into uni t  circles, as wi th  
linear t ransformations.  
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Fi s .  3. A heuristic method of defining a t ransformation.  The convex hull of the pat tern  is shown as a chain of O's. X marks the 
spots  where the slope of the convex hull goes through 45 °. The quadrilateral formed by the X ' s  is expanded until it  includes the 
whole character;  its vertices are now shown by O's. This quadrilateral is now mapped into the s tandard  24 X 18 rectangle on the 
r ight-hand side. 
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Stability 
Will successive applications of the transformation lead 

to eventual deterioration of the pattern to the point of 
irrecognizability, or will consecutive iterations converge 
to a stable configuration which preserves the essential 
characteristics of the original pattern? Although we have 
not been able to prove any property of consistency for our 
method for defining the fiducial marks, experimental evi- 
dence shows that very little change occurs in the pattern 
after the initial transformation. Figure 6 shows the se- 
quence of patterns generated from the numeral 8; the input 
for each pass is the pattern generated in the last pass. Some 
numerical results reported below support our contention 
that a single pass is sufficient for recognition applications. 

Quantitative Justification 

It  is clear that one cannot hope for an objective evalua- 
tion of a normalization or preprocessing method without 
at least some implicit assumptions regarding the nature 
of the recognition network used for the final classification. 
To benefit from the properties of projective normalization, 
we must, for example, assume that subsequent stages of 
the classifier extract geometrical (as opposed to topo- 
graphic or topological) properties of the pattern. We have 
chosen, in lieu of simulating one of the well-known classifi- 
cation techniques, to base our assessment on the correla- 
tions between the patterns regarded as vectors in binary 
space. 

I t  will be generally agreed that a pattern recognition 
problem may be considered easy if the patterns of the 
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lateral ,  C and D. G and F, in the  bo t tom diagram, are on a s t r a igh t  
l ine w i th  M and par t i t ion  the  sides OB and A E  of the  original 
quadr i la tera l  into  equal ratios.  The  equat ions defining the  t rans -  
format ion are s t a t ed  in terms of the  distances between specified 
points .  
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FIG. 6. Iterative application of the transformation. The greatest change is brought about by the first transformation, which is 
deemed to be sufficient for most practical requirements. Successive projections leave the pattern almost unaltered, as indeed they 
sho~dd. 

same class show a high degree of correlation among them- 
selves, and patterns of different class show a low degree of 
correlation. Conversely, a problem is hard if patterns in 
different classes tend to have significant overlap while 
patterns in the same class show little resemblance. By 
means of this criterion of difficulty we hope to avoid any 
more dependence than necessary on a specific recognition 
algorithm. 

For a measure of the correlation between two patterns 
Pi and P~ we use 

d~i = P i ' P j ( I  P~ I" 1Ps l) t 

when [ P~ I is the number of "black" bits in pat tern P~. 
Figure 7 shows the fraction of pat tern pairs having a 

given d~j, for patterns in the same class and for patterns in 
different classes. Each pair of curves refers to a different 
method of normalization. The first pair (Ta) is height or 
width normalization--each character is expanded or con- 
tracted until its largest dimension just fits into the 24X 18 
box. The second pair (7b) is independent height and width 
normalization. The third pair (Te) is the linear transforma- 
tion described in [2]; it is designed to remove shear distor- 
tion by diagonalizing the (2X 2) moment matrix of each 
pat tern [2]. The fourth pair of curves (7d) is our approxi- 
mate geometric projection with the fiducial marks derived 
from the slope of the convex hull. The fifth pair (7e) also 
represents geometric projection, but  here the fiducial marks 
are the vertices of the quadrilateral of the largest possible 
area which may be inscribed in the convex hull. 

Each of these sets of curves is based on 500,000 character 
pairs. Even with a machine language subroutine on a 
fairly fast computer (CDC 3400) for computing the cor- 
relations, the evaluation takes far longer than does the 
actual processing of the characters. 

The shaded areas under the intersections of the curves 
correspond to the expected probability of confusion be- 
tween two classes if the unknown samples are classified by 
comparing them to a randomly selected representative of 
each class. With this simple rule we would see about 28 
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percent of the characters misclassified with size normaliza- 
tion only, and about 13 percent with the projective method 
based on the slope of the contour. 

For a more detailed analysis of the strengths and short- 
comings of our normalization scheme, we would like to 
look at its performance on specific class pairs. Rather  than 
plot all 45 pairs of curves, we have computed a standard 
statistical figure of merit, the ratio of the difference of the 
means to the sum of the variances, for each pair of classes 
(see Table I). These figures are tabulated only for the 
projective normalization; while the values for the other 
methods are appreciably lower, their rank ordering is 
similar. 

Figure 8 shows the distribution of the correlation b e  
tween an original character and its transformed coun t e r  
part, and between the transformed character and the result 
of yet  another transformation. 

C o n c l u s i o n s  

A fairly general class of transformations, that  of geo- 
metric projections, was applied to the normalization of 
handprinted numerals. In  evaluating the performance of 
this method in reducing the internal variability of each 
class, an overall figure of merit of 2.82 was obtained versus 
2.50 for its nearest rival, linear normalization through 
moments. 

We know that  a recognition rate of 95 percent was 
reached on the same data with a more sophisticated recog- 
nition network (weighted N-tuples) but  with height nor- 
malization only [3]. We have, however, no way of estimat- 
ing the potential contribution of geometric normalization 
to the performance of this network. 

I t  is not surprising to see from the pairwise figure of 
merit table that  the most closely resembling classes, after 
normalization, are "4"  and "9."  This is precisely the pair 
which gives us most trouble in interpreting figures. 

Although the heuristic method we used to find the fi- 
ducial marks which determine the transformation is not 
readily amenable to analysis, it is clear from Figure 7 that  
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FIG. 7. Quantitative evaluation of different methods of normalization. The distribu- 
tion of the correlation coefficient defined in the text is shown for pairs of characters in 
the same class and in different classes. (a) Size normalization. (b) Similarity trans- 
formation. (c) Linear transformation including shear removal. (d) Geometric projection 
based on slopes. (e) Geometric projection based on inscribed quadrilateral. 

T A B L E  I .  V A L U E  OF  T H E  F I G U R E  OF M E R I T  FOR E A C H  P A I R  OF 

C L A S S E S  A F T E R  G E O M E T R I C  P R O J E C T I O N  

1 2 3 4 5 6 7 8 9 

6 . 5 8 3 5  8.2016 5.0567 6.0037 3.1163 2.0925 6.5160 4.1649 4.2236 

2. 7659 3.3388 3. 3945 5. 5722 7.1884 2.8830 2, 8962 2.1596 

1. 0597 3.3512 2.2770 4.4Oll 1. 0763 0. 6490 2.5325 

2. 0897 0. 4397 4. 8652 1.2015 0.9106 1.6230 

1.2421 2.7119 0.9652 0.9468 0.2772 

1.0432 1.9303 0.4228 1.3433 

6.2880 2.4601 4.9108 

1.5689 0.9028 

0.7520 

the rule is stable in the sense that successive applications 
of the transformation introduce no degradation in the 
characters. Indeed, the variation between the successively 
transformed characters, after the initial transformation, 

is much less than the average variation between the mem- 
bers of the same class. 

The transformation of an arbitrary outline inscribed in a 
:/1 quadrilateral into a figure in a square is a rather pretty 

ruler-and-compass construction, as described in [6]. In 
0 
I programming this transformation for the handprinted 
2 characters, quantization noise introduced through the 
3 coarse quantization of both the original and the target 
4 characters proved to be the greatest source of difficulty. 
5 In a production operation, the transformation should 6 
7 probably be approximated even further through table 
8 look-up operations which would be less vulnerable to the 

effects of quanti~ation than the computation of intersec- 
tions of straight lines. 

As mentioned earlier, it is thought that the geometric 
projection would be particularly appropriate in a three- 
dimensional milieu where the point of observation is 
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FiG. 8. Stability of transformation. Distribution of the correla- 
tion coefficient on first (left curve) and second (right curve) ap- 
plication of the geometric projection. 

unknown. Such an application would be most welcome for 
further development of this approach. 
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Full Table Quadratic 
Searching for Scatter Storage 
A. COLIN DAY 
University College London, London, England 

The quadratic residue search method for hash tables avoids 
much of the clustering experienced with a linear search method. 
The simple quadratic search only accesses half the table. 
It has been shown that when the length of the table is a prime 
of the form 4n "k 3, where n is an integer, the whole table 
may be accessed by two quadratic searches plus a separate 
access for the original entry point. A search method is presented 
which is computationally simple, has all the advantages of the 
quadratic search, and yet accesses all the table in one sweep. 

KEY WORDS AND PHRASES: quadratic residue, search method, hash tables, 
scatter storage, dictionary look-up, quadratic search, searching, hashing, hash 
code, clustering, collisions 
CR CATEGORIES: 3.7, 3.73, 3.74 

1. I n t r o d u c t i o n  

Scatter storage, or hash coding, is a means of storing.a 
table of items (e.g. identifier names in a compiler) in order 
to conserve storage and yet  permit  rapid searching of the 
table for a particular datum.  There are two aspects of 
scatter storage which are of special interest. The first is 
the question of transforming (or hashing) the new da tum 
into an initial address in the table. This is commonly per- 
formed by  dividing the da tum by  the length of the table, 
and using the remainder as an index within the table. The 
second aspect is the choice of the action to be followed 
when a collision occurs, i.e. when two items hash to the 
same initial address. The various actions adopted are called 
search methods. 

The simplest search method is the linear one. This is to 
step on through the table using a fixed step, and regarding 
the table as circular. There is no value to be gained in 
having any other step than  1 (providing tha t  the initial 
hashing gives a satisfactory spread of values). This means 
tha t  if the table is of length p, and the initial hash address 
is/z, then locations k, k -4- 1, k -4- 2, • • • ,/~ -b p -- l [mod p] 
are searched. Morris [1] has pointed out tha t  this is the 
worst s t rategy in use, as clustering of items easily results. 

Maurer  [2] has suggested a quadratic search. This in- 
volves searching successive addresses (k -b bi + c~)[mod p] 
for i = 1, 2 . . .  , (p - 1)/2. As Radke [3] points out, 
nothing is gained by  choosing b ~ 0 or c ~ 1, so let us 
assume tha t  the function is (k "4- z~)[mod p] for i = 1, 
2 . . .  , (p -- 1)/2. Only (p - 1)/2 locations are searched, 
but  clustering is greatly reduced. For  this method to work, 
p must  be a prime number.  

Radke [3] has suggested a method whereby the whole 
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