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Classification and Evaluation of Examples for
Teaching Probability to

Electrical Engineering Students
George Nagy, Life Fellow, IEEE, and Biplab Sikdar, Member, IEEE

Abstract—Although teachers and authors of textbooks make ex-
tensive use of examples, little has been published on assessing and
classifying pedagogic examples in engineering and science. This
study reviews various characteristics of examples intended for a
course on probability for electrical engineers. Twelve examples are
constructed to illustrate some characteristics of the correlation co-
efficient. A survey incorporating these examples was administered
to professors and students at Rensselaer who have taught or taken
a course in probability. Statistical tests are applied to determine
which examples professors and students prefer and to what extent
they agree in their preferences. New bipolar criteria are proposed
to classify objectively a broader set of examples that appear in
textbooks. Even though preferences depend on educational back-
ground and maturity, textbooks on probability are sharply differ-
entiated by the proposed classification criteria.

Index Terms—Analogies, education, electrical engineering edu-
cation, learning, probability, statistics.

I. INTRODUCTION

T WO aspects of examples used in teaching probability to
electrical engineering undergraduates at Rensselaer Poly-

technic Institute are investigated here: 1) Do professors and stu-
dents have consistent and compatible opinions about the relative
value of a dozen examples focused on the characteristics of the
correlation coefficient? 2) Can examples in eight popular text-
books on probability (of which all but one include engineering
applications or random processes or communications in their
title or subtitle) be classified objectively? Methods developed to
answer these questions are likely to be useful, if not necessary,
for any deeper study of the quality of pedagogic examples.

Students demand examples, both in the classroom and in their
textbooks. About one half of the contents of the 20 or so intro-
ductory books on probability that were examined are devoted to
clearly demarcated and numbered examples that range in length
from two lines to two pages. Since all of the theory of proba-
bility follows from a few axioms, any consequence of the ax-
ioms can be presented either as a theorem or as an example. For
instance, Stark and Woods [1, Example 3.2-1] and Leon-Garcia
[2, Example 3.23] give exactly the same result for the proba-
bility density function and cumulative distribution function of
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a linear transformation of a random variable, as do Yates and
Goodman [3, Theorems 3.19 and 3.20].

This paper is organized as follows. Section II reviews some
hypotheses proposed in the literature about the nature of good
examples. Section III describes the survey constructed to in-
vestigate preferences of professors and students, and a statis-
tical analysis of the results of the survey. Section IV contains an
analysis of textbook examples and Section V presents the con-
cluding remarks.

II. WHAT IS A GOOD EXAMPLE?

Examples and exemplification have received much more at-
tention in the teaching of languages [4] than in engineering.
Yelon and Massa [5] say that “good examples are accurate, clear,
attractive and transferable.” Sweet [6] suggests the following
characteristics for teaching grammar.

1. They illustrate or confirm the rule clearly. They are
unambiguous.

2. They are understandable without more context.
3. They are as concrete as possible, the more concrete the

better—especially in giving words and vocabulary for
beginners.

4. They do not contain difficult or rare vocabulary or irreg-
ular forms that are not involved in the particular rule being
illustrated.

The first two points are directly applicable in the context of
teaching probability while the third point suggests using numer-
ical rather than symbolic expressions. The last point would pro-
scribe mathematics irrelevant to the concept being illustrated,
such as cumbersome arithmetic, difficult differentiation or inte-
gration, or completing the square.

The desirability of not letting complex mathematical manip-
ulation obscure engineering or physical intuition is emphasized
by Faria, who develops a series of examples to illustrate high fre-
quency analysis of conductance-grounding effects [7]. All of his
examples are deliberately based on simple two-conductor trans-
mission line theory. An earlier paper that makes the same point
demonstrates a progression of three examples on the application
of the method of moments (a numerical procedure for solving
a linear operator equation by transforming it into a system of
simultaneous algebraic equations) to electromagnetic problems
[8]. In probability, many concepts can be illustrated simply and
intuitively, for instance, with uniform probability densities on
the real line or square.
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In contrast, Blair, Conte, and Rice argue that the derivations
associated with analytic expressions are instructive [9]. To illus-
trate homomorphic signal processing, the authors show math-
ematical “tricks” for deriving the equations that characterize
the distortion of signals in the frequency domain and for ap-
proximating the signal in the time domain to arbitrary accu-
racy. The approximation process is then illustrated for two input
signals. Approximations based on transformations of variables
(i.e., moment generating functions and characteristic functions)
are also important in probability. Section IV presents some sta-
tistics about the occurrence of both interrelated examples and
advanced mathematical techniques in textbooks on probability.

Insights from software engineering may be applicable to
the coverage of examples. Cordy recommends input partition
testing, where program inputs are divided into equivalence
classes that correspond to every possible path through the
program [10]. The notion of coverage is also fundamental in
VLSI fault testing [11]. Educational software for generating
problems and solutions from a set of templates has been avail-
able for at least four decades, but problems that test mastery of
the material have different characteristics from examples for
instruction. In contrast to test generation, the accent in teaching
is on illustrating correct solutions rather than on comprehensive
coverage.

Other queries about the quality of an example include the
following.

1. Is topicality important? Are examples based on contem-
porary affairs (e.g., elections) preferable to examples re-
lated to prerequisite or co-requisite engineering courses?
Most early studies of probability were inspired by games
of chance, which remain popular in textbook examples.

2. When is an example misleading? Will an example of a
probability mass function with a range consisting of three
possible values suggest to students that all mass functions
are defined on exactly three values? Only one of the exam-
ined textbooks gives deliberate examples of common stu-
dent mistakes [12].

3. Should an example illustrate only a single procedure or
concept, or several? Should examples be interdependent?
Should examples of probabilistic notions be based on
mathematical abstractions or on concrete phenomena?
What accounts for the sustained popularity of Feller’s [13]
and Papoulis and Pillai’s [14] examples?

III. STUDENT AND PROFESSOR EVALUATIONS OF EXAMPLES

As the above questions suggest, the notion of what constitutes
a good example may be subjective. Some may consider illus-
trating fundamental concepts to be more important than appli-
cations of probability to real problems. Personal differences in
the way different people learn can also affect their judgment of
the pedagogic effectiveness. Thus, it is of interest to learn if in-
deed there are certain qualities of examples that are universally
admired or deprecated. Therefore, a survey was constructed to
discover any consensus, within and among groups with diverse
educational backgrounds, on a set of 12 examples (E1 to E12)
that follow the most popular prototype (generic, numerical) en-
countered in textbooks.

All examples in our survey illustrate the same procedure for
determining the correlation coefficient and the statistical depen-
dence between a pair of discrete random variables with given
joint probability mass functions. Different values of the mar-
ginal and joint probability mass functions produce contrasting
characteristics with respect to criteria mentioned in the litera-
ture, like simplicity and coverage. The examples, including the
results of the calculations, were displayed in a six-page survey
with a short introductory note. (This survey instrument is avail-
able from the authors.)

Responses to the survey were collected from 46 subjects con-
sisting of three groups: 1) 23 undergraduate students majoring
in electrical or computer engineering at RPI who were in the
last week of a senior level course on probability, 2) 10 graduate
teaching assistants for the same course, and 3) 13 professors
of electrical and computer engineering (six from outside RPI)
who regularly use probability in their research or have taught
an undergraduate probability course. Respondents received no
incentive, and came under no pressure, to complete the survey.
Less than half of the undergraduate students in the two classes
(one year apart) to whom the survey was distributed returned it.
Each respondent answered the following questions.

Q1) From the 12 examples, pick the four you like the best
(we call these A), the four you like second best (B),
and the four you like the least (C) (without ordering the
examples within each of the three groups).

Q2) If you were to select two examples from these 12 to show
in a class, which would they be?

Q3) If you were to pick three examples to show in the class,
which would they be?

The first question ascertains preferences with regard to indi-
vidual examples. The second and third questions should indi-
cate whether examples that may not be ranked as the best in the
set of twelve might still be picked when pairs or triplets of ex-
amples are to be shown to a class. Pairs or triplets may illustrate
different concepts (such as positive and negative correlation, or
uncorrelated but dependent variables), even though these exam-
ples may not be considered best when viewed in isolation.

A. Results From the Survey

Table I shows how many respondents assigned each example
to each category. The table also shows the overall rank of the
examples, calculated by assigning a weighted score

, as in [15] and [16], to each example:

(1)

where and are the number of responders of a group
classifying Example in category A, B and C, respectively. The
choice of 1, 0, and 1 of the weights was made in accordance
to the Likert scale commonly used in survey research [17]. The
12 examples were ranked according to these scores, with the
example with the highest score being considered the best. Ties
in the scores were broken randomly. The order of the examples
in the surveys given to different responders was not randomized.
While this may lead to a bias in the responses, the results do not
show any conclusive evidence of ordering effects.
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TABLE I
GROUP RESPONSES, SCORES AND RANKS FOR QUESTION 1

TABLE II
MANN-WHITNEY SIGNIFICANCE VALUES FOR CONSISTENCY AMONG GROUPS

The two key questions to be answered are whether groups
with different levels of exposure to a topic evaluate an example
consistently, and whether there are certain characteristics that
define a good example. The following statistical hypothesis tests
were carried out to answer the first question.

1) Test 1. Are the Ratings of an Example Consistent Among
the Groups?: To answer this question, the likelihood that the ob-
servations from two groups are generated from the same popu-
lation was computed. The classification of an example as an A,
B, or C in response to Question 1 by members of two groups
forms one set of samples of observations. The medians of the
ratings of the two groups are compared with the nonparametric
Mann–Whitney test [18]. The null hypothesis is that the two
samples are drawn from the same population and therefore the
medians are equal. The test is repeated for each of the 12 exam-
ples in the survey.

Result of Test 1: Table II reports the observed significance
levels between the ratings of the professors against the two stu-
dent groups. The professors and graduate students differ signifi-
cantly in their opinion (with a value of less than 0.10) in four of
the examples while the professors and undergraduates differ sig-
nificantly on two of the examples. The professors disagree with
both the student groups on E9, but only with the graduate stu-
dents on E8 (which suggests that the undergraduates and grad-
uates disagree on E8).

2) Test 2. Are Examples Consistently Classified as Good or
Bad?: The number of times Example is classified as A, B,
and C, and , respectively, represents a multinomial
experiment with three possible outcomes. How a group assesses

TABLE III
SIGNIFICANCE LEVELS FOR WITHIN-GROUP

AGREEMENT ON INDIVIDUAL EXAMPLES

an example can be judged by the number of times it is classified
in category A as opposed to C. Classification into category B,
does not add any further information on whether it is good or
bad. Thus, to test whether the respondents assess the example
favorably is equivalent to testing whether they select bin A over
bin C more often than might happen by chance. The estimator
for the category probabilities of Example is , where

and is one of A, B, or C. The null hypothesis
is tested against the alternative hypothesis

.
Result of Test 2: As shown by the observed significance levels

in Table III, for the professors the null hypothesis can be con-
fidently rejected only for E9, suggesting that they consider this
example a good one. Graduate students like E1, E2, E9, and
E10, while undergraduate students like E1, E2, and E10. The
results indicate that there is less of a consensus among the pro-
fessors than within and between the student groups. Also, while
all three groups think alike on E11, there is considerable dis-
agreement on E5 and E8, among others.

3) Test 3. Are Questions Labeled the Best by a Responder (Q1
of the Survey) Also Likely to Be Picked as the Two Examples
to Show in Class (Q2)?: To answer this question, a two-way
contingency table was generated where the variables are i) how
many times an example is selected in Category A of Q1 and
ii) how many times it is selected in Q2. Fisher’s exact test [19]
was applied to the null hypothesis that these two variables are
independent against the alternative hypothesis that they are not.

Result of Test 3: Table IV shows the observed significance
levels for the three groups: in all cases the null hypothesis can
be confidently rejected, showing that there is strong correlation
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TABLE IV
SIGNIFICANCE LEVELS FOR SELECTIONS IN Q1 AND Q2

TABLE V
EXAMPLES WITH SPECIFIC CHARACTERISTICS

between the examples ranked in Category A of Q1 and those
included in Q2. Table IV also shows the degree of correlation
as given by Kendall’s or Spearman’s correlation coefficient and
its asymptotic standard error (ASE).

B. Characteristics of Examples

The other important question that the survey was designed to
answer was What are the characteristics of a good or a bad ex-
ample? One indication of the quality of an example is its overall
ranking. Additional indications are given by comments on the
example provided by the responders. The characteristics to be
evaluated are listed in Table V and described below.

1. Simple numbers: Examples with simpler numbers are
preferred by many respondents, whether from professor,
graduate and undergraduate student groups. Here, “sim-
pler numbers” refers to the use of few digits, integers, and
fractions that are easy to manipulate. Of the six examples
with simple numbers, four (E1, E2, E9, and E10) were
ranked as the top four by each group. On the other hand,
among the six examples with complex numbers, four
were ranked in the bottom half by all three groups. Five
undergraduates explicitly indicated their preference for
simple numbers in their comments.

2. Illustration of a key concept: A key concept that was to be
illustrated through these examples was that of correlation
and dependence between random variables (as explicitly
mentioned in the survey). While a student can easily under-
stand that correlated random variables are dependent and
independent ones are uncorrelated, the same student may
find the fact that independence is not implied by absence of
correlation to be far from obvious. E9 and E10 were the two
examples that showed dependent but uncorrelated random
variables. Among the professors, E9 was by far the most
popular choice with a score of 11, while E10, with a score
of 2, was tied for second place. Graduate students ranked
these two examples in positions 4 and 1, respectively, with
scores of 7 and 4. While undergraduates also ranked E9

and E10 in the top four with ranks of 4 and 3, respectively,
their scores were only 2 and 7. In contrast, undergraduates
had scores of 14 and 10 for their top two examples.

3. Oversimplified examples: Two professors and two under-
graduates commented that they consider examples with all
zero rows or columns as bad. Among the two such exam-
ples in the survey, one was ranked 7, 8, and 10 by the pro-
fessors, graduates and undergraduates, but the other was
ranked 4, 3, and 2. Thus, other qualities may compensate
for having all zero rows or columns.

4. Examples showing extreme conditions: Three of the exam-
ples in the survey had a correlation coefficient of 1 and all
the nondiagonal elements in the matrix for their probability
mass function were zero. Two of these three examples were
ranked in the bottom half by all groups while the third ex-
ample had ranks of 11, 5, and 6. This suggests that exam-
ples showing perfect correlation are not highly valued by
any of the groups.

5. Use of symbols instead of numbers: Our survey used nu-
merical values in all the examples. Two of the graduate
students pointed out that it might be better to use sym-
bols rather than numbers, because it would shift the focus
entirely on the equations and eliminate any effects that
the choice of numbers may have on the results. However,
numbers would still need to be substituted to show di-
rectly that a correlation coefficient of zero does not mean
independence.

6. Individual preferences: Finally, individual preferences
may also affect how examples are viewed and ranked. For
example, one undergraduate noted that Example 6 was the
best while its overall ranking by the undergraduate pop-
ulation is only 6. Also some respondents (one professor,
one graduate and two undergraduate students) mentioned
that they found it difficult to differentiate between good
and bad examples.

C. Pair Selection

In Q2 of the survey, the respondents were asked to pick two
examples that would be shown to the class in order to illus-
trate the concepts of dependence and correlation between pairs
of random variables. Table VI shows how many times various
types of pairs of examples were chosen by the professors, grad-
uate and undergraduate students. A respondent may select two
examples out of 12 in 66 different ways, but the respondents
opted for only a very small subset of this sample space. Only
three of the 13 professors (23% of the population) failed to
pick any of the two examples showing a dependent but uncorre-
lated pair of random variables (E9 and E10). Among the grad-
uate students, three of the ten respondents (30%) picked nei-
ther E9 nor E10. However, this number increases to 14 out of
23 among the undergraduate students (61%). Also, while only
one professor and one undergraduate picked a pair with inde-
pendent and therefore uncorrelated, and dependent yet uncor-
related random variables, four of the ten graduate students se-
lected such a pair.

A common trend among all groups was selecting pairs com-
posed of one example showing correlated, and another showing
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TABLE VI
SELECTED TYPES OF PAIRED EXAMPLES

uncorrelated, random variables. In the survey, 9 of the 13 pro-
fessors, 5 of the 10 graduate, and 17 of the 23 undergraduate
students selected such pairs. Only one respondent each from
the three groups picked a pair showing both negatively and posi-
tively correlated random variables. Table VI and comments pro-
vided by the respondents suggest that the following factors af-
fect the choice of examples that different groups like to see in a
class:

1. Examples illustrating contrasting situations: There was
a marked respondent preference for selecting contrasting
pairs, such as i) one example showing correlated and
the other showing uncorrelated random variables, ii) one
showing dependent and the other showing independent
random variables, and iii) one showing uncorrelated and
independent and the other showing dependent but uncor-
related random variables.

2. Illustration of a key concept: Examples that illustrate a key
concept are favored more by the professors and graduate
students as compared to the undergraduate students. Ex-
amples of key concepts consisted of dependent but uncor-
related random variables.

3. Examples that demonstrate the significance of a param-
eter: Some respondents prefer a set of examples that can
illustrate the effect of a parameter on the conclusion drawn
from the example. For correlation and independence, a pair
of examples can show the effect of increasing the variance
of one of the variables on the correlation coefficient (while
keeping its mean constant).

4. More than two examples: In some cases, more than two
examples may be necessary to clarify all aspects of the
problem. Two professors stated that a triplet would be
better than a pair because it could include one example
showing dependent and correlated random variables, one
showing dependent but uncorrelated random variables,
and a third example showing independent and uncorre-
lated random variables.

The results for the answers to Question 3 of the survey, where
the respondents were asked to pick three examples to show to
the class, were similar.

Consensus in Rating Examples: One of the surprising ob-
servations from the survey was that students have more uni-
fied opinions than the professors. An indication of the degree
of agreement on the relative value of an example is provided by
its score as given by (1), and reported in Table I. Table I shows
that only one example (E9) had a high score from the professors,
and three had scores lower than 3. The remaining eight exam-
ples have scores between 2 and 2, suggesting that there is no
consensus among professors on whether they are good or bad, or

even that they are neither. In contrast, the graduate students give
four examples scores higher than 4, and scores lower than 5
to another four. This trend is also reflected in the scores of the
undergraduates who give three examples large positive scores,
four examples large negative scores 4 and the rest scores
between 2 and 2. Significantly, while undergraduates ranked
examples with simpler numbers as the best, both professors and
graduate students ranked an example which shows a key concept
(correlation coefficient of zero does not mean independence) as
the best example.

IV. CLASSIFICATION OF TEXTBOOK EXAMPLES

This section presents the eight binary criteria that were used
to classify several hundred examples from popular textbooks,
and also briefly mentions some criteria that were discarded. The
criteria were chosen without any presumption that some cate-
gories are pedagogically superior to others.

Since having mutually exclusive categories would clearly
simplify the comparison of textbooks on the basis of their
examples, an attempt was made to sort examples directly into
five classes.

1. Definition or an instantiation thereof:
is a pdf.

2. Procedure for evaluating some quantity: for Bernoulli
trials, .

3. Application to an engineering problem: given the pdf of
voltage at the terminal of a resistor, compute the pdf of the
power.

4. Design: optimize an 8-bit quantizer, V to V, with
maximum SNR.

5. Illustration of a phenomenon that obeys the laws of proba-
bility: a pair of fair dice.

Many examples fell into more than one of the predefined classes,
and the authors disagreed on many assignments. Therefore, in-
stead of defining classes, the following unambiguous bipolar
criteria (i.e., dichotomies) were formulated.

D1) Almost all examples in textbooks on probability pose a
question or problem that has some (known) solution or
result. The solution may be quantitative or not. A quan-
titative solution can be expressed in either symbolic or
numerical form. Dichotomy D1 determines whether the
solution is quantitative or not quantitative.

D2) Dichotomy D2 determines whether an example is nu-
merical. (A quantitative but non-numerical conclusion
must be symbolic.) Numerical solutions include graphs,
computer printouts, and also functions with numerical
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TABLE VII
CLASSIFICATION OF TEXTBOOK EXAMPLES

parameters, like , or the [10, 25) in-
terval on the real line.

D3) Is the example based on some concrete professional
process, the understanding of which requires col-
lege-level study of science or engineering? Professional
processes require some knowledge of mechanics, circuit
or signal analysis, device physics or fabrication, ther-
modynamics, information theory, etc. Thus, resistive
power dissipation, A/D converters, delimiter circuits,
modulation, and photodiodes represent professional
processes.

D4) Is the example based on a concrete common-sense
process that requires no technical background? Coins,
dice, urns, roulette wheels, temperature or stock
records, pass/fail testing of circuits or chips, and
the timing of telephone calls and e-mail, are all concrete
common-sense processes. In this framework, a set of
10 uniformly distributed integers between 1 and 6 is
not concrete, but tossing 10 dice is. If there is neither
a professional nor a nonprofessional process, then the
example is abstract, and the answer to both D3 and D4
is NO (0).

D5) Even if a problem has a solution that is itself valuable
or noteworthy, sometimes the process of getting there is
of even greater interest. In probability, there are often
opportunities for introducing useful mathematical steps.
Dichotomy D5 therefore distinguishes examples that
present or emphasize some mathematical technique or
“trick,” from those that don’t.

D6) Is the solution stated? An example may either state a
problem and illustrate its solution, or simply state a
problem without providing the solution. An example of
the latter might be: Consider the difference between a
binomial distribution with and , and a

Gaussian probability density function with and
.

D7) Is the solution invited? If the solution is not given,
it might be invited: For instance: The Chebyshev in-
equality often gives a loose bound. Find the Chebyshev
bound on the probability that a Gaussian random vari-
able is more than two standard deviations above its
mean.

D8) Some examples are self-contained, while to understand
others, the reader must refer to an earlier example. D8,
which separates self-contained from continued exam-
ples, is the simplest of the tests.

In each of eight textbooks [1]–[3], [13], [14], [20], [21], the
chapter(s) on mathematical expectation, including mean, vari-
ance and covariance, was selected. In some books, the same
chapter introduces random variables. In others, the chapter on
expectations also covers moment generating and characteristic
functions. All of the examples in the selected chapter(s) were
categorized.

Although the binary criteria listed above appear simple, ad-
ditional clarifications had to be developed to ensure consistent
consensus. The authors independently answered eight yes/no
questions about each example. In addition, a set of randomly
selected examples was also scored by two other colleagues. Dis-
agreements were rare. Not all of the combinations are pos-
sible (if a quantitative solution does not exist, then it can be
neither numerical nor symbolic). The consolidated results are
presented in Table VII.

As expected, most of the examples offer quantitative solu-
tions. Two texts, Haddad and Yates and Goodman, stand out
with respect to the number of numerical solutions. None of
the texts require any college-level knowledge of engineering
or science to understand most of the examples, but over one
third of Haddad’s are in this category. Abstract problem state-
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ments—without reference to any underlying physical mecha-
nism—are favored by Fine and Stark and Woods, and, to a lesser
extent, by Miller and Childers. Yates and Goodman, Feller, and
Haddad favor classical probabilistic settings like coins, dice, and
balls in urns.

Stark and Woods, Feller, and Miller and Childers go out of
their way to present examples that introduce interesting math-
ematical techniques (or perhaps they simply do not avoid such
examples). Although not measured by the dichotomies, Feller,
Fine, Miller and Childers, and Stark and Woods require more
advanced mathematical preparation than the other books.

V. CONCLUSION

Unlike many engineering problems where the optimality of
solutions can be proved, or the effectiveness of an approach
may be quantified, the effectiveness of pedagogic examples in a
classroom and the classification of such examples is difficult to
judge. The difficulty arises because of inherent differences in the
learning styles of individuals, their background, and interest in
the subject. Nevertheless, the evaluations are far from random.
Undergraduate engineering students in a Rensselaer course on
probability prefer simpler examples to those examples that may
show key concepts, a choice which contrasts with that of grad-
uate students and professors. Contrasting pairs of examples are
appreciated by all groups. Student opinions on an example are
more consistent than the opinions of professors. These observa-
tions were pronounced enough for our relatively small sample
to provide statistically significant results. Whether they apply to
universities with different demographics would require further
experimentation.

According to eight binary criteria, different authors show
marked differences in their choice of various types of examples
in their textbooks. The type of examples that were selected for
the survey—generic problems with numerical solutions—rep-
resents the most popular category of examples in the textbooks
that were examined.

The dichotomies for characterizing textbook examples could
be applied, perhaps with minor changes, to texts for other math-
ematics courses in engineering curricula. In combination with
additional criteria (topical coverage, length, vocabulary, nota-
tion), they may be valuable to publishers, authors and teachers.
They could also be embedded into automated search techniques
to harvest examples from the Web.

The survey instrument, and the corresponding statistical tests,
could also be applied to evaluate examples in other domains. Al-
ternatively, other aspects of examples could be studied in a sim-
ilar manner. In view of the results of the textbook classification,
it would be interesting to find out whether situating examples in
an application context would enhance them in the view of the
various constituencies. For instance, examples for computing
the correlation coefficient could include variables encountered
in practice, like temperature and switching delay in a CMOS in-
verter. Then any positive or negative correlation could be linked
to some underlying physical phenomenon.

What the proposed methodology lacks so far is any direct
assessment of whether any examples are more conducive to stu-

dents learning the exemplified procedure and concept. Exami-
nation results will not reveal the extent of learning if the exam-
inations are based on test problems that are too similar to the
examples presented in the course. The taxonomy of examples
and the methodology for assessing the preferences of students
and professors developed here may provide a starting point for
studies of the effectiveness of examples.
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