

A Proposal for a Camera-based Ballot Counting Device

George Nagy¹, Elisa H. Barney Smith², Daniel Lopresti³, ¹Rensselaer Polytechnic Institute, ²Boise State University, ³Lehigh University, nagy@ecse.rpi.edu, EBarneySmith@boisestate.edu, lopresti@cse.lehigh.edu,

ABSTRACT

As in other document imaging applications, cameras may replace scanners in op-scan election systems. Current commercial op-scan devices based on optical scanners have intrinsic limitations because they must incorporate a paper-transport or an optical-assembly translation mechanism. Recent improvements in consumer-grade camera technology allow document-size imaging with a spatial sampling rate, point-spread function, and geometric fidelity sufficient for extracting hand-printed marks from ballots. Expected advantages over current election technology include higher reliability, greater flexibility with respect to ballot formats, and lower cost and power consumption.

ACKKNOWLEDGMENT

This material is based upon work supported by the National Science Foundation under Grants No. CNS-0716393 (GN), CNS-0716647 (EBS), and CNS-0716368 (DL). RPI Research Assistant Anne Miller digitized the ballots.

REFERENCES

- [1] Elisa H. Barney Smith, Daniel Lopresti, George Nagy, "Ballot Mark Detection," ICPR 08.
- [2] Douglas W. Jones, "Voting and Elections," http://www.cs.uiowa.edu/~jones/voting/
- [3] Marcia Lausen, Design for Democracy, Ballot + Election design, University of Chicago Press, 2008.
- [4] Jian Liang, David Doermann, Huiping Li, "Camera-based analysis of text and documents: a survey," IJDAR 2005.
- [5] Shijian Lu, Chew Lim Tan, "Keyword Spotting and Retrieval of Document Images Captured by a Digital Camera," Seoul, Korea, ICDAR 2007.
- [6] George Nagy and Daniel Lopresti, The Role of document image analysis in trustworthy elections, World Scientific Review Volume (ed. S.K. Parui and B.B. Chaudhuri), in press, 2008.
- [7] P. Sarkar, D. Lopresti, J. Zhou, and G. Nagy, "Spatial Sampling of Printed Patterns," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 20, #3, pp. 344-351, March 1998.
- [8] P. Sarkar, G. Nagy, Style consistent classification of isogenous patterns, IEEE Trans. PAMI-27, 1, pp. 88-98, January 2005.
- [9] Jun Sun, Yoshinobu Hotta, Yutaka Katsuyama, Satoshi Naoi, "Camera based Degraded Text Recognition Using Grayscale Feature," Seoul Korea, ICDAR 2005, p 182-186.
- [10] S. Veeramachaneni, G. Nagy, "Analytical results on style-constrained Bayesian classification of pattern fields," IEEE Trans. PAMI-29, 7, pp. 1280-1285, July 2007.
- [11] Elisa H. Barney Smith, George Nagy, Daniel Lopresti, "Mark Detection from Scanned Ballots," DRR 09.