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Abstract. The extraction of the relations of nested table headers to content cells
is automated with a view to constructing narrow domain ontologies of semi-
structured web data. A taxonomy of tessellations for displaying tabular data is
developed. X-Y tessellations that can be obtained by a divide-and-conquer
method are asymptotically only an infinitesimal fraction of all partitions of a
rectangle into rectangles. Admissible tessellations are the even smaller subset of
all partitions that correspond to the structures of published tables and that con-
tain only rectangles produced by successive guillotine cuts. Many of these can
be processed automatically. Their structures can be conveniently represented by
X-Y trees, which facilitate relating hierarchical row and column headings to
content cells. A formal grammar is proposed for characterizing the X-Y trees of
layout-equivalent admissible tessellations. Algorithms are presented for trans-
forming a tessellation into an X-Y tree and hence into multidimensional, layout-
independent Category Trees (Wang abstract data types).

Keywords: document understanding, tables, rectangular tilings, X-Y trees,
table grammars, Wang notation.

1 Introduction

Most quantitative data available in electronic form appears in the form of tables. We
study formal aspects of web tables with a view to extracting their content. Various
configurations of rectilinear tessellations defined on a grid can convey information in
tabular form to human readers. In order to simplify the development of algorithms
that recover the information from frequently occurring configurations automatically
we construct a taxonomy of tabular layouts that may be considered equivalent from
the perspective of table analysis.

Our work differs from earlier work w.r.t. (1) focusing on computer-constructed
web tables rather than tables from scanned documents, (2) making use of commercial
software to import web tables into a spreadsheet, (3) describing tables by X-Y trees
and, most importantly, (4) facilitating content analysis by extracting the relationship
of headers to content cells rather than only the geometric cell structure. This research
is part of a larger project [1] to generate narrow-domain ontologies (e.g., for automo-
biles, obituaries, geopolitics) from semi-structured web data, which is itself a step
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towards realization of the Semantic Web [2,3]. Concentrating on tabular sources of
quantitative information avoids some difficulties of natural language processing.

Comprehensive reviews of two decades of research on table processing appear in
[4,5]. Algorithms were first developed for specifying cell location in terms of rulings
or, in the case of unruled tables, according to the geometric alignment and typo-
graphic similarity of cell content. A recent proposal for an end-to-end system divides
the task into table detection, segmentation, function analysis, structural analysis and
interpretation, but was not implemented and does not define which tables can and
cannot be processed [6]. None of the methods that address web tables (e.g. [7]), car-
ries the analysis to the layout-independent multi-category level.

This paper formalizes the methods we used in an experiment on 200 tables randomly
chosen from eight large web sites. The 200 tables were imported into Excel and edited
into a form that could be processed algorithmically. The average size of the tables was
587 cells, and editing required on average 104 seconds [8]. Augmentations such as ag-
gregates, annotations, footnotes and titles that are important componenents of most
tables were also processed, but they are not included in the formalism presented here.

1.1 Rectangular Tessellations

A discrete rectilinear tessellation, or a rectangular tiling, is the partition of an iso-
thetic rectangle into rectangles defined on an m x n lattice. The geometry of such a
construct can be uniquely represented by the locations and types of all its junction
points, i.e., points at which two non-collinear lines meet or cross. The number of
tilings, N;(m) = N,;(m,m), increases exponentially with the size of the grid. A quick
count reveals that even a 4x4 grid has 70,878 different partitions. Some of these,
called X-Y-tessellations, can be obtained by a divide-and-conquer method based on
successive horizontal and vertical guillotine cuts. Klarner and Magliveras proved that
the number N (m) of X-Y-tilings decreases quickly with the size of the grid [9].
Although N,(4) = 68,480, which does not differ in order of magnitude from 70,878,

lim N, (m)/N,,(m)=0.

Figure 1 shows a simple X-Y-tessellation, and Figure 2 shows tilings that are not X-
Y-tessellations. In the VLSI literature these are known as nonslicing structures [10].
It is known that horizontal and vertical polar graphs (that are duals of each other) can
be drawn for any rectangular tiling, and that for a slicing structure (X-Y-tessellation)
the polar graphs are series parallel. The concept of polar graph goes back to a 1940
paper on the dissection of rectangles into squares [11].

Polar graphs abstract away the geometry of rectangular tilings but preserve the ad-
jacency relationship between the tiles in the horizontal and vertical directions. X-Y

Fig. 1. A simple X-Y tessellation

":‘; I

Fig. 2. Two non-X-Y tessellations
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trees similarly abstract the geometry X-Y of tessellations by providing a structural
representation of the rectangles obtained by horizontal and vertical cuts at alternating
levels. Such partitions can be represented by X-Y trees that we originally proposed
for page layout analysis [12, 13]. They have been periodically rediscovered and are
also known by other names like puzzle tree or treemap [14]. They transform a 2-D
structure into two interlaced 1-D structures, thereby facilitating analysis. Figure 3
shows two X-Y-tessellations defined on a 4 x 4 lattice that are geometrically different
but are both represented by the X-Y tree shown on the right. We don’t know the num-
ber of structurally different X-Y tessellations, Ng,(m), but it clearly is much smaller
than the number of (geometrically) different X-Y tessellations N, (m). The transfor-
mation of an X-Y-tessellation to an X-Y tree is discussed in Section 2.

‘N

Fig. 3. Two geometrically different but structurally identical tessellations

1.2 Web Tables

The layout of tables for the presentation of information is dictated by convention. The
Chicago Manual of Style [15] and the US Government Printing Office Style Manual
[16] both have lengthy chapters describing these conventions. All tables have a stub,
column headings, row headings, and data cells. Several common layouts are illus-
trated in Figure 4. Tessellations that correspond to such layouts are called admissible
tessellations or table candidates because the location of each data cell is specified by a
set of hierarchical row and column headings.

Many tables that appear in the literature do not strictly follow conventions yet are
readily understandable by their intended readers. For example, a common occurrence is

A A Al A2
Al L] B B1 B2 B1 B2
> C D
B1 B2 B1 B2
5 o1 D1
c L p |2 D2
D 2 D1
@ o2 D2
(a) (b)
A A Al A2
Al A2 ATT AT 5T %2
B Bl B2 B B2 B BT B2 | Bi B2 | Bi B2 | B B
C D 3 D
D D
ct = ct =
D D
c2 —o 2
(c) )

Fig. 4. Common table layouts. The blank top-left area is the stub. Only the column and row
headings are labeled. The gray areas are content (delta) cells. Combinations of (a) for columns
and (b) for rows are popular. (c) and (d) are more unusual hybrids.

the absence of a root, or spanning heading, for a category. Let us call the mathemati-
cally indefinable and unknown number of human-understandable tables Ny, (m). We
propose to process tables in this category by interactively transforming them into a
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smaller set of admissible tables that can be formally described and algorithmically
analyzed. The number of admissible tables is N g xy(m).

For the purpose of algorithmic analysis we need consider only layout-equivalent
admissible table candidates that do not differ in the number of categories, but only
with respect to the depth of their heading hierarchies, or the number of rows and col-
umns, as do the examples in Figure 5.

c1

ci

SI2I8I2 o

C2 c2

Fig. 5. Layout equivalent tables. The blank areas must be empty. Gray areas contain data.

Context-free grammars can help to characterize entire families of layout-equivalent
admissible tessellations, as first demonstrated in [17, 18, 19] and revived here in Sec-
tion 3. A few such families account for the vast majority of tables encountered in
books, journals, and the web. The number of different layout-equivalent admissible
table candidates is N sy, (m). We cannot yet process automatically all structurally
equivalent admissible tables, therefore Np g yy(m) < Ny g, (m).

X-Y trees represent only the physical layout of a table, which can be modified to
suit page size or column width, or display characteristics. The first step in understand-
ing a table is to analyze its logical structure, which is independent of the presentation
aspects. Interpretation requires understanding the relationship between headings and
content cells. An abstract data structure for this purpose was proposed by Wang in
1996 [20]. It represents headings in terms of category trees (labeled domains), whose
Cartesian product provides the paths to every content cell (called delta cells). The
number of categories in a table is called its dimensionality. Figure 6 displays the cate-
gory trees for a simple table. The size of the table is the product of the number of rows
and columns of delta cells, and it is also equal to the product of the number of leaf
nodes in the category trees. An algorithm for extracting the Wang Notation from the
X-Y trees is presented in Section 4.

Labeled table candidates for which Wang Notation exists are called Well Formed
Tables (WFT). They are only a subclass of tables encountered in practice. However,

Category Al Al2|UldliUI ]
(A{(A1{(A11,0) (A2 0)) (A2.0)) T D [ A Tap | *°
(C, {(C1,2),(C2,®)}) ct D2 21 d22 423
D1 d3i d32 d33
(D’ {(D1’CI))’(D21(D)}) c2 D2 41 44 343

Delta notation: A C D
S({A.A1.A11,C.C1,D.D1}) = d11 /\
3({A.A1.A12,C.C1,D.D1}) = d12 \ /\

Fig. 6. Wang notation for the categories and data cells of a simple 3-category table
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most such tables can be transformed to WFT format with little effort. Figure 7 shows
a table that is not well formed, and its WFT equivalent, obtained by the addition of
virtual headings. The headings shown are sensible, but any arbitrary labels would do
for the Wang notation.

Analyzing the logical structure of a table is necessary but by no means sufficient
for understanding it. Understanding most tables requires considerable context and
knowledge that extends far beyond the table under consideration. There is ample
evidence that automating table understanding, or even merely verifying claims to this
effect, is very difficult [21, 22, 23].

Table | Maximum temperature

2000 2001 2002
Summer Winter Summer Winter Summer Winter
Montreal 35 11 36 2 37 13
Vancouver 28 18 29 19 30 20
James Bay 8 4 9 5 10 6
Table | Maximum temperature
YEAR
2000 | 2001 | 2002
SEASON
CITY Summer Winter Summer Winter Summer Winter
Montreal 35 11 36 2 37 13
Vancouver 28 18 29 19 30 20
James Bay 8 4 9 5 10 6

Fig. 7. Top: Rootless categories: not an admissible table. Bottom: Virtual headings added to
obtain an admissible configuration that is also a WFT.

As mentioned, our project is the front end of a larger undertaking that endeavors to cre-
ate narrow-domain ontologies by combining information from web tables [1, 24, 25].
Suppose, for instance, that we process the left-hand table in Figure 8 and include it into the
ontology. Then when we encounter the right-hand table we hope to be able to learn that
the hepth of goldam is 320 gd [26]. Our current plans to build interactive software for
harvesting web tables based on the formalisms described above are outlined in Section 5.

Our approach to the gradual automation of table processing is based on the follow-
ing inequalities, which show that useful tessellations are only a very small fraction of
all possible tessellations. The various classes of tables are illustrated in Fig. 9.

NL,S,xy(m) < NA,S,xy(m) < NT,S,xy(m) << NS,xy(m) << ny(m) << Nall(m).

gonsity hepth
fleck (Id/g9) (gd) goldam 1.3 ld/gg 320 gd
burlam 1.2 120 falder 2.3 d/gg 230 gd
falder 23 230
multon 2.5 350 elmer 2.9 1d/gg 350 gd

Fig. 8. Two tables with overlapping information
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NL,S,xy(m) < NA,S,xy(m) < NT,S,xy(m) << NS,xy(m) << ny(m) << Nall(m).

_’:‘_ |

Tessellations in Ny;(m) but not in N, (m) (no X-Y tree representation).

Both tessellations in Ny(m), but only one (either one) in Ng,(m)
These tessellations are structurally equivalent, but they are not admissible
and therefore not table candidates.

Both tessellations in Ng,(m), but only one (either one) in Ny g xy(m).
These tables are layout equivalent, but we cannot yet parse them,
and therefore they are not in N g, (m).

They are two different admissible tessellations in Ny s .,(m). We can parse both.

A A

At Az AT A2
B1 B2 B1 B2 B1 B1 B2 B2
c1 D1 o1 D1
D2 D2
c D c D
c2 il c2 D1 X X
b2 D2

The table on the left is a four-dimensional Well Formed Table. The table on the right
is not a WFT, because the category paths {A,Al; B,Bl; C,C2; D,DI1} cannot
distinguish between the two content cells marked X.

Fig. 9. Discrete rectangular isothetic tessellations. Our taxonomy does not include human-
readable tables to which Wang Notation is inapplicable. The top table without a row header in
Fig. 7 is certainly in Nrg4,(m), but we cannot formally define all human-readable tables.

2 Tessellations to X-Y Trees

As discussed above, the X-Y tree is an economical representation of layouts that are
of interest in table processing. Similar table layouts yield X-Y trees with similar struc-
tures. We can identify tables from which we can algorithmically extract Wang Nota-
tion. We shall also attempt to characterize families of inadmissible table structures
that can be converted into admissible structures by a few editing steps. We expect to
be able to automate such frequently used editing protocols.
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The horizontally and vertically ordered lists of the indices of the junction points of
a tessellation are not sufficient to derive the corresponding X-Y tree, although the
combination of pre-order and post-order traversals uniquely characterizes general
trees. The lists do not characterize the adjacency topology of the tessellations suffi-
ciently for table analysis. Figure 10 illustrates tilings that are not differentiated by the
structure of their X-Y trees, and different tilings with identical lists. For table analy-
sis, the lists and trees must contain additional data, i.e., the vertical or horizontal loca-
tion of the junction points and the type (e.g. NE-corner, T-connection, crossing) of
each junction. This allows checking the alignment of cuts in separate subtrees.

Z4NN

(a) (b) (©) ()

Fig. 10. The vertical cut X-Y tree (a) is the same for tilings (b) and (c), but not for (d). How-
ever, tilings (c) and (d) have the same lists of junction point coordinates.

The recursive algorithm EX2XY obtains the X-Y tree for any tessellation for
which the tree exists. We use it to transform web tables imported into Excel. For
portability, EX2XY produces an XML file. It takes the junction-points data for an X-
Y tessellation and produces a fully-parenthesized representation for it, which can
either be printed (saved) as a linear string of leaf-block labels and the two kinds of
parentheses. It can also include geometric information attached to the labels and the
left parentheses (of either type) in an internal data structure. The latter representation
is useful for geometric and lexical checks.

The workhorses of the algorithm are two functions CutV(R) and CutH(R) which
cut the given rectangle R, respectively, in vertical and horizontal directions. R may be
specified as (x1,y1,x2,y2), where (x1,yl) are their top-left and (x2,y2) are the bottom-
right junction points.

CutV and CutH return the first (leftmost or topmost) sub-rectangle of R, obtained
by a guillotine cut. In the example rectangle of Fig. 11, CutV((1,1,4,4)) would return
the sub-rectangle (1,1,3,4) and CutH((1,1,4,4)) would return the sub-rectangle
(1,1,4,2). The cut may be trivial or degenerate, e.g for R = (2,1,3,2) in the example,
CutV(R) = CutH(R) =R.

CutV and CutH are used in a pair of procedures, P1 and
P2, which call each other recursively (Fig 12). P1 cuts a A B ¢
given rectangle vertically, submitting the leftmost sub- .
rectangle to P2 for horizontal cuts. Similarly, P2 cuts a
given rectangle horizontally, submitting the topmost sub-
rectangle to P1 for vertical cuts. The main procedure calls
P1 with the outermost rectangle (1,1,4,4) for vertical-cut
first, and P2 for horizontal-cut first.

Although most of our illustrations contain simple exam- . .

. . . Fig. 11. A simple exam-
ples created directly in Excel, Figure 13 shows part of an .
; . . ple to illustrate algo-
actual web table, its Excel version created by the built-in rithm EX2XY
IMPORT functionality, and its appearance after editing.

1 2 3 4
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PI(R); {
Declare S: rectangle
S = CutV(R);
if (S ==R) then {if CutH(R) == R) then {print(label(R)); return} }
/* Also, attach coordinates of R with the label of R */
else /* have a non-trivial cut */
{
print(“[*); /* Also, attach coordinates of R with this “[* */
Loop {
P2(S); /*H-CutS */
R =R-S;
S =CutV(R);
} until S==R;
P2(S); /* H-Cut the last rectangle */
print(“]n)
}
}
P2(R); {
Declare S: rectangle
S = CutH(R);
if (S ==R) then {if CutV(R) == R) then {print(label(R)); return} }
/* Also, attach coordinates of R with the label of R */
else /* have a non-trivial cut */
{
print(“{*); /* Also, attach coordinates of R with this “{* */
Loop {
P1(S); /*V-CutS */
R =R-S;
S = CutH(R);
} until S==R;
PI1(S); /* V-Cut the last rectangle */
print(“}”)
}

Fig. 12. Algorithm EX2XY
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U.S. Coal Supply, Disposition, and Prices

Report No.: DOE/EIA 0584 (2007)
Report Released: September 2008
Next Release Date: September 2009

Table ES1. xls pdf Annual Coal Report

Table ES1. U.S. Coal Supply, Disposition, and Prices, 2006-2007
(Million Short Tons and Dollars per Short Ton)

Item 2006 2007
Production by Region

Appalachian 391.2 377.8
Interior 151.4 146.7
Western 619.4 621.0
Refuse Recovery 0.8 1.2
Total 1,162.8 1,146.6
Consumption by Sector

Electric Power 1,026.6 1,045.1
Coke Plants 23.0 22.7
Other Industrial Plants 59.5 56.6
Residential/Commercial 3.2 3.5
Total 1,112.3 1,128.0

(a)
Table ES1.U.S. Coal Supply, Disposition, and Prices, 2006-2007
(Million Short Tons and Dollars per Short Ton)
kem 2006 2007
Production by Region

Appalachian 391.2 377.8
Interior 151.4 146.7
Western 619.4 621.0
Table ES1. U.S. Coal Supply, Disposition, and Prices, 2006-2007
Refuse Recovery (Million Short Tons and Dollars per Short Ton)
Total 2006 2007
Consum ption by Sector Appalachian 3912 377.8
) Interior 1514 1467
Eloctric Power Y [Westom 619.4 621.0
Region
Refuse Recowery 08 1.2
Coke Plants Total 1,162.8 1,146.6
Electric Power 10266 1045.1
OtherIndus trial Plants
Coke Plants 23.0 227
Residential/Commercial Other Industrial Plants 595 56.6
Total
ResidentialCommercial 32 a5
Total 11123 1128.0
Year-End Coal Stocks )
Consumption by
Sector .
Electric Power Year-End Coal Stocks
(b) Electric Power 141.0 1512
ftem Coke Plants 29 1.9

(c)

Fig. 13. Part of a US Energy Information Administration table. (a) As it appears on the web;

(b) Imported into Excel; (c) After editing. http://www.eia.doe.gov/cneaf/coal/page/act/
tables1.html
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3 A Grammar for Table Candidates

Although EX2XY produces X-Y trees as verbose XML files, in this section we repre-
sent the trees with nested parentheses notation. This notation has a 1:1 correspon-
dence with general trees provided that the order of the symbols is preserved [27]. We
present the notation and the Look Ahead Left to Right (LALR) grammar G, [28,29]
constructed to parse the X-Y trees of table-like tessellations by means of an example.
The grammar was implemented in yacc [30].

Consider the following column headings for two Wang categories of Employment
Status and Education (Fig. 14) which result in the derivation of Fig. 15.

Employment Status
Unemployed Employed
Education
High School College High School College
or Less BS/BA Graduate or Less BS/BA Graduate
Degree Degree

Fig. 14. Sample table row heading for grammar G.

Textual labels (like Employment Status) have no bearing on the structure, so we
will replace them by the generic symbol c. We alternate brackets and braces for ease
of reading, but they are equivalent. The X-Y tree “sentence” Sxy for this partition of
the tessellation is:

Sxv={c[cclc[c{c[ccl}c{c[cc]}]}

Grammar G. for parsing all layout-equivalent tessellations of this kind is:

S:= A
A := {B}
B:= c[X]B | c[X]
X:=cX | AX | Al c

This grammar can parse fully parenthesized input for column headers of tables
with arbitrary dimensions and any number of levels in each dimension. It is a simple
matter to add a mirror-image grammar to parse the row headings and delta cells. The
non-terminals in G serve the following functions.

S is the start symbol (eventually to generate all admissible strings for tables).
A is the nonterminal that generates all admissible strings for column headers.
B generates one or more instances of categories in the form “c[X]”.
Each ¢ becomes a root category and X generates its subcategory tree. X generates
strings of length > 1, with arbitrary occurrences of ¢ and A.

We rewrite the grammar in the following equivalent form for ease of reference:
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G. RULES:

1.8 = A 3.B:=c[X]B 5. X :=cX 7.X:=A

2.A = {B} 4.B :=c[X] 6. X := AX 8.X:=c
Action Stack state Remaining Input
- Null {clcclclc{clcc]}c{clcc]}]}
Shift® {clcc lclc{clccltc{clcc]}l}
RS {clcX lclc{cleccltc{clccl}l}
R5 {cI[X lclc{clccl}c{c[cc]}]}
Shift’ {c[Xlclc{clce 1}c{clccl}]}
RS {c[X]c[c{c[ecX Ite{clccl}l}
R5 {c[X]c[c{c[X 1}c{clcc]}l}
Shift {c[X]clc{c[X] te{clccl}]}
R4 {c[X]c[c{B te{clccl}]}
Shift {c[X]c[c{B} c{clcc]}l}
R2 {c[X]c[cA c{clcc]}l}
Shift® {c[X]c[cAc{c[cc 131}
R8 {c[X]c[cAc{c[cX 131}
RS {c[X]c[cAc{c[X 141}
Shift {c[X]c[cAc{c[X] 1
R4 {c[X]c[cAc{B 1}
Shift {c[X]c[cAc{B} 1}
R2 {c[X]c[cAcA 1}
R7 {c[X]c[cAcX 1}
R5 {c[X]lc[cAX 1}
R6 {c[Xlc[ecX 1}
R5 {c[X]c[X 1}
Shift {c[X]1c[X] }
R4 {c[X]B }
R3 {B }
Shift {B}
R2 A
R1 S

Fig. 15. Derivation for the example of Fig. 14

An LALR is a shift-reduce parser that at each step either shifts the next input on to
the stack or reduces the symbols on top of the stack according to a rule of the gram-
mar. It produces leftmost reductions as it scans the input from left to right, which



From Tessellations to Table Interpretation 433

yields a rightmost derivation in reverse order. The first column in Fig. 15 shows the
action (shift or reduce); with Shift" denoting n consecutive shifts and R m denoting
reduction according to rule number m. The bold characters represent the handle
(right-hand side) of the production that is reduced to the left-hand symbol by the rule
listed on the next row.

This example demonstrates both the power and the limitations of using a gram-
matical approach to parsing: A grammar can be written to recognize a broad class of
tilings. On the other hand, a context-free grammar is not powerful enough to check
that the headings are labeled appropriately for a WFT. If a candidate structure is ac-
cepted by @G, then we must conduct additional geometrical alignment and lexical
checks to verify the Wang Notation.

4 X-Y Tree to Wang Notation

In this section we demonstrate XY2WANG an algorithm that converts an X-Y tree
generated from a restricted family of admissible tables to Wang Notation. An exam-
ple of this family can be seen in Figure 4(a). Figure 16 shows a simple example from
this family that that XY2WANG can process. Although in Section 3 we used paren-
thesis notation for the trees, here we use an indented table-of-contents that reveals the
underlying data structure (Figure 17). Figure 18 shows the top level pseudo-code for
XY2WANG (which was implemented in Python and produces XML output). The
algorithm accepts table trees with an arbitrary number of categories and levels of
headings. For the selected example, the algorithm returns the Wang notation (in a
verbose XML format) for a two-category table T = (C,d):

Category Notation ( Labeled Domains ):
C= { (A,{ (A11F)’(A2,¢) } )’ (B,{ (B1a¢),(B2’¢)’(B3’¢) } ) }

Delta Mappings:

8({A-A1,B-B1}) = djq
5({A-A1,B-Bz}) = 0p2
8({A-A118-BS}) = 03

The algorithm first locates the four principal regions of the table in the XY tree: the
stub, row-headings, column-headings, and content cells. It then extracts the Wang
labeled domains from the category regions under the assumption that each spanning
cells in the row header is the parent category of smaller cells to its right, and each
spanning cell in the column header is the parent of smaller cells below it. After the
category notation is generated, the Cartesian product of the category paths is com-
puted and each key is matched to the content of a delta cell.
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B

B1 B2 B3

A Al di1 di12 di3

A2 d21 d22 d23

Fig. 16. Example table for XY2WANG
ndex Node Parent Children HxW

1 Outer Frame None 2,9 4x5
2 Left Side 1 3,4 2x5
3 Stub 2 None 2x2
4 A+(A1+A2) 2 5,6 2x2
5 A 4 None 2x1
6 (A1+A2) 4 7,8 2x1
7 Al 6 None 1x1
8 A2 6 None 1x1
9 Right Side 1 10,11,15,19  4x3
10 B 9 None 1x3
11 B1+B2+B3 9 12,13,14 1x3
12 B1 11 None 1x1
13 B2 11 None 1x1
14 B3 11 None 1x1
15 d11+d12+d13 9 16,17,18 1x3
16 dti 15 None 1x1
17 di2 15 None 1x1
18 di13 15 None 1x1
19 d21+d22+d23 9 20,21,22 1x3
20 d21 19 None 1x1
21 d22 19 None 1x1
22 d23 19 None 1x1

Fig. 17. Data structure created by XY2WANG for the X-Y tree of the table in Fig. 17. The
index represents a depth-first traversal of the X-Y tree, which has 8 internal nodes (including
the root) and 14 leaf nodes corresponding to the cells of the table. Children are listed top-to-
bottom or left-to-right. Borders enclose the four principal regions of the table.

XY2WANG must be able to handle more complex scenarios than Figure 16, such
as higher Wang dimensionality, deeper nesting of headers, repetitive headers, and the
detection of not well-formed tables. Provisions for such scenarios are included in the
Python program outlined by the pseudo-code of Figure 18.
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Pseudo-code for XY2WANG

Divide Left Side into Stub and Row-headings // (Stub is first child of Left Side)
Divide Right Side into Col-headings and Data Cells // separate using stub-height
Separate row-category subtrees at nodes with spanning heights

Separate column-category subtrees at nodes with spanning widths

Traverse breadth-first each category tree while removing duplicate labels

Return Wang Category notation

Form Cartesian product of unique paths

Compare size of product to number of data cells

If it differs from number of leaf nodes in Data Cells, return “tree not well formed”
Else assign a data cell in Data Cells to each path

Return Wang Delta notation

Fig. 18. Top-level pseudo-code for algorithm XY2WANG

5 Conclusion

Web tables intended for human readers are generally laid out on a grid. The data cells
are referenced by row and column headings which form labeled domains of catego-
ries. The hierarchical structure of categories and the flat structure of the data cells can
be recovered by interleaved vertical and horizontal partitions represented as X-Y
trees. An X-Y tree represents a generic rectangular tiling and indiscriminately makes
all the cuts in each direction. The table grammar reorders the cuts so as to represent
the structure of the table according to specific style(s) of tables.

We defined geometric and topological equivalence classes on tessellations and
their X-Y trees. Many tables encountered in practice correspond to well-defined sub-
sets of these equivalence classes. They can be identified by parsing the X-Y tree with
a context-free grammar. If the labels of the headings are consistent, then the table is
well formed, and we can algorithmically extract its Wang category notation.

The current formalism does not account for augmentations although our experi-
mental system does process them and includes them in the XML output. Common
augmentations are aggregates (sums, averages and weighted averages, medians),
footnotes, units, annotations, table titles and captions. As Wang noted and our 200-
table experiment confirms, these are essential components of most tables. Because
they are not revealed by the tiling itself, so far we have not been able to treat them
uniformly, but they must eventually be integrated into any practical table understand-
ing system.

The precise representation of layout-invariant table syntax is the first step towards
semantic interpretation of groups of conceptually overlapping tables. The approach
we propose towards this goal is to import the web tables into a spreadsheet, interac-
tively edit them as necessary, and then algorithmically transform the data into Wang
Notation in a portable XML format. We believe that syntactic analysis of the X-Y
trees will allow identifying tables requiring similar edit steps, so that these edit steps
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can be applied automatically. This will effectively expand the number of admissible
layouts and thereby reduce the amount of necessary interaction.
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