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ABSTRACT 
We describe a component of a document analysis system for 
constructing ontologies for domain-specific web tables imported 
into Excel. This component automates extraction of the Wang 
Notation for the column header of a table. Using column-header 
specific rules for XY cutting we convert the geometric structure of 
the column header to a linear string denoting cell attributes and 
directions of cuts. The string representation is parsed by a context-
free grammar and the parse tree is further processed to produce an 
abstract data-type representation (the Wang notation tree) of each 
column category. Experiments were carried out to evaluate this 
scheme on the original and edited column headers of Excel tables 
drawn from a collection of 200 used in our earlier work. The 
transformed headers were obtained by editing the original column 
headers to conform to the format targeted by our grammar. Forty-
four original headers and their reformatted versions were 
submitted as input to our software system. Our grammar was able 
to parse and the extract Wang notation tree for all the edited 
headers, but for only four of the original headers. We suggest 
extensions to our table grammar that would enable processing a 
larger fraction of headers without manual editing.  

Categories and Subject Descriptors 
I.7.5 [Document Capture]: Document analysis.  

General Terms 
Algorithms 

Keywords 
Web tables, conversion, Wang notation, parsing, column-header 
grammar, table ontology 

1. INTRODUCTION 
The significance of developing capabilities for harvesting semi-
structured data from web tables cannot be overestimated. Almost 

all nations post quantitative data such as the lengths of rivers or 
coast lines, heights of mountains, areas of lakes, population, age, 
ethnic origin, birth and death rates, immigration and emigration, 
education, employment, industrial production, commerce, and 
transportation. Canada Statistics (www.statcan.gc.ca), for 
example, has over 38 million series/vectors in over 2800 tables. 
Swiss Statistics currently has 50,033 tables, and India Statistics is 
even larger.  In the US more specialized sites are maintained by 
various government departments: Agriculture, Energy, and 
Health. The CIA World Factbook and several international 
organizations like UNICEF and the World Bank offer tables of 
worldwide data. These sites are consulted frequently by the 
general public and by decision makers. 

Although tables remain the accepted method for displaying data 
for human access, table layout and structure has been undergoing 
rapid change since our first studies twenty years ago [17].  Layout 
used to be governed primarily by human visual acuity and by page 
paper size (with rules promulgated by the US Government 
Printing Office and the University of Chicago manuals of style). 
However, advances in digital technology for page layout, 
typesetting, spread sheets, and browsers (e.g., scrolling, zooming, 
dynamic tables) have had significant effect on best practices of 
table construction. Here we focus on a large subset of web tables 
we call canonical tables. We postpone consideration of tables not 
laid out on a (perhaps invisible) rectangular grid, nested tables, 
concatenated tables, and tables containing graphics. Tables appear 
to be simple objects, but in fact the rules governing their layout 
and composition are recondite. It is now widely accepted that 
table understanding is a high-level cognitive skill that is not easily 
programmed [7]. Our focus here is the systematic analysis and 
formalization of geometric and topological table syntax. 

Comprehensive reviews of two decades of research on table 
processing appear in [1, 28]. Researchers first developed 
algorithms for specifying cell location based on rulings [9, 18] or, 
in the case of un-ruled [6] and ASCII tables [12, 21], developed 
algorithms to determine typographic similarity of cell content and 
alignment [13, 14]. More recently researchers have addressed the 
information organizational aspects of tables, including associating 
content cells with header cells [8, 3, 2, 10]. They have devised 
methods to exploit the similarity of multiple tables from the same 
hidden-web source [26] and initiated analysis of augmentations 
such as table titles, captions, units, footnotes, and aggregates [23]. 
A proposal for an end-to-end system divides the table-
understanding task into table detection, segmentation, function 
analysis, structural analysis, and interpretation, but was not 
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implemented and does not define which tables can and cannot be 
processed [25]. None of the methods that address web tables (e.g., 
[22, 4]) carry the analysis to the layout-independent multi-
category level. 

In the next section, we offer a taxonomy of tables. In Section 3 we 
revisit XY trees and show that a change in the order of 
decomposition from breadth-first to depth-first simplifies parsing 
a geometric representation of table headers using context-free 
grammars. Section 4 explains the geometric post-processing 
necessary to obtain the layout-free Wang category structure [27] 
from the parse trees. Section 5 describes an experimental 
evaluation of our approach on a sample of tables. Section 6 
proposes extensions of our base grammar to accept a wider variety 
of tables. The Conclusions of Section 7 present, as is customary, 
all the work that still remains to be done to create a robust table 
interpretation system. 

2. A (OUR) TAXONOMY OF TABLES 
A canonical table is a rectangular tiling (discrete isothetic 
rectilinear tessellation) defined by the locations and types of all 
the junction points at which two orthogonal cell boundaries meet 
or cross. The number of tilings increases exponentially with the 
size of the grid. A 4×4 array has 70,878 different partitions. Some 
of these, called XY tilings, can be obtained by a divide-and-
conquer method based on successive horizontal and vertical 
guillotine cuts. XY tessellations provide a structural 
representation of the rectangles obtained by horizontal and 
vertical cuts at alternating levels of a tree1. These tilings represent 
the miniscule but indispensable fraction of all tilings that are 
likely to be encountered as tables: The number of XY tilings 
relative to all possible tilings tends asymptotically to zero [15]. 
Figure 1 shows examples of rectilinear tessellations that are not 
acceptable as canonical tables. The conditions necessary for an 
XY table to be canonical are:  

1. The tiling must be separable into four rectangular regions by 
a horizontal and a vertical ruling. Their point of intersection 
uniquely defines stub-header, column-header, row-header, 
and data-cell regions of a canonical table. The stub-header is 
empty. 

2. Headers must span their immediate sub-headers, which must 
be (a) for column headers, in the row immediately below 
them and (b) for row headers, in the adjacent column to their 
right. This rule applies to every pair of header rows or 
columns that belong to the same category. There is no limit 
on the depth or width of the header hierarchies. 

3. The header hierarchy for each category can be represented by 
a balanced rooted tree.  

4. The number of lowest-level row and column sub-headers for 
the category trees nearest to the data cells must be equal to 
the number of rows and columns of data cells respectively.  

5. Each data cell must be specified uniquely by a set of root-to-
leaf category paths, one through each category tree. 

                                                                 
1 We originally proposed XY trees for page layout analysis [17, 

15]. They have been periodically rediscovered and are also 
known by other names like puzzle tree or tree-map [22]. They 
transform a 2-D structure into two interlaced 1-D structures.  

Some of these rules are violated in our sample. For example, a 
category root cell may be missing because it is obvious to the 
reader, or it may appear below or to the right of the leaves of the 
category tree. Headers may be separated from the data cells by 
spanning cells that. show units or are left blank. Sub-header 
cells may be split for no reason other than to balance a category 
tree. Since few tables found on the web meet all of the above 
conditions, we must manually or algorithmically convert non-
conforming tables into canonical tables, or relax the requirement 
of a canonical table for the algorithm that extracts the Wang 
notation. In this paper, we present a solution following the first 
approach. 

Figure 1. Rectilinear tessellations rejected as canonical tables: 
(a) a concatenated table; (b) a nested table; (c) a non-XY tiling; 
(d) and (e) two non-tabular XY tilings. 
 

3. CUTTING ALGORITHM 
Decomposition of an XY-tessellation in terms of its component 
blocks can be carried out according to application-specific cutting 
rules [11]. The generic decomposition corresponding to the XY-
tree has been found to be sufficient in many document 
segmentation algorithms [19, 20]. For analyzing the column (or 
row) header of a table using a context-free grammar, however, we 
have found the conventional XY-tree decomposition 
inconvenient. We illustrate this for a single-category column 
header in Figure 2 (a). 

The column header block at the root of the tree is first cut into 
horizontal slices at every end-to-end (guillotine) cut in the 
horizontal direction. Each resulting block is then cut in the same 
way in the orthogonal (vertical) direction. This process of 
alternating the direction of cuts is iterated until only leaf blocks 
remain, and the process stops after the first vertical cutting. The 
parenthetical string (P-string) notation allows the decomposition 
tree to be represented in a linear form. We note that while the sub-
categories A1 and A2 of A appear right after A within the vertical 
parentheses in the string, the sub-categories of A21 and A22 
appear separated from them within the next group. This separation 
would complicate the parsing of the string to uncover the category 
hierarchy using a context-free grammar. 



Alternate cutting rules, illustrated in Figure 2 (b), overcome this 
shortcoming. In the new rules, a horizontal cut is made if it results 
in a leaf block; otherwise, the non-leaf blocks are accumulated 
until a leaf block (or the end of the parent block) is reached. The 
accumulated block is then cut in the vertical direction using the 
standard XY-tree rules. The resulting tree and the P-string show 
that the sub-category labels are kept together with the label of 
their parent category by the new rules. Figure 3 shows the 
algorithm that cuts a column-header block according to the 
modified rules. 

 

 
Figure 2. Two decompositions of a table column-header and the 
resulting P-strings: (a) Breadth-first decomposition corresponding 
to the conventional XY-tree (b) Decomposition following 
column-header-specific rules for cutting blocks. For the P-string 
notation, the blocks obtained by horizontal cuts are surrounded by 
“{” and “}” and those obtained by vertical cuts are surrounded by 
“[” and “]”. The decomposition is then uniquely represented by a 
left-to-right traversal of the leaf cells and these delimiters in the 
tree. 

4. PARSING AND WNT GENERATION 
 
The cutting algorithm described in the last section takes the place 
of lexical analysis step in compiling, during which the string to be 
parsed is scanned according to the rules defining the tokens of a 
programming language. The token stream produced by lexical 
analysis may or may not be a valid construct of the programming 
language. Therefore, the next step in compiling is parsing the 
token stream according to the rules of a context-free grammar. 
Earlier work has shown that context-free grammars can help 
characterize entire families of layout-equivalent printed tables 

[5].Unlike compiling, however, the acceptability of a P-string by 
the grammar is only a necessary and not a sufficient condition for 
the given structure to be a valid column-header. For sufficiency, 
we must perform additional geometric and lexical checks. In the 
next section, we show how these checks can be incorporated as a 
post-processing step to parsing of the P-string. 
 
CutH(B) { 

print(“{“); 
repeat { 
while ( B is non‐null and B1 = XY‐cut(B, H) is a leaf) { 
print(Label(B1)); 
B = B‐B1} 

if (B is non‐null) then {B2 = XY‐cut(B,H); B = B‐B2} 
     while (B is non‐null and Temp = XY‐cut(B, H) is non‐   
leaf)  { 
B2 = B2 union Temp; 
B = B – B2} 

CutV(B2); 
} until B is null; 

print(“}”); 
} 
 
CutV(B) { 
print(“[“); 
repeat { 
B1 = XY‐cut(B, V); 
if(B1 is leaf) then print(Label(B1)) else CutH(B1); 
B = B – B1; 

} until B is null; 
print(“]”); 

} 

Figure 3. The cutting algorithm. 

4.1 Geometric and Lexical Checks 
Consider Table 1 with the column header shaded gray. Note that 
the column header consists of two categories, “YEAR” and 
“SEASON”. Each has two sub-categories but because “SEASON” 
appears below “YEAR”, its two sub-categories are repeated for 
each sub-category of “YEAR”, according to the commonly used 
rules of table layout. The column header is shown in Table 2, with 
its cells identified symbolically as c1 through c8 for ease of 
reference.  
Using the cutting rules, we get the following P-string for the 
column header: 

{ c1 [ c2 c3 ] c4 [ c5 c6 c7 c8 ] } 

Table 1: Maximum Temperature 

YEAR 

2000 2001  

SEASON 

CITY Summer Winter Summer Winter 

Montreal 35 11 36 2 

Vancouver 28 18 29 19 

James Bay 8 4 9 5 



 
Table 2. Column header of Table 1  

c1 
c2 c3 

c4 
c5 c6 c7 c8 

 
The layout rules of the table impose geometric and lexical 
constraints on this two-category column header that are listed in 
Table 3. We use the function E(c) to denote the horizontal extent 
of a cell c and the function L(c) to denote its label. The lexical 
constraints L1 and L2 are easily checked by attaching the block 
label as an attribute of each token. Some of the geometric 
constraints can be built into the context-free grammar model. We 
illustrate this for the context free grammar for column headers, 
used in our earlier work [10]. The grammar is reproduced in 
Figure 4. The recursive Rule 3 of the grammar, along with the 
base condition defined by Rule 4, generate one or more column 
categories of the form “c[X]”, where c is the category label and 
the non-terminal X generates its sub-category labels below it. 
Because the horizontal extent of the terminal c is the same as that 
of the non-terminal X, the grammar rules are sufficient to ensure 
the geometric constraints within each category. For example, the 
geometric constraints G1 and G2, of Table 3 are automatically 
satisfied by our grammar rules. However, rules like G3 and G4, 
involving blocks in different categories, cannot be checked 
because the two categories are generated independently by the 
grammar.  
However, verifying that a given table belongs to an admissible 
class and then finding its Wang-notation tree, all within the 
framework of context-free grammars (CFGs), is attractive for 
several reasons: 

1. CFGs provide a concise notation for specifying an infinite 
class of structures 

2. A large body of theory and compiler tools have been built 
over decades for lexical analysis, parsing, and translation 
using CFGs 

3. Only incremental modifications to an existing grammar are 
needed to substantially enlarge the class of acceptable 
structures, thus allowing a high degree of automation in 
translating web tables to the Wang notation. 

Table 3. Layout rules 

 

Figure 4. A context-free grammar for column headers. The 
terminal symbols “{“ and “}” indicate horizontal cuts while “[“ 
and “]” denote vertical cuts. The terminal “c” represents a leaf-
level cell that can be uniquely identified by its label and geometric 
attributes in the P-string as c1, c2, etc. 
 
Therefore, we would like to integrate the geometric and lexical 
checks with the parsing of the column headers. We illustrate this 
for the example column-header block of Table 1 (reproduced in 
Figure 5), which can be parsed by grammar G. 
Figure 6 shows the parse tree produced by a shift-reduce parser 
for grammar G working on the P-string of the column header. If 
the parsing fails for a given P-string, we can conclude that the 
input does not belong to the admissible class of column headers.  
However, if it succeeds, as in this example, we must still perform 
the geometric and lexical checks before generating the Wang 
notation from the parse tree. To facilitate the checks, we attach 
symbolic attributes to the nodes of the parse tree, as described in 
the figure caption.  Now, the lexical and geometric checks are 
easily performed as a post process on the enhanced parse tree.  
To perform the geometric checks, the number of categories in the 
input block must first be determined. As noted earlier, the non-
terminal B is used in the grammar to generate one or more 
instances of categories using Rules 3 and 4. Each instance has the 
form “c[X]” where the terminal c corresponds to the root label of 
the category and the non-terminal X generates its subcategory 
labels. In the example parse, this happens in the steps 
corresponding to REDUCE_7 (where Rule 4 is used) and 
REDUCE_8 (where Rule 3 is used.) Hence, we can conclude that 
there are two categories. Further, because of how the geometric 
attributes are propagated, the horizontal extent of the node 
corresponding to REDUCE_8 includes the accumulated extents of 
both the category blocks, while the horizontal extent of the 
REDUCE_7 node corresponds to just the second category block. 
Therefore, by taking the difference E(REDUCE_8_Node) - 
E(REDUCE_7_Node), we can derive the extent of the first 
category block as (1:1,2:4). In general, by taking the difference in 
the extents of two successive REDUCE nodes nodes that generate 
categories in the parse tree, we can find the extent of each 
category block. Now, the geometric constraints between two 
adjacent categories Ci and Ci+1, where Ci is geometrically above 
Ci+1 can be stated. These are specified in terms of the leaf nodes in 
the category tree of the two categories: 

Row #  
1 YEAR 
2 2000 2001 
3 SEASON 
4 Summer Winter Summer Winter 

Column#: 1 2 3 4 

Figure 5. The column header of Table 1 with rows and 
columns numbered to represent geometric extent of its blocks

 Geometric 
Constraints 

 Lexical 
Constraints 

G1. 

€ 

E(c2) ⊂ E(c1)
E(c3) ⊂ E(c1)  

L1. 

€ 

L(c5) = L(c7)  

G2. 

€ 

E(c5) ⊂ E(c4)
E(c6) ⊂ E(c4)
E(c7) ⊂ E(c4)
E(c8) ⊂ E(c4)

 

L2. 

€ 

L(c6) = L(c8)  

G3. 

€ 

E(c5) ⊂ E(c2)
E(c6) ⊂ E(c2)  

  

G4. 

€ 

E(c7) ⊂ E(c3)
E(c8) ⊂ E(c3)  

  

Rules of Grammar G 
1.  S := A 3.  B := c[X]B 5.  X := cX 7.  X := A 
2.  A := {B} 4.  B := c[X] 6.  X := AX 8.  X := c 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6: The parse tree for the column-header of Figure 2 according to the grammar G of Figure 4. The input P-string is shown at the 
bottom, along with the block labels and their extents associated with the terminal symbols c of the grammar, where the extent of a block is 
denoted by the row:column pair of its top-left and bottom-right cells. The shift-reduce parser scans the input string from left to right. For 
each input symbol it uses rules to determine whether the next symbol should be shifted on to a push-down stack or the top symbol(s) on the 
stack should be reduced according to a rule of the grammar. In this example, the first two reductions take place after the leftmost five 
symbols have been shifted on to the stack. In the first reduction (REDUCE_1) the terminal symbol c is replaced by the nonterminal symbol 
X using Rule 8 of the grammar. In REDUCE_2, this X along with the terminal c below it on the stack is replaced by X using Rule 5 of the 
grammar. During each reduction step, we also propagate the combined extent of the symbols being replaced to the node corresponding to 
the reduction. For example, for REDUCE_2, we combine the extents (2:1,2:2) and (2:3,2:4) and associate the extent (2:1,2:4) with this 
node. The acceptance of an input P-string is signaled by its reduction to the start symbol S in the final step of parsing. 
 
 

1. (Geometric check) For every leaf cell cj of category Ci+1, 
there must exist a leaf cell ck of Ci, such that E(cj)  E(ck). 
We denote this by saying that cj is covered by ck. For the 
example, if the extent of the cell “Summer” at (4:1,4:1), or 
the cell “Winter” at (4:2,4:2), in Figure 5, were to straddle 
the boundary between the cell “2000” at (2:1,2:2) and the 
cell “3000” at (2:3,2:4), this check would have failed.  

2. (Geometric check) Let the number of leaf nodes of Ci+1 
covered by leaf node ck of Ci be n. Then, the number of leaf 
nodes of Ci+1 covered by every leaf node of Ci must be n.  
For the example, if the cell “2000” had covered two leaf 
cells of the category “SEASON” and the cell “2001” had 

covered three leaf cells of  the same category, in Figure 5, 
this check would have failed. 

3. (Lexical check) Not only must the number of leaf nodes 
specified in constrained 2 be the same but they must also be 
lexically identical. For the example, this check requires that 
both “2000” and “2001” cover the same labels (“Summer” 
and “Winter” in this case). 

4.2 WNT Generation 
If the geometric and lexical checks succeed, the program prints 
out a Wang notation tree [27] for each category in the indented 
form. The Wang notation highlights the layout-independence 
between the root header and their corresponding subcategories 



for the column header region. Its representation in tree-like 
indented table-of-contents notation is visually intuitive. We 
illustrate the process of WNT generation for the running 
example. 
After the geometric and lexical checks pass, the category 
hierarchy for the top category is derived by starting the parse 
tree traversal at REDUCE_8, where the “c[X]” part on the right-
hand-side of Rule 3 generates the category tree reflected in the 
part of the substring “YEAR [2000, 2001]”.  
The WNT for the second category can be similarly found from 
traversal of the parse tree at REDUCE_7, however, because the 
second and lower categories contain repeated structures, we 
traverse only a non-repeated part of the structure, identifiable by 
the column span of a leaf sub-category of “YEAR”. For 
example, because the leaf node “2000” of the top category 
extends from column number 1 to 2, we traverse only the 
“Winter” and “Summer” sub-category nodes of the “SEASON 
category.  The final Wang notation tree in the indented form 
looks like: 
 

YEAR 
 2000 
 2001 
SEASON 
 Summer  

Winter 
 

5. EXPERIMENTS AND RESULTS 
A sample of 51 tables, culled from the dataset described in [23], 
were imported into Microsoft Excel®. The table title, table 
caption, footnotes and notes were removed. The column headers 
of 44 of these tables were transformed into the format expected 
by our grammar. An example of such a transformation is shown 
in Fig. 7. One vertically concatenated table and six lists were 
excluded. Identical column headers from different tables were 
retained.  

Using the algorithm described in Fig. 3, we constructed the P-
strings for both the original headers and their transformed 
 

           
(Metropolitan 

Lima) 
Rural Poverty 
(Sierra only) 

    

Total  Total  Relative Indigence 
(a) 

VH 
Rural Poverty (Sierra only) (Metropolitan 

Lima) Total  Total  Relative Indigence 
(b) 

Figure 7. (a) Original column header, (b) Transformed header 
obtained by (i) adding virtual header VH, (ii) deleting the empty 
top row, (iii) merging headers defining the same column 
(“Metropolitan Lima” and “Total”), and (iv) merging isolated 
empty cells with the appropriate label “Rural Poverty (Sierra 
only)”. 

versions. P-strings are correctly parsed for all the transformed 
headers and their Wang notation tree is extracted. Without such 
manual preprocessing, P-strings of only four headers were 
accepted by the grammar. The results for the unedited case, 
shown in Table 4, indicate that a relatively high number of 
strings (33) were rejected. This validates our earlier conjecture 
(Section 2) that most real-world tables need some kind of editing 
to meet the conditions of the grammar.  
 An example of a column header in its native-state and after 
editing is shown, along with the intermediate P-string (with 
locations) and final output of the Wang category tree, in Fig. 8. 

6. EXTENSIONS 
The grammar G in Section 4 is intended to parse column headers 
of acceptable tables with rigid constraints. It assumes that there 
is no missing root-category label and further restricts the root 
category label to occur only in a single row. But missing root 
labels or repetitive labels are quite common in real tables as in 
Fig. 8, and are easily understood by humans from the contextual 
information. In this section we demonstrate how the grammar G 
can be extended to include a broader class of structures as 
follows: 

1. The root header cell for any category can be missing 
(Fig. 9a). 

2. The root label might span multiple cells (Fig. 9b). 
3. There can be a “units” cell spanning the whole width 

of the column header at the bottom (Fig. 9b). 
The grammar G1 below accommodates these extensions.   

Rules of Grammar G1 
1.  S := A 4. B := C[X]B 7. C := εe 10. X := A 

2. S := {Bc}   5. B := C[X] 8. X := cX 11. X := c  

3. A := {B} 6. C := cC 9. X := AX   

 
S is the start symbol that generates all admissible strings in the 
grammar. The second rule is added to accommodate a single 
units cell at the bottom, represented by the terminal c. The rest 
of the grammar resembles G. Rules 4 and 5 of G1 are similar to 
Rules 3 and 4 with the non-terminal C substituting for the 
terminal c. The non-terminal C, which generates the root-
category header, can produce any string of zero or more c’s thus 
accommodating both the missing header and one spanning 
multiple rows. Rules 8 through 11 in G1 are identical to Rules 5 
through 8. Thus, with only minor changes to the rules of the 
grammar, we are able to considerably extend the range of 
admissible structures.  

Table 4. Results of attempting to extract Wang category tree 
before transforming the headers 

Type of P-string # strings 
Accepted 4 
Rejected 33 
Ill-formed (improper nesting) 7 
Total # of strings 44 

 



 

Production Thickness 
(thousand short tons) (inches) 

Underground Surface Total Average [2] Low High 
(a) 

 

VH 
Production Thickness 

Underground Surface Total Average [2] Low High 
(b) 

(c) 

{ 
VH 2:2, 2:7 
[ 
{ 
Production 3:2, 3:4 
[ 
Underground 4:2, 4:2 
Surface 4:3, 4:3 
Total 4:4, 4: 4 
] 
} 
{ 
Thickness 3:5, 3:7 
[ 
Average_[2] 4:5, 4:5 
Low 4:6, 4:6 
High 4:7, 4:7 
] 
} 
] 
} 
 

Category Tree 1 
Number of children of Wang Tree No 1 is = 2 
root node VH 
sub category 2 
 Sub Category Root Node = Production 
  total number of children = 3 
    sub category child no 1 is Underground 
    sub category child no 2 is Surface 
    sub category child no 3 is Total 
 Sub Category Root Node = Thickness 
  total number of children = 3 
    sub category child no 1 is Average_[2] 
    sub category child no 2 is Low 
    sub category child no 3 is High 

(d) 
Figure 8: (a) Original header, (b) Transformed header, (c) P-string of the edited header, and (d) Indented Wang notation tree 

printed out by the program. 

7. CONCLUSION 
We presented a grammatical framework for parsing a linear-
string representation of column headers of tables in a range of 
specified formats. Although the layout of the header represents a 
2-D geometry, the layout constraints allow it to be decomposed 
as a form of XY tree with cutting rules adapted to the 
constraints. This simplified representation allows us to leverage 
compiler theory to build automatic parsers and attach actions to 
the parsing steps to write out the parse tree along with the 
geometric and lexical information contained in column header 
components. 

In spite of the variety of column formats encountered in real 
web tables, we were able to edit into canonical form all the 
headers in our small sample that were not, and produce a correct 
Wang Notation tree automatically for every table. The approach 
presented here holds promises because many commonly found 
variations are handled easily by making only minor 
modifications to a base grammar.  

We are currently exploring automation of the most time-
consuming aspects of adapting an existing system, such as 
described here, incrementally to a larger class of structures, such 
as shown in Figure 9. Of particular interest are frequently 
occurring simple tables where the header is either just missing or 
left of the top subheadings. To study the learning curve involved 
in editing new table structures into an acceptable format, we also 
propose to run a larger experiment with “naïve” operators. 

 

 

Live births Late foetal deaths 
Girls Boys Girls Boys 

(a) 

2006 
Forest fires by protection zones 

Intensive Limited 
Number 

(b) 
Figure 9. (a) A header without root header cell, (b) A header 
region with multi-cell root label at the top and a header-
spanning label at the bottom. 
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