
Analysis and Taxonomy of Column Header
Categories for Web Tables

 Sharad Seth2 Ramana Jandhyala1 Mukkai Krishnamoorthy1 George Nagy1
 seth@cse.unl.edu ramanachakradhar@gmail.com moorthy@cs.rpi.edu nagy@ecse.rpi.edu

1DocLab, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
2CSE Department, University of Nebraska – Lincoln, Lincoln, NE 68502, USA

ABSTRACT
We describe a component of a document analysis system for
constructing ontologies for domain-specific web tables imported
into Excel. This component automates extraction of the Wang
Notation for the column header of a table. Using column-header
specific rules for XY cutting we convert the geometric structure of
the column header to a linear string denoting cell attributes and
directions of cuts. The string representation is parsed by a context-
free grammar and the parse tree is further processed to produce an
abstract data-type representation (the Wang notation tree) of each
column category. Experiments were carried out to evaluate this
scheme on the original and edited column headers of Excel tables
drawn from a collection of 200 used in our earlier work. The
transformed headers were obtained by editing the original column
headers to conform to the format targeted by our grammar. Forty-
four original headers and their reformatted versions were
submitted as input to our software system. Our grammar was able
to parse and the extract Wang notation tree for all the edited
headers, but for only four of the original headers. We suggest
extensions to our table grammar that would enable processing a
larger fraction of headers without manual editing.

Categories and Subject Descriptors
I.7.5 [Document Capture]: Document analysis.

General Terms
Algorithms

Keywords
Web tables, conversion, Wang notation, parsing, column-header
grammar, table ontology

1. INTRODUCTION
The significance of developing capabilities for harvesting semi-
structured data from web tables cannot be overestimated. Almost

all nations post quantitative data such as the lengths of rivers or
coast lines, heights of mountains, areas of lakes, population, age,
ethnic origin, birth and death rates, immigration and emigration,
education, employment, industrial production, commerce, and
transportation. Canada Statistics (www.statcan.gc.ca), for
example, has over 38 million series/vectors in over 2800 tables.
Swiss Statistics currently has 50,033 tables, and India Statistics is
even larger. In the US more specialized sites are maintained by
various government departments: Agriculture, Energy, and
Health. The CIA World Factbook and several international
organizations like UNICEF and the World Bank offer tables of
worldwide data. These sites are consulted frequently by the
general public and by decision makers.

Although tables remain the accepted method for displaying data
for human access, table layout and structure has been undergoing
rapid change since our first studies twenty years ago [17]. Layout
used to be governed primarily by human visual acuity and by page
paper size (with rules promulgated by the US Government
Printing Office and the University of Chicago manuals of style).
However, advances in digital technology for page layout,
typesetting, spread sheets, and browsers (e.g., scrolling, zooming,
dynamic tables) have had significant effect on best practices of
table construction. Here we focus on a large subset of web tables
we call canonical tables. We postpone consideration of tables not
laid out on a (perhaps invisible) rectangular grid, nested tables,
concatenated tables, and tables containing graphics. Tables appear
to be simple objects, but in fact the rules governing their layout
and composition are recondite. It is now widely accepted that
table understanding is a high-level cognitive skill that is not easily
programmed [7]. Our focus here is the systematic analysis and
formalization of geometric and topological table syntax.

Comprehensive reviews of two decades of research on table
processing appear in [1, 28]. Researchers first developed
algorithms for specifying cell location based on rulings [9, 18] or,
in the case of un-ruled [6] and ASCII tables [12, 21], developed
algorithms to determine typographic similarity of cell content and
alignment [13, 14]. More recently researchers have addressed the
information organizational aspects of tables, including associating
content cells with header cells [8, 3, 2, 10]. They have devised
methods to exploit the similarity of multiple tables from the same
hidden-web source [26] and initiated analysis of augmentations
such as table titles, captions, units, footnotes, and aggregates [23].
A proposal for an end-to-end system divides the table-
understanding task into table detection, segmentation, function
analysis, structural analysis, and interpretation, but was not

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
DAS '10, June 9-11, 2010, Boston, MA, USA
Copyright © 2010 ACM 978-1-60558-773-8/10/06... $10.00

implemented and does not define which tables can and cannot be
processed [25]. None of the methods that address web tables (e.g.,
[22, 4]) carry the analysis to the layout-independent multi-
category level.

In the next section, we offer a taxonomy of tables. In Section 3 we
revisit XY trees and show that a change in the order of
decomposition from breadth-first to depth-first simplifies parsing
a geometric representation of table headers using context-free
grammars. Section 4 explains the geometric post-processing
necessary to obtain the layout-free Wang category structure [27]
from the parse trees. Section 5 describes an experimental
evaluation of our approach on a sample of tables. Section 6
proposes extensions of our base grammar to accept a wider variety
of tables. The Conclusions of Section 7 present, as is customary,
all the work that still remains to be done to create a robust table
interpretation system.

2. A (OUR) TAXONOMY OF TABLES
A canonical table is a rectangular tiling (discrete isothetic
rectilinear tessellation) defined by the locations and types of all
the junction points at which two orthogonal cell boundaries meet
or cross. The number of tilings increases exponentially with the
size of the grid. A 4×4 array has 70,878 different partitions. Some
of these, called XY tilings, can be obtained by a divide-and-
conquer method based on successive horizontal and vertical
guillotine cuts. XY tessellations provide a structural
representation of the rectangles obtained by horizontal and
vertical cuts at alternating levels of a tree1. These tilings represent
the miniscule but indispensable fraction of all tilings that are
likely to be encountered as tables: The number of XY tilings
relative to all possible tilings tends asymptotically to zero [15].
Figure 1 shows examples of rectilinear tessellations that are not
acceptable as canonical tables. The conditions necessary for an
XY table to be canonical are:

1. The tiling must be separable into four rectangular regions by
a horizontal and a vertical ruling. Their point of intersection
uniquely defines stub-header, column-header, row-header,
and data-cell regions of a canonical table. The stub-header is
empty.

2. Headers must span their immediate sub-headers, which must
be (a) for column headers, in the row immediately below
them and (b) for row headers, in the adjacent column to their
right. This rule applies to every pair of header rows or
columns that belong to the same category. There is no limit
on the depth or width of the header hierarchies.

3. The header hierarchy for each category can be represented by
a balanced rooted tree.

4. The number of lowest-level row and column sub-headers for
the category trees nearest to the data cells must be equal to
the number of rows and columns of data cells respectively.

5. Each data cell must be specified uniquely by a set of root-to-
leaf category paths, one through each category tree.

1 We originally proposed XY trees for page layout analysis [17,

15]. They have been periodically rediscovered and are also
known by other names like puzzle tree or tree-map [22]. They
transform a 2-D structure into two interlaced 1-D structures.

Some of these rules are violated in our sample. For example, a
category root cell may be missing because it is obvious to the
reader, or it may appear below or to the right of the leaves of the
category tree. Headers may be separated from the data cells by
spanning cells that. show units or are left blank. Sub-header
cells may be split for no reason other than to balance a category
tree. Since few tables found on the web meet all of the above
conditions, we must manually or algorithmically convert non-
conforming tables into canonical tables, or relax the requirement
of a canonical table for the algorithm that extracts the Wang
notation. In this paper, we present a solution following the first
approach.

Figure 1. Rectilinear tessellations rejected as canonical tables:
(a) a concatenated table; (b) a nested table; (c) a non-XY tiling;
(d) and (e) two non-tabular XY tilings.

3. CUTTING ALGORITHM
Decomposition of an XY-tessellation in terms of its component
blocks can be carried out according to application-specific cutting
rules [11]. The generic decomposition corresponding to the XY-
tree has been found to be sufficient in many document
segmentation algorithms [19, 20]. For analyzing the column (or
row) header of a table using a context-free grammar, however, we
have found the conventional XY-tree decomposition
inconvenient. We illustrate this for a single-category column
header in Figure 2 (a).

The column header block at the root of the tree is first cut into
horizontal slices at every end-to-end (guillotine) cut in the
horizontal direction. Each resulting block is then cut in the same
way in the orthogonal (vertical) direction. This process of
alternating the direction of cuts is iterated until only leaf blocks
remain, and the process stops after the first vertical cutting. The
parenthetical string (P-string) notation allows the decomposition
tree to be represented in a linear form. We note that while the sub-
categories A1 and A2 of A appear right after A within the vertical
parentheses in the string, the sub-categories of A21 and A22
appear separated from them within the next group. This separation
would complicate the parsing of the string to uncover the category
hierarchy using a context-free grammar.

Alternate cutting rules, illustrated in Figure 2 (b), overcome this
shortcoming. In the new rules, a horizontal cut is made if it results
in a leaf block; otherwise, the non-leaf blocks are accumulated
until a leaf block (or the end of the parent block) is reached. The
accumulated block is then cut in the vertical direction using the
standard XY-tree rules. The resulting tree and the P-string show
that the sub-category labels are kept together with the label of
their parent category by the new rules. Figure 3 shows the
algorithm that cuts a column-header block according to the
modified rules.

Figure 2. Two decompositions of a table column-header and the
resulting P-strings: (a) Breadth-first decomposition corresponding
to the conventional XY-tree (b) Decomposition following
column-header-specific rules for cutting blocks. For the P-string
notation, the blocks obtained by horizontal cuts are surrounded by
“{” and “}” and those obtained by vertical cuts are surrounded by
“[” and “]”. The decomposition is then uniquely represented by a
left-to-right traversal of the leaf cells and these delimiters in the
tree.

4. PARSING AND WNT GENERATION

The cutting algorithm described in the last section takes the place
of lexical analysis step in compiling, during which the string to be
parsed is scanned according to the rules defining the tokens of a
programming language. The token stream produced by lexical
analysis may or may not be a valid construct of the programming
language. Therefore, the next step in compiling is parsing the
token stream according to the rules of a context-free grammar.
Earlier work has shown that context-free grammars can help
characterize entire families of layout-equivalent printed tables

[5].Unlike compiling, however, the acceptability of a P-string by
the grammar is only a necessary and not a sufficient condition for
the given structure to be a valid column-header. For sufficiency,
we must perform additional geometric and lexical checks. In the
next section, we show how these checks can be incorporated as a
post-processing step to parsing of the P-string.

CutH(B) { 

print(“{“); 
repeat { 
while ( B is non‐null and B1 = XY‐cut(B, H) is a leaf) { 
print(Label(B1)); 
B = B‐B1} 

if (B is non‐null) then {B2 = XY‐cut(B,H); B = B‐B2} 
     while (B is non‐null and Temp = XY‐cut(B, H) is non‐   
leaf)  { 
B2 = B2 union Temp; 
B = B – B2} 

CutV(B2); 
} until B is null; 

print(“}”); 
} 
 
CutV(B) { 
print(“[“); 
repeat { 
B1 = XY‐cut(B, V); 
if(B1 is leaf) then print(Label(B1)) else CutH(B1); 
B = B – B1; 

} until B is null; 
print(“]”); 

} 

Figure 3. The cutting algorithm.

4.1 Geometric and Lexical Checks
Consider Table 1 with the column header shaded gray. Note that
the column header consists of two categories, “YEAR” and
“SEASON”. Each has two sub-categories but because “SEASON”
appears below “YEAR”, its two sub-categories are repeated for
each sub-category of “YEAR”, according to the commonly used
rules of table layout. The column header is shown in Table 2, with
its cells identified symbolically as c1 through c8 for ease of
reference.
Using the cutting rules, we get the following P-string for the
column header:

{ c1 [c2 c3] c4 [c5 c6 c7 c8] }

Table 1: Maximum Temperature

YEAR

2000 2001

SEASON

CITY Summer Winter Summer Winter

Montreal 35 11 36 2

Vancouver 28 18 29 19

James Bay 8 4 9 5

Table 2. Column header of Table 1

c1
c2 c3

c4
c5 c6 c7 c8

The layout rules of the table impose geometric and lexical
constraints on this two-category column header that are listed in
Table 3. We use the function E(c) to denote the horizontal extent
of a cell c and the function L(c) to denote its label. The lexical
constraints L1 and L2 are easily checked by attaching the block
label as an attribute of each token. Some of the geometric
constraints can be built into the context-free grammar model. We
illustrate this for the context free grammar for column headers,
used in our earlier work [10]. The grammar is reproduced in
Figure 4. The recursive Rule 3 of the grammar, along with the
base condition defined by Rule 4, generate one or more column
categories of the form “c[X]”, where c is the category label and
the non-terminal X generates its sub-category labels below it.
Because the horizontal extent of the terminal c is the same as that
of the non-terminal X, the grammar rules are sufficient to ensure
the geometric constraints within each category. For example, the
geometric constraints G1 and G2, of Table 3 are automatically
satisfied by our grammar rules. However, rules like G3 and G4,
involving blocks in different categories, cannot be checked
because the two categories are generated independently by the
grammar.
However, verifying that a given table belongs to an admissible
class and then finding its Wang-notation tree, all within the
framework of context-free grammars (CFGs), is attractive for
several reasons:

1. CFGs provide a concise notation for specifying an infinite
class of structures

2. A large body of theory and compiler tools have been built
over decades for lexical analysis, parsing, and translation
using CFGs

3. Only incremental modifications to an existing grammar are
needed to substantially enlarge the class of acceptable
structures, thus allowing a high degree of automation in
translating web tables to the Wang notation.

Table 3. Layout rules

Figure 4. A context-free grammar for column headers. The
terminal symbols “{“ and “}” indicate horizontal cuts while “[“
and “]” denote vertical cuts. The terminal “c” represents a leaf-
level cell that can be uniquely identified by its label and geometric
attributes in the P-string as c1, c2, etc.

Therefore, we would like to integrate the geometric and lexical
checks with the parsing of the column headers. We illustrate this
for the example column-header block of Table 1 (reproduced in
Figure 5), which can be parsed by grammar G.
Figure 6 shows the parse tree produced by a shift-reduce parser
for grammar G working on the P-string of the column header. If
the parsing fails for a given P-string, we can conclude that the
input does not belong to the admissible class of column headers.
However, if it succeeds, as in this example, we must still perform
the geometric and lexical checks before generating the Wang
notation from the parse tree. To facilitate the checks, we attach
symbolic attributes to the nodes of the parse tree, as described in
the figure caption. Now, the lexical and geometric checks are
easily performed as a post process on the enhanced parse tree.
To perform the geometric checks, the number of categories in the
input block must first be determined. As noted earlier, the non-
terminal B is used in the grammar to generate one or more
instances of categories using Rules 3 and 4. Each instance has the
form “c[X]” where the terminal c corresponds to the root label of
the category and the non-terminal X generates its subcategory
labels. In the example parse, this happens in the steps
corresponding to REDUCE_7 (where Rule 4 is used) and
REDUCE_8 (where Rule 3 is used.) Hence, we can conclude that
there are two categories. Further, because of how the geometric
attributes are propagated, the horizontal extent of the node
corresponding to REDUCE_8 includes the accumulated extents of
both the category blocks, while the horizontal extent of the
REDUCE_7 node corresponds to just the second category block.
Therefore, by taking the difference E(REDUCE_8_Node) -
E(REDUCE_7_Node), we can derive the extent of the first
category block as (1:1,2:4). In general, by taking the difference in
the extents of two successive REDUCE nodes nodes that generate
categories in the parse tree, we can find the extent of each
category block. Now, the geometric constraints between two
adjacent categories Ci and Ci+1, where Ci is geometrically above
Ci+1 can be stated. These are specified in terms of the leaf nodes in
the category tree of the two categories:

Row #
1 YEAR
2 2000 2001
3 SEASON
4 Summer Winter Summer Winter

Column#: 1 2 3 4

Figure 5. The column header of Table 1 with rows and
columns numbered to represent geometric extent of its blocks

 Geometric
Constraints

 Lexical
Constraints

G1.

€

E(c2) ⊂ E(c1)
E(c3) ⊂ E(c1)

L1.

€

L(c5) = L(c7)

G2.

€

E(c5) ⊂ E(c4)
E(c6) ⊂ E(c4)
E(c7) ⊂ E(c4)
E(c8) ⊂ E(c4)

L2.

€

L(c6) = L(c8)

G3.

€

E(c5) ⊂ E(c2)
E(c6) ⊂ E(c2)

G4.

€

E(c7) ⊂ E(c3)
E(c8) ⊂ E(c3)

Rules of Grammar G
1. S := A 3. B := c[X]B 5. X := cX 7. X := A
2. A := {B} 4. B := c[X] 6. X := AX 8. X := c

Figure 6: The parse tree for the column-header of Figure 2 according to the grammar G of Figure 4. The input P-string is shown at the
bottom, along with the block labels and their extents associated with the terminal symbols c of the grammar, where the extent of a block is
denoted by the row:column pair of its top-left and bottom-right cells. The shift-reduce parser scans the input string from left to right. For
each input symbol it uses rules to determine whether the next symbol should be shifted on to a push-down stack or the top symbol(s) on the
stack should be reduced according to a rule of the grammar. In this example, the first two reductions take place after the leftmost five
symbols have been shifted on to the stack. In the first reduction (REDUCE_1) the terminal symbol c is replaced by the nonterminal symbol
X using Rule 8 of the grammar. In REDUCE_2, this X along with the terminal c below it on the stack is replaced by X using Rule 5 of the
grammar. During each reduction step, we also propagate the combined extent of the symbols being replaced to the node corresponding to
the reduction. For example, for REDUCE_2, we combine the extents (2:1,2:2) and (2:3,2:4) and associate the extent (2:1,2:4) with this
node. The acceptance of an input P-string is signaled by its reduction to the start symbol S in the final step of parsing.

1. (Geometric check) For every leaf cell cj of category Ci+1,
there must exist a leaf cell ck of Ci, such that E(cj) E(ck).
We denote this by saying that cj is covered by ck. For the
example, if the extent of the cell “Summer” at (4:1,4:1), or
the cell “Winter” at (4:2,4:2), in Figure 5, were to straddle
the boundary between the cell “2000” at (2:1,2:2) and the
cell “3000” at (2:3,2:4), this check would have failed.

2. (Geometric check) Let the number of leaf nodes of Ci+1
covered by leaf node ck of Ci be n. Then, the number of leaf
nodes of Ci+1 covered by every leaf node of Ci must be n.
For the example, if the cell “2000” had covered two leaf
cells of the category “SEASON” and the cell “2001” had

covered three leaf cells of the same category, in Figure 5,
this check would have failed.

3. (Lexical check) Not only must the number of leaf nodes
specified in constrained 2 be the same but they must also be
lexically identical. For the example, this check requires that
both “2000” and “2001” cover the same labels (“Summer”
and “Winter” in this case).

4.2 WNT Generation
If the geometric and lexical checks succeed, the program prints
out a Wang notation tree [27] for each category in the indented
form. The Wang notation highlights the layout-independence
between the root header and their corresponding subcategories

for the column header region. Its representation in tree-like
indented table-of-contents notation is visually intuitive. We
illustrate the process of WNT generation for the running
example.
After the geometric and lexical checks pass, the category
hierarchy for the top category is derived by starting the parse
tree traversal at REDUCE_8, where the “c[X]” part on the right-
hand-side of Rule 3 generates the category tree reflected in the
part of the substring “YEAR [2000, 2001]”.
The WNT for the second category can be similarly found from
traversal of the parse tree at REDUCE_7, however, because the
second and lower categories contain repeated structures, we
traverse only a non-repeated part of the structure, identifiable by
the column span of a leaf sub-category of “YEAR”. For
example, because the leaf node “2000” of the top category
extends from column number 1 to 2, we traverse only the
“Winter” and “Summer” sub-category nodes of the “SEASON
category. The final Wang notation tree in the indented form
looks like:

YEAR
 2000
 2001
SEASON
 Summer

Winter

5. EXPERIMENTS AND RESULTS
A sample of 51 tables, culled from the dataset described in [23],
were imported into Microsoft Excel®. The table title, table
caption, footnotes and notes were removed. The column headers
of 44 of these tables were transformed into the format expected
by our grammar. An example of such a transformation is shown
in Fig. 7. One vertically concatenated table and six lists were
excluded. Identical column headers from different tables were
retained.

Using the algorithm described in Fig. 3, we constructed the P-
strings for both the original headers and their transformed

           
(Metropolitan

Lima)
Rural Poverty
(Sierra only)

Total Total Relative Indigence
(a)

VH
Rural Poverty (Sierra only) (Metropolitan

Lima) Total Total Relative Indigence
(b)

Figure 7. (a) Original column header, (b) Transformed header
obtained by (i) adding virtual header VH, (ii) deleting the empty
top row, (iii) merging headers defining the same column
(“Metropolitan Lima” and “Total”), and (iv) merging isolated
empty cells with the appropriate label “Rural Poverty (Sierra
only)”.

versions. P-strings are correctly parsed for all the transformed
headers and their Wang notation tree is extracted. Without such
manual preprocessing, P-strings of only four headers were
accepted by the grammar. The results for the unedited case,
shown in Table 4, indicate that a relatively high number of
strings (33) were rejected. This validates our earlier conjecture
(Section 2) that most real-world tables need some kind of editing
to meet the conditions of the grammar.
 An example of a column header in its native-state and after
editing is shown, along with the intermediate P-string (with
locations) and final output of the Wang category tree, in Fig. 8.

6. EXTENSIONS
The grammar G in Section 4 is intended to parse column headers
of acceptable tables with rigid constraints. It assumes that there
is no missing root-category label and further restricts the root
category label to occur only in a single row. But missing root
labels or repetitive labels are quite common in real tables as in
Fig. 8, and are easily understood by humans from the contextual
information. In this section we demonstrate how the grammar G
can be extended to include a broader class of structures as
follows:

1. The root header cell for any category can be missing
(Fig. 9a).

2. The root label might span multiple cells (Fig. 9b).
3. There can be a “units” cell spanning the whole width

of the column header at the bottom (Fig. 9b).
The grammar G1 below accommodates these extensions.

Rules of Grammar G1
1. S := A 4. B := C[X]B 7. C := εe 10. X := A

2. S := {Bc} 5. B := C[X] 8. X := cX 11. X := c

3. A := {B} 6. C := cC 9. X := AX

S is the start symbol that generates all admissible strings in the
grammar. The second rule is added to accommodate a single
units cell at the bottom, represented by the terminal c. The rest
of the grammar resembles G. Rules 4 and 5 of G1 are similar to
Rules 3 and 4 with the non-terminal C substituting for the
terminal c. The non-terminal C, which generates the root-
category header, can produce any string of zero or more c’s thus
accommodating both the missing header and one spanning
multiple rows. Rules 8 through 11 in G1 are identical to Rules 5
through 8. Thus, with only minor changes to the rules of the
grammar, we are able to considerably extend the range of
admissible structures.

Table 4. Results of attempting to extract Wang category tree
before transforming the headers

Type of P-string # strings
Accepted 4
Rejected 33
Ill-formed (improper nesting) 7
Total # of strings 44

Production Thickness
(thousand short tons) (inches)

Underground Surface Total Average [2] Low High
(a)

VH
Production Thickness

Underground Surface Total Average [2] Low High
(b)

(c)

{
VH 2:2, 2:7
[
{
Production 3:2, 3:4
[
Underground 4:2, 4:2
Surface 4:3, 4:3
Total 4:4, 4: 4
]
}
{
Thickness 3:5, 3:7
[
Average_[2] 4:5, 4:5
Low 4:6, 4:6
High 4:7, 4:7
]
}
]
}

Category Tree 1
Number of children of Wang Tree No 1 is = 2
root node VH
sub category 2
 Sub Category Root Node = Production
 total number of children = 3
 sub category child no 1 is Underground
 sub category child no 2 is Surface
 sub category child no 3 is Total
 Sub Category Root Node = Thickness
 total number of children = 3
 sub category child no 1 is Average_[2]
 sub category child no 2 is Low
 sub category child no 3 is High

(d)
Figure 8: (a) Original header, (b) Transformed header, (c) P-string of the edited header, and (d) Indented Wang notation tree

printed out by the program.

7. CONCLUSION
We presented a grammatical framework for parsing a linear-
string representation of column headers of tables in a range of
specified formats. Although the layout of the header represents a
2-D geometry, the layout constraints allow it to be decomposed
as a form of XY tree with cutting rules adapted to the
constraints. This simplified representation allows us to leverage
compiler theory to build automatic parsers and attach actions to
the parsing steps to write out the parse tree along with the
geometric and lexical information contained in column header
components.

In spite of the variety of column formats encountered in real
web tables, we were able to edit into canonical form all the
headers in our small sample that were not, and produce a correct
Wang Notation tree automatically for every table. The approach
presented here holds promises because many commonly found
variations are handled easily by making only minor
modifications to a base grammar.

We are currently exploring automation of the most time-
consuming aspects of adapting an existing system, such as
described here, incrementally to a larger class of structures, such
as shown in Figure 9. Of particular interest are frequently
occurring simple tables where the header is either just missing or
left of the top subheadings. To study the learning curve involved
in editing new table structures into an acceptable format, we also
propose to run a larger experiment with “naïve” operators.

Live births Late foetal deaths
Girls Boys Girls Boys

(a)

2006
Forest fires by protection zones

Intensive Limited
Number

(b)
Figure 9. (a) A header without root header cell, (b) A header
region with multi-cell root label at the top and a header-
spanning label at the bottom.

ACKNOWLEDGEMENTS
This work was supported by the National Science Foundation
under Grants # 044114854 and 0414644 and by the Rensselaer
Center for Open Software. We are thankful to students Raghav
Padmanabhan and William Silversmith of Rensselaer
Polytechnic Institute for providing the data. We also gratefully
acknowledge the influence of two decades of discussions about
tables and ontologies with Prof. David Embley of Brigham
Young University and Professor Dan Lopresti of Lehigh
University.

REFERENCES
[1] Embley, D.W., Hurst, M., Lopresti, D., Nagy, G. 2006.

Table Processing Paradigms: A Research Survey. Int. J.
Doc. Anal. Recognit. 8 (2-3), Springer, Heidelberg, 66-86.

[2] Embley, D.W., Lopresti, D., Nagy, G. 2006. Notes on
Contemporary Table Recognition. In: Procs. Document
Analysis Systems VII, H. Bunke and A. L. Spitz, Eds.,
Nelson, New Zealand, LNCS # 3872, Springer, Heidelberg,
164-175.

[3] Embley, D., Tao, C., Liddle, S. 2005. Automating the
extraction of data from HTML tables with unknown
structure. Data Knowl. Eng., 54(1), July 2005, 3–28.

[4] Gatterbauer, W., Bohunsky, P., Herzog, Krupl, M., Pollak,
B. 2007. Towards Domain-Independent Information
Extraction from Web Tables. In Proceedings of the 16th
International Conference on World Wide Web, Banff,
Alberta, Canada, 71-80.

[5] Green, E. A., Krishnamoorthy, M., 1995. Model-based
analysis of printed tables. In Procs. Third International
Conference on Document Analysis and Recognition,
(ICDAR), Montreal, Canada, pp. 214-217.

[6] Handley, J.C. 2001. Table analysis for multiline cell
identification. In: Kantor, P.B., Lopresti, D.P., Zhou, J.
(eds.) Proceedings of Document Recognition and Retrieval
VIII (IS&T/SPIE Electronic Imaging), vol. 4307, San Jose,
CA, 34-43.

[7] Hu J., Kashi R., Lopresti D., Nagy G., and Wilfong G.
2001. Why table ground-truthing is hard. In Proceedings of
the Sixth International Conference on Document Analysis
and Recognition, Seattle, WA, 129–133.

[8] Hurst, M. 2000. The Interpretation of Tables in Texts.
Ph.D. thesis, University of Edinburgh.

[9] Itonori, K. 1993. A table structure recognition based on
textblock arrangement and ruled line position. Proceedings
of the Second International Conference on Document
Analysis and Recognition (ICDAR’93), Tsukuba Science
City, Japan, 765–768.

[10] Jandhyala, R. C., Nagy, G., Seth, S., Silversmith, W.,
Krishnamoorthy, M., Padmanabhan, R. 2009. From
tessellations to table interpretation. In L. Dixon et al.
(Eds.): Calculemus/MKM 2009, Springer-Verlag, Berlin,
2009, vol. 5625 of Lecture Notes in Artificial Intelligence,
422-437.

[11] Kanai, J., Krishnamoorthy, M. S., and Spencer, T., 1986.
Algorithms for manipulating nested block represented
images, SPSE’s 26th Fall Symposium, Arlington VA,
USA, pp.190-193.

[12] Kieninger, T., Dengel, A. 1998. A paper-to-HTML table
converting system. In: Proceedings of Document Analysis
Systems (DAS) 98, Nagano, Japan.

[13] Krüpl, B., Herzog, M., Gatterbauer, W. 2005. Using visual
cues for extraction of tabular data from arbitrary HTML
documents. Proceedings. of the 14th Int’l Conf. on World
Wide Web, 1000-1001.

[14] Klink, S., Kieninger, T. 2001. Rule-based document
structure understanding with a fuzzy combination of layout
and textual features. International Journal of Document
Analysis and Recognition, 4(1), 18-26.

[15] Klarner, D.A. Magliveras, S.S. 1988. Tilings of a Block
with Blocks. Europ. J. Combinatorics, 9, 317-330.

[16] Krishnamoorthy, M., Nagy, G., Seth, S., and Viswanathan,
M. 1993. Syntactic Segmentation and Labeling of Digitized
Pages from Technical Journals. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 15(7), 737- 747.

[17] Kyriazis, G. 1990. Table Analysis. RPI DocLab Internal
Report.

[18] Laurentini, A., Viada, P. 1992. Identifying and
understanding tabular material in compound documents.
Proceedings of the Eleventh International Conference on
Pattern Recognition (ICPR’92), The Hague, 405–409.

[19] Nagy, G., Seth, S. 1984. Hierarchical Image Representation
with Application to Optically Scanned Documents. In:
Proceedings of the International Conference on Pattern
Recognition VII, Montreal, 347-349.

[20] Nagy, G., Seth, S., and Viswanathan, M. 1992. A Prototype
Document Image Analysis System for Technical Journals.
IEEE Computer 25, July 1992, 10-22.

[21] Pyreddy, P., Croft, W.B. 1997. TINTIN: A System for
Retrieval in Text Tables. In Proceedings of the Second
ACM International Conference on Digital Libraries, New
York, NY, 193--200.

[22] A. Pivk, P. Ciamiano, Y. Sure, M. Gams, V. Rahkovic, R.
Studer. 2007. Transforming arbitrary tables into logical
form with TARTAR. Data and Knowledge Engineering
60(3), 567-595.

[23] R. Padmanabhan, R. C. Jandhyala, M. Krishnamoorthy, G.
Nagy, S. Seth, W. Silversmith. 2009. Interactive
Conversion of Large Web Tables. Proceedings of Eighth
International Workshop on Graphics Recognition, GREC
2009, Published by City University of La Rochelle, La
Rochelle, France, July 22-23, 2009.

[24] Samet, H. 2006. Foundations of Multidimensional and
Metric Data Structures. Morgan Kaufman.

[25] Silva, E.C., Jorge, A.M., Torgo, L. 2006. Design of an end-
to-end method to extract information from tables. Int. J.
Doc. Anal. Recognit. 8(2), Springer, 144–171.

[26] C. Tao and D.W. Embley. 2009. Automatic hidden-web
table interpretation, conceptualization, and semantic
annotation. Data & Knowledge Engineering, 68(7), July
2009, 683–703.

[27] X. Wang, "Tabular Abstraction, Editing, and Formatting,"
Ph.D Dissertation, University of Waterloo, Waterloo, ON,
Canada, 1996.

[28] Zanibbi, R., Blostein, D., Cordy, J.R. 2004. A survey of
table recognition: Models, observations, transformations,
and inferences. International Journal of Document Analysis
and Recognition, 7(1), 1–16.

