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Abstract— We present a method based on header paths for 
efficient and complete extraction of labeled data from tables 
meant for humans. Although many table configurations 
yield to the proposed syntactic analysis, some require access 
to semantic knowledge. Clicking on one or two critical cells 
per table, through a simple interface, is sufficient to resolve 
most of these problem tables. Header paths, a purely 
syntactic representation of visual tables, can be transformed 
(“factored”) into existing representations of structured data 
such as category trees, relational tables, and RDF triples.  
From a random sample of 200 web tables from ten large 
statistical web sites, we generated 376 relational tables and 
34,110 subject-predicate-object RDF triples. 
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I.  INTRODUCTION  
In the first decade of table processing, researchers 

concentrated on finding the underlying grid structure of 
scanned tables from rulings or text alignments [1,2], and of 
ASCII tables in email [ 3 ]. In the second decade the 
emphasis was on locating and bounding HTML pages in 
web tables. Reviews of earlier work can found in [4,5]. 

We target here the efficient extraction of the relations 
of header cells to content cells and the representation of 
these relations in appropriate data structures. Such multi-
dimensional indexing is a prerequisite for understanding 
individual tables and for combining their contents into a 
queryable database or populated ontology, as we proposed 
for TANGO [6]. Similar goals are addressed in [7,8]. 

The foundations of syntactic table analysis were laid 
by X. Wang in her 1996 PhD dissertation [9]. Although 
she was interested primarily in reformatting tables for 
various media and page sizes, her definition of categories 
is equally suitable for layout analysis. Simple tables have 
only two categories defined by their row and column 
hierarchies, but more complex tables, such as her prime 
grade book example of Year, Term and Mark, require 
multidimensional indexing. 

In [10] we presented our methods for extracting paths 
through the header hierarchy to content cells, and for 
decomposing these paths into orthogonal categories. Here 
we propose procedures for more complex table layouts, 
report additional experiments, and present a new tool for 
rapid interactive correction. We demonstrate the 
transformation of tables meant for human reading into a 
relational database accessible by formal languages like 
SQL [11] for relational tables or SPARQL [12] for RDF 
triple stores [13]. Although many of the tables available at 
large sites of statistical information—our primary focus—
are generated dynamically from databases, often no direct 
public access is provided to the databases themselves. 
Individual users must therefore reconstruct fragments of 
the database of each source, or possibly of databases of 
multiple sources, by harvesting and analyzing individual 
tables. The proposed methods are intended to accelerate 
this process. 

Unlike most published work to date, we present an 
end-to-end solution from HTML to SQL/SPARQL. Our 
starting point is a collection of tables selected randomly 
from ten large statistical web sites [14]. HTML tables can 
readily be exported to Excel, which provides all the 
necessary VBA primitives for manipulating grid cells in 
our GUI. Comma Separated Value (CSV) files are easy to 
parse with Python. Although the transformation from 
HTML to CSV loses some formatting, the standard CSV 
format suffices for a broad range of applications, including 
intermediate states of table processing.  

In Section II we discuss common table formatting 
conventions that must be accommodated by automated 
table analysis. Section III describes our heuristics for 
finding header paths given these conventions and presents 
our new GUI for interactive corrections. Section IV 
reviews the extraction of Wang category trees using 
mathematical software designed for the synthesis of logic 
circuits. Section V demonstrates the transformation to 
relational tables and RDF triples. Section VI reports our 
experimental results. 
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II. TABLE FORMATTING CONVENTIONS 
Since the invention of printing, many table formatting 

conventions have been developed and refined for ease of 
human access to tabulated data (cf.  The Chicago Manual 
of Style or the US Government Printing Office Style 
Manual). Although tables can be prepared with any text 
editor, most document preparation systems (e.g. Office, 
Latex) offer elaborate provisions for constructing tables. 

A table contains a rectangular configuration of data 
cells, each of which can be uniquely designated by a 
named row and a named column. More formally, a table 
structure is a discrete rectilinear tessellation, or a 
rectangular tiling, based on the partition of an isothetic 
rectangle into rectangles defined on a rT x cT lattice [15]. 
The bottom-right region of a well-formed table (WFT) 
contains a set of rd x cd content- (aka value-, data-, or 
delta- in [9]) cells that can be uniquely specified by a 
column-header path and a row-header path. Fig. 1 
explains our notation and shows how four critical cells 
define the segmentation of the table into stub, row header, 
column header, and delta regions. (Although our 
observations are drawn from a collection posted on the 
project website [ 16 ], we present simplified examples 
because most real tables are too large for the ICDAR page 
allotment.) 

The extraction of header paths must take into account 
the commonly occurring configurations discussed below. 

A. Virtual Headers 
Wang defines rooted category trees. Category roots, 

however, are often missing in real tables. In the table of 
Fig. 1, which has two column categories A and B and one 
row category C, it is necessary to add a virtual root header 
CH1 (for Category Header 1) to the category A paths.  
 
 
 
 
 
 
 
 
Figure 1.  Table Notation. Lower-case letters above and numerals to the 
left are not part of the table, just Excel-style cell addresses. Cells a1:b3 

are the stub header (stub). The delta-cell region is c4:h5. The critical 
cells are a1, b3, c4, and h5, which also uniquely define the header 

regions. The column header path to cell f4 (which has cell-content D14) 
is B-B2-A1. The corresponding row header path is C-C1. 

B. Headers in the Stub 
In the simple example of Fig. 2a it is not obvious 

whether “A” in cell a1 (the only cell in the stub here) is the 
root for category B or C. A more realistic example is 
shown in Figs. 2b. The appropriate category trees cannot 
be determined without semantic considerations. In the 
large majority of the tables we have seen, however, the 
contents of the stub are row headers: we would expect 
AGE instead of VERMONT in merged-header-cell b1:e1. 

  

 
 
 
 (a)   (b) 

Figure 2.  (a) Is “A” a row or column header?  In (b), if XXX is 
GENDER, then it is is a column-root-header, but if XXX is 

EDUCATION then it is a row-root-header.This is a three-catgory table. 

C. Multi-row/column Indexing 
In a table with rd rows and cd columns of delta-cells, 

there must be rd row-header leaf-cells and cd column-
header leaf-cells. In the table of Fig. 3, one might at first 
consider State to be the row-root-header, and all but the 
first column as delta-cells. There are, however, multiple 
rows with the same entry (AL, MI, MN). Even adding the 
second column is insufficient because Minnesota Power 
Inc appears twice. The row-header here consists of the first 
three columns.  

 

 

 

 

 

 

 

 

 
 

Figure 3.  Three columns are required here to index columns. 

D. Row/Column Order 
In tables meant for humans, order can be suggestive. In 

Fig. 4, the Rank column may at first appear inferior to the 
State column as a row-header. But the table designer 
would have put State on the left if the table were meant to 
find the rank of various states instead of the states with 
various ranks (the title of this table was "Top 3 States for 
Trade via Port Huron, MI: 2008").   

 
 

 
 
 
 
 

Figure 4.  Row order is important here, but column order is less so. 

Even if a numerical index satisfies our header path 
uniqueness requirement, it is often of little value for 
querying table data. Nevertheless omitting the Rank 
column would entail loss of information because we don't 
currently add explicit order information (and preserve the 
original CSV cell addresses only as meta-data). 

Rank State Total Exports Imports

1 Michigan 24,266 3,992 20,274

2 Illinois 8,259 4,669 3,590

3 Texas 7,001 4,635 2,366

Table 1.9 Net Summer Capacity of Plants Cofiring Biomass and Coal, 2007
(Megawatts)

State Company Name Plant 
I.D.

Plant Name County

Biomass/ 
Coal 

Cofiring 
Capacity

Total 
Plant 

Capacity

AL DTE Energy Services 50407 Mobile Energy Services LLC Mobile 91 91
AL Georgia-Pacific Corp 10699 Georgia Pacific Naheola Mill Choctaw 31 78
AL International Paper Co 52140 International Paper Prattville Mill Autauga 49 90
AR Domtar Industries Inc 54104 Ashdown Little River 157 157
AZ Tucson Electric Power Co 126 H Wilson Sundt Generating Station Pima 173 559

MI S D Warren Co 50438 S D Warren Muskegon Muskegon 51 51
MI TES Filer City Station LP 50835 TES Filer City Station Manistee 70 70
MN Minnesota Power Inc 10686 Rapids Energy Center Itasca 27 28
MN Minnesota Power Inc 1897 M L Hibbard St Louis 73 123
MO University of Missouri-Columba 50969 University of Missouri Columbia Boone 6 91
MS Weyerhaeuser Co 50184 Weyerhaeuser Columbus MS Lowndes 123 123
NC Carlyle/Riverstone Renewable En 10381 Coastal Carolina Clean Power Duplin 44 44

      ROWS OMITTED

ROWS OMITTED

a b c d e f g h

1

2

3 A1 A2 A3 A1 A2 A3

4 C1 D11 D12 D13 D14 D15 D16

5 C2 D21 D22 D23 D24 D25 D26
C

B

B1 B2

A B1 B2
C1 D11 D12
C2 D21 D22

AGE
XXX M F M F

HIGH SCHOO 50% 65% 44% 78%
COLLEGE 20% 23% 22% 25%

VERMONT
<25 >25



E. Degenerate Tables and Lists 
Our fundamental requirement is that each data cell can 

be indexed uniquely. We call a table with rd =1 or cd =1 
degenerate (such a structure can have multiple categories). 
A structure missing any row or column header necessary 
for indexing every data cell is a list. Classification of 
multi-row and multi-column lists is addressed in [17]. 

F. Aggregates 
Tables often contain row or column totals that can be 

recovered from the rest of the table, as shown by Long on 
Australian financial reports [18]. Other aggregates, like 
median, standard deviation, or truncated mean, could also 
be identified when the span of the aggregation operation is 
clear. Sums are often identified by keywords like Sum or 
Total which apply to the whole, or part of a, row or 
column. In other cases more complicated semantic 
processing may be required. In the Canada Statistics 
tables, totals for all the provinces and territories appear 
under CANADA. But CANADA also often appears as a row-
header root for the provinces, without any aggregate data.  

III. CONSTRUCTION OF HEADER PATHS 

A. CSV Version of the HTML table 
The CSV text file is parsed by a Python program [10]: 

The CSV structure must be modified because merged 
cells, like the column-header root containing B in Fig. 5, 
are unmerged. For the table of Fig. 1, B, B1, and B2 are 
copied into all the empty cells, represented by null strings, 
to their right. C is copied into the first empty cell of the 
fifth row. Blanks within cell contents are replaced by 
underscores, and some characters with special meanings in 
downstream programs (“\”,  “+”,  “*”,  “(“,  “)”, etc.) are 
replaced by ASCII strings like “backslashtoken”.   

 
,,B,,,,, 
,,B1,,B2,, 
,,A1,A2,A3,A1,A2,A3 
C,C1,D11,D12,D13,D14,D15,D16 
,C2,D21,D22,D23,D24,D25,D26 

 
 
 
 
 
 

Figure 5.  CSV file and table for the Excel table of Fig. 1. Excel cell 
addresses changed to x-y coordinates to allow negative indices. 

Both the header paths and the paths through the delta 
cell region consist of asterisk-separated-sequences of cell 
contents in double quotes, with the sequences separated by 
plus signs (Fig. 6). After the paths are extracted, the 
original cell coordinates, enclosed by angle brackets <>, 
are added to each path element. If needed, the program 
creates negative x-coordinates for roots virtually moved 
from the stub to left of the leftmost row-header column. 
The stub and delta region are not necessarily contiguous. 

B. Path Extraction Heuristics 
The critical cells are located automatically if either of 

two conditions holds: (1) the stub header is empty, and (2) 
the delta cell region consists of numerical information. If 
neither of these conditions holds, the table is tagged for 
interactive identification of the critical cells.  

Row header roots in the stub are added as roots of the 
row headers below them. In the table of Fig. 2a, A would 
be added to the row header paths C1 and C2 (if D11, D12, 
D21, D22 were numerical).  

rowpaths =  
(("<0,3>C"*"<1,3>C1") 
+("<0,4>C"*"<1,4>C2")); 
 
colpaths =  
(("<2,0>B"*"<2,1>B1"*"<2,2>A1") 
+("<3,0>B"*"<3,1>B1"*"<3,2>A2") 
+("<4,0>B"*"<4,1>B1"*"<4,2>A3") 
+("<5,0>B"*"<5,1>B2"*"<5,2>A1") 
+("<6,0>B"*"<6,1>B2"*"<6,2>A2") 
+("<7,0>B"*"<7,1>B2"*"<7,2>A3")); 

Figure 6.  Row and column paths for table of Figs. 1 and 5. 
The delta paths are simimlar but longer. 

C. Interactive verification 
VeriClick is an interactive Excel file with VBA macros 

that sequentially presents for verification the CSV tables in 
a given directory. It highlights the stub and delta-cell 
region recognized by Python table parser. If they are 
deemed correct, a click outside the table triggers the 
display of the next table. If wrong, as in Figure 7, the 
operator corrects the error by clicking first on the wrong 
cell then on the right cell. At most 8 clicks are required. 

 
 
 
 
 
 
 

Figure 7.  VeriClick GUI for critical cells. In this table, the Python 
program misconstrued cell a1 for the stub, which should be only a2. 

Here the cause was poor table layout: “3” is part of the table title. 

IV. EXTRACTION OF CATEGORY TREES 
With the asterisks and plus signs added in the row and 

column header paths, both resemble sum-of-products 
algebraic expressions. This convention simplifies 
extracting category trees from these expressions through 
an algebraic factorization process. As the formulation is 
completely symmetric for column and row header paths, 
we describe below only the column header path analysis. 

The algebraic interpretation is based on a covering 
relation defined between each product term in the header 
paths expression with the column covered by it. The 
covering relation can be extended to sums of products by 
taking the union of individually covered columns. For 
example, the sum-of-products: 

0 1 2 3 4 5 6 7

0 B

1 B1 B2

2 A1 A2 A3 A1 A2 A3

3 C C1 D11 D12 D13 D14 D15 D16

4 C2 D21 D22 D23 D24 D25 D26

3  Plastic waste by method of treatment or disposal. 1995-1997. Per cent
1995 1996 1997

Material re 0 2 2
Incineratio 15 15 14
Landfill 63 66 60
Export 2 3 3
Other/unkn  20 14 20
1 Source: Plastretur AS and Statistics Norway's manufacturing statistics.



("<2,0>B"∗"<2,1>B1"∗"<2,2>A1")+("<4,0>B"∗"<4,1>B1"∗"<4,2>A3")  (1) 
covers the first and the third columns of values in the table 
in Fig. 5. Note that the cell labels <2,0>B and <4,0>B in 
this example are identical in the original table. To enforce 
this constraint, we drop the second (column) coordinate in 
the header paths. As a consequence, the labels <2,2>A1 
and <5,2>A1 in the colpaths expression are also treated as 
being the same, in accordance with the normal 
conventions of table layout. 

The covering relation can be further extended to 
factored forms, as long as the inverse multiplying-out 
process can recover the original product terms from it. For 
example, the whole colpaths expression can be factored as: 
       <0>B*[<1>B1+<1>B2]*[<2>A1*<2>A2*<2>A3]     (2) 
from which the category trees for the headers are derived 
by our Python program, as shown in Fig. 8. Here, the 
program has stripped the indices and added the virtual 
root header CH1 to represent the missing header for the 
second column category.  
 
 
 
 
 

Figure 8.  Wang Categories for the table of Fig. 1 

To facilitate the generation of relational tables (see 
Section V), the program combines the category-tree 
structures for the row and column headers into a canonical 
form, as shown below for the example: 

C*(C1+C2)+B*(B1+B2)+CH1*(A1+A2+A3)                (3) 
It also generates multiple views of the table resulting from 
the different choices of the category chosen to provide the 
attributes.  

Another output produced by the program are the values 
of the table features used in verification of the result 
against visual inspection of the CSV table, as illustrated 
below for the example of Fig. 1: 

 Row categories: 1; Leaf nodes for row categories: 2 
 Col   categories: 2; Leaf nodes for col  categories: 2, 3 

A benefit of this formulation is that the algebraic 
factorization problem has been studied extensively in the 
past in fields ranging from symbolic mathematics [19] to 
logic synthesis [ 20 ], and we gain leverage from the 
sophisticated strategies developed in these fields. We map 
the header paths expression to Boolean algebra and adapt 
the logic synthesis tool Sis [21] for factorization. Interested 
readers can find further details in our earlier work [10]. 

V. RELATIONAL TABLES & RDF TRIPLES 
Given a factored expression for a table in canonical 

form along with the table’s data indexed by the header 
paths, we can generate a corresponding relational table 
and populate it with the data.  We can then query the table 
with SQL and otherwise manipulate it along with other 
tables in a standard relational database. 

We assume that one of the  category terms provides 
the attributes for the relational table while the remaining 
category terms provide key values for objects represented 
in the original table. We do not know which category 
would serve best for the attributes. We therefore 
transform a table with n categories into n complementary 
relational tables—one for each possible choice. 

For the canonical expression (3) with the choice of the 
term CH1*(A1+A2+A3) for the attributes along with the 
header paths and data for the table of  
Fig. 5, Fig. 9 shows the generated SQL create statement 
and SQL insert statements for one of the relational tables. 
In general, we  

(1) transform each header path of the term chosen to 
represent attributes into an attribute name (e.g., CH1_A1 
in Fig. 9),  

(2) transform the root node of the remaining header 
paths into attribute names (e.g., C and B in Fig. 9),  

(3) declare the attributes of these remaining header 
paths to be the primary key (e.g., PRIMARY KEY (C, B) in 
Fig. 9), and  

(4) insert tuples into the generated table: the key 
values are a cross product of the header paths below the 
root from each category (e.g., {C1, C2} × {B1, B2} for 
the four tuples in Fig. 9), and the data values are inserted 
as directed by the header paths of each data value in the 
original table (e.g., “D11” for the CH1_A1 attribute of the 
tuple whose key is {C1, B1} as Fig.9 shows). 
 
CREATE TABLE Fig_1(C varchar(2),B varchar(2), 
     CH1_A1 varchar(3),CH1_A2  varchar(3),CH1_A3 varchar(3), 
     PRIMARY KEY (C, B)); 

INSERT INTO Fig_1 VALUES("C1", "B1", "D11", "D12", "D13"); 
INSERT INTO Fig_1 VALUES("C1", "B2", "D14", "D15", "D16"); 
INSERT INTO Fig_1 VALUES("C2", "B1", "D21", "D22", "D23"); 
INSERT INTO Fig_1 VALUES("C2", "B2", "D24", "D25", "D26"); 

Figure 9.  Tuple generation for the table of Fig. 1 

For RDF triples we transform each data value in a 
relational table into a (subject, predicate, object)-triple.  
Fig. 10 shows the resulting RDF for the first tuple 
generated for the relational table in Fig. 9.  For each data 
value (e.g., “D11”), the subject in the triple is an object 
identifier for the tuple (e.g., the object identifier C-B_0 in 
Fig. 10 obtained as a hyphenated concatenation of the 
attributes of the primary key along with a subscript 0 for 
the first tuple, 1 for the second, and so on).  The predicate 
for the triple is the attribute for the value (e.g., CH1_A1 for 
the value “D11” and B for “B1” in Fig. 10).  And the 
object in the triple is the value itself (“D11” and “B1” in 
Fig. 10). 

B CH1 C
B1 A1 C1
B2 A2 C2

A3



 
<rdf:RDF 
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-
ns#" 
xmlns:Fig_1="mysql://localhost:3306/Fig_1#"> 
 
<rdf:Description 
rdf:about="mysql://localhost:3306/Fig_1/C-B_0" 
Fig_1:C="C1" 
Fig_1:B="B1" 
Fig_1:CH1_A1="D11" 
Fig_1:CH1_A2="D12" 
Fig_1:CH1_A3="D13" 
/> 
... 
</rdf:RDF  

Figure 10.  RDF for the first tuple in Fig. 9 

VI. EXPERIMENTAL RESULTS 
All the CSV tables we processed were interactively 

stripped of external metadata like table titles and footnotes. 
(We have, since then, automated these tasks). The Python 
segmentation routines found the critical cells on 197 of the 
200 tables and generated path 197 files. The three that 
failed have X or NA in some delta cells and non-empty 
stubs. 26 of the 197 tables required interactive correction 
of one or more critical cells before path extraction. The 
interaction (up to eight mouse clicks) using VeriClick 
takes on average about 5 seconds per table that needs to be 
corrected, and under two seconds for confirmation. 

If the header paths are correct, factorization produces 
the correct canonical form. The factorization program 
yielded the canonical expression for 196 of the 197 path 
files. Some cells contained MySQL-disallowed characters 
and some names exceeded the 64-character limit on 
attribute names. We enclosed such names in quotes and 
built correspondence tables to connect short names to full 
names.   

Our implementation selects each term in a canonical 
expression to serve as the attributes of a generated 
relational table. The to-relational-table conversion 
program generated and populated 376 MySQL relational 
tables (2 tables for each of the two-category tables and 3 
tables for each of the three-category tables).  Of 196 
tables, eight failed the parse: five tables had duplicate 
attribute names, and three had bad syntax. 

To generate RDF triples, our implementation converts 
each value in a relational table to a triple. The to-RDF-
triple conversion program generated 188 RDF files and 
34,110 subject-predicate-object triples.  
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