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Abstract 
 

In a pattern recognition sequence consisting of 
alternating steps of interactive labeling, classifier 
training, and automated labeling (e.g., CAVIAR 
systems), the choice of sample size at each step affects 
the overall amount of human interaction necessary to 
label all the samples correctly. The appropriate splits 
depend on the error rate of the classifier as a function 
of the size of the training set and, perhaps surprisingly, 
are independent of the relative costs of interactive 
correction and confirmation. We model such a system 
and report the sequence of optimal data partitions for 
a representative range of parameters. 
 
1. Introduction 
 

The following paradigm is the common 
denominator of some Computer Aided Visual 
Interactive Classification (CAVIAR) systems developed 
for diverse applications (Fig 1): 

 
1. A sequence of Ntrain patterns is displayed on a 

graphic user interface and labeled by an 
operator. 

2. A conventional classifier is trained on features 
extracted from the labeled patterns. 

3. The classifier is run on a (usually larger) set of 
unlabeled patterns.  

4. The newly labeled patterns are displayed for 
approval or correction by the operator.  

5. Optionally, the corrected or approved labels and 
patterns are added to previous training set to 
retrain the classifier for the next batch of 
unknown patterns. 

 
The cost of entering the label of a training pattern or 

of correcting a misclassified test pattern is higher than 
that of confirming a correct label (which typically 
requires only a single mouse click). It has been our 
experience that corrections take 5-6 times longer than 
confirmation for flowers or web table cells. The 
relative costs can be determined from a short 
interactive session. A ratio of 3 is appropriate for digit 
recognition due to the smaller number of classes. 

We consider computational costs of interaction plus 
classification essentially constant and endeavor to 
minimize operator time. Multistage CAVIAR systems 
incur lower human interaction costs than the customary 
alternative of training on a small fixed partition and 
correcting every error at the end. 

Given a fixed number of patterns to be labeled with 
a CAVIAR system, it is necessary to decide the 
appropriate balance between the size of the training set 
and the size of the interactively corrected test set. A 
large training set decreases the number of errors on the 
test set, but labeling it is expensive. A small training 
set may results in too many costly-to-correct errors on 
the test set.  

We propose a model for determining the optimal 
size of the training set given a fixed number of patterns 
to be classified. We consider both two-stage (Steps 1-4 
above) and n-stage (Steps 1-5) CAVIAR systems.  

 
 
 
 
 
 

Figure 1. CAVIAR dataflow 
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Table I. Some CAVIAR systems 
Objects Sample Size Label Year Reference 

Printed documents 30,000 ASCII code 1971 [1] 
Smudged print 28,650 Prototypes for classification 1998 [2] 
Flowers 612 Species 2003 [3,4] 
Calligraphy 13,351 GB-2312 code 2011 [5] 
Web tables 30,795 (cells) Cell type (header, stub, data, …) 2012 [6] 
Faces 500 Name of person ongoing [7] 
Election ballots 13,315 Candidate  ‘’ [8] 
Cervigrams 100 Abnormal tissues  ‘’ [9] 
 

We note that in some CAVIAR systems, the 
features, instead of the labels, of the misclassified 
patterns are corrected to retrain the classifier. Other 
systems include a reject class for which the operator 
must enter a new label rather than correct or confirm 
one. This is only an academic distinction if all the 
patterns are inspected because changing “?” to “Jones” 
takes about the same amount of effort as changing 
“Smith” to “Jones”.  

 
2. Prior work 

 
CAVIAR systems have been developed for printed 

documents [1, 2], flowers [3, 4], calligraphy [5], and 
web tables [6]. Similar systems are being developed 
for faces [7], election ballots [8] and cervigrams [9]. 
Table I displays some characteristics of these systems. 

Interactive pattern classification was first proposed 
more than forty years ago: “Starting with the era of 
learning machines, reasons are presented for the current 
emergence of graphics-oriented interactive pattern analysis 
and classification systems (IPACS) as a general approach to 
practical pattern-recognition problems.” [10]. It was, 
however, seldom coupled with (re-)trainable 
classifiers. Most of the early work was directed at 
exploration of multidimensional feature spaces through 
the then available graphics [11].  

Active learning, where samples to be labeled are 
selected automatically, has goals similar to CAVIAR’s 
[12]. A comparison between these approaches, based 
on the human time required to produce an accurately 
labeled dataset, would be timely.  

Only a few papers, even among those that address 
error-sensitive applications, discuss what is to be done 
with residual errors [13]. An application where 
complete verification is indispensable is financial and 
medical form entry [14]. 

 
3. A model for determining the best splits 
 

We model a multistage labeling process where the 
errors at each stage i are corrected by a human operator 
and the samples are added to the previous training set 

to retrain the classifier. The classifier trained on Ni-1 
samples makes Mi errors when it classifies the next Ni 
samples (i = 1,2,…, n). These errors are corrected and 
the rest of the labels are approved.  

The average duration of inspecting and confirming 
a correct label is taken as the unit of time or cost: each 
confirmation has unit cost. Either entering a new label 
or correcting a wrong label is assumed to take r units 
of time and have cost r. The number of errors Mi at the 
ith stage is Ni f(Ntrain ; β), where β is a scalar or vector 
parameter of the function that specifies the dependence 
of the error rate on the training set size. The time 
required to confirm all the correct labels at the ith stage 
is (Ni – Mi), and the time required to correct the errors 
is r×Mi. 

All N0 objects of the initial training set must be 
labeled, therefore M0 = N0. The operator time at stage i 
is Ti. More formally: 

𝑀0 = 𝑁0,    𝑛 > 0, 𝑓(0; σ) = 1, 𝑟 ≥ 1, 
 and   𝑁𝑡𝑜𝑡𝑎𝑙 = ∑ 𝑁𝑘𝑛

𝑘=0  . 

𝑀𝑖 = 𝑁𝑖𝑓 ��𝑁𝑘−1

𝑖

𝑘=1

; β� 

𝑇𝑖 = (𝑁𝑖 − 𝑀𝑖) + 𝑟𝑀𝑖 = 𝑁𝑖 + (𝑟 − 1)𝑀𝑖  

= 𝑁𝑖 �1 + (𝑟 − 1)𝑓 ��𝑁𝑘−1

𝑖

𝑘=1

; β�� 

𝑇𝑡𝑜𝑡𝑎𝑙 = �𝑇ℎ

𝑛

ℎ=0

 

= 𝑟𝑁0 + �𝑁ℎ �1 + (𝑟 − 1)𝑓 ��𝑁𝑘−1; β
ℎ

𝑘=1

��
𝑛

ℎ=1

 

For n = 2 it is easy to show that the derivative of 
(T0+T1) with respect to N0 is proportional to (r-1). 
Therefore the optimum split is independent of r. This 
holds also for n > 2. The total cost and the error 
function e-βNtrain, with n = 1, Ntotal = 1000, r = 3, and 
β = 0.0046, are graphed in Figure 2 as a function of N0. 
The optimal N0 is 311, so N1 is 689. Splitting at 
N0 = 500 would increase interaction time by 8%.  



 
 
 
 
 
 
 
 
 
 

Fig. 2. Cost (time) and number of errors as a 
function of the size of the training set 

 
We resorted to exhaustive search to find the 

optimum number of samples before switching from 
automatic processing to interaction for n = 3. We set 
the parameter β  to reach an error rate of either E1000 = 
1% or E1000 =5% after training on 1000 patterns. 

Published experiments indicate that the effect of the 
size of the training set on the error rate varies 
considerably depending on the data, features, and 
classifier. We have therefore calculated the splits for 
super-linear, linear, and supra-linear initial fall-off of 
the error rate with the size of the training set. These 
functions, graphed in Figure 3, are: 

f (Ntrain; β)  = e-βNtrain;     
g (Ntrain; β) = 1 - β Ntrain   
h (Ntrain; β) = 1- β (Ntrain)2

 . 
 

 
 
 
 
 
 
 
 

Fig. 3. Error functions f, g, and h  
as a function of the size of the training set 

 
The values of N0, N1, and N2 required to minimize 

Ttotal are shown for several situations in Table II.  
Ntotal = 1000 in every simulation except the last one, 
where Ntotal = 5000. The human time saved by using 
the classifier is S = 1 - Ttotal / Tmax = 1 - Ttotal / r Ntotal . 

If correction and verification cost the same (r =1), 
any choice would give the same final cost r Ntotal. The 
slower the error rate decreases initially, the more 
samples should be used in the earlier stages. Poor 
initial generalization leads to higher final cost and less 
savings. A linear error function splits the data 
uniformly. The gain over direct entry increases with 

the ratio of corrections to verification and with the total 
number of samples to be classified. With error function 
f, increasing the total sample size from 1000 to 5000 
almost doubles the time saved. 

Table II. Optimal splits and final costs 

 
4. Discussion  
 

The above analysis provides guidance to optimal 
sizing of data sets when human labeling alternates with 
automated classifier training and labeling. Practical 
application requires an approximation of the error 
function. Fortunately, only an approximation of the 
early, high-error segment is needed, and the 
approximation can be improved from the results on the 
early stages. The relative cost of corrections vs. 
confirmations does not affect the experimental 
protocol, only the overall gain.  

The gain is a slowly rising function of the number 
of stages, which in practice is limited by the logistics 
of retraining the classifier and scheduling interaction. 
Ideally the classifier would be retrained after every 
verified or corrected label. 

Some aspects of the proposed protocol that deserve 
further consideration are: 

 
4.1 Domain of application 

The current analysis is limited to classifiers that 
treat each pattern as an independent entity. It excludes 
classifiers that use language, scene, or style context 
because such contexts may extend beyond batch 
boundaries.  

In many applications, however, only-short range 
context is exploited. If this range is much smaller than 
the number of samples in the split sets, then the model 
may still apply.  

 
4.2 Fundamental independence assumption 

We have implicitly assumed that the classification 
process is stationary and that successive decisions are 
statistically independent. The best way to assure that 
these assumptions apply to any particular set of data is 
to reorder the entire data set with a pseudo-random 
permutation. That guarantees that each training set is 
representative of the corresponding test set, and that 

error fn E1000 r N0 N1 N2 S(%) 
h(•) 0.01 1 0 0 1000 0 
f(•) 0.01 3 177 274 549 73 
g(•) 0.01 3 333 333 334 25 
h(•) 0.01 3 645 237 118 11 
f(•) 0.05 3 214 300 486 54 
g(•) 0.05 3 333 333 334 23 
h(•) 0.01 5 645 237 118 14 
f(•)  0.05 3 418 836 3746 131 



successive classifier decisions are statistically 
independent. Although on any particular sequence the 
error rate may not decrease monotonically, 
randomization ensures that it does so on average.  

In contrast to experiments designed to demonstrate 
generalization, the grain of randomization should be as 
small as possible in order to minimize errors. In 
document image analysis, for example, we would 
randomly split each document into individual glyphs or 
words. In table processing or writer recognition, each 
source should be split into sequences of samples.  

 
4.3 Statistical fluctuation of the error rate 

The optimality of the splits applies of course only to 
statistical expectations rather than individual runs. 
Fortunately the optimal splits seldom push the 
classifier to its lowest error rate on the available 
sample size. For instance, the error rate at the optimal 
N0 in Fig. 2 is 24%, in contrast to 1% at N0 = 1000. The 
statistical fluctuation of the higher error rates resulting 
from medium-sized training sets tends to be much less 
than those generally reported for cross-validation using 
the largest possible sets of training samples.  
 
4.4 Cost of simulation 

For a three-stage system for 1000 samples, the 
simulation runs on a garden-variety laptop in less than 
a tenth of a second. It is, however, proportional to 
(Ntotal)n-1, where n is the number of stages, because it 
searches over the cross product of every stage except 
the last (the splits must add up to Ntotal).  

There are several means of reducing run time. If the 
error function is monotonically decreasing, the total 
time has only a single minimum. Therefore any 
gradient-descent method will find it quickly.  

Furthermore, the only critical input to the 
simulation is the error function. Instead of searching 
for the exact number of samples in each split, if we 
have a million samples we can scale the error function 
to 1000 or 10,000 samples and search for splits 
accurate to the nearest 1000 or nearest 100 samples. Of 
course interaction on such large data sets raises other 
problems as well. 
 
4.5 Selective inspection 

It is appealing to consider inspecting and correcting 
or verifying only the labels of patterns flagged by the 
classifier (as in [1]). This procedure, however, fails to 
guarantee a final error rate of zero (i.e., labels 
considered correct by a human operator.).  

If each stage is not completely verified and only 
rejects or patterns flagged “critical” by the classifier 
are labeled by the operator, then some cost must be 
assigned to undetected errors relative to rejects. The 
simulation can be readily modified to accommodate 

any available error/reject or ROC curve. This would be 
appropriate in applications where the cost of 
exhaustive verification is prohibitive. 
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