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ABSTRACT. The accuracy of automated classification (labeling) of single pat-
terns, especially printed, hand-printed, or handwritten characters, has leveled 
off. Further gains in accuracy require classifying sequences of patterns. Lin-
guistic context, already widely used, relies on 1-D lexical and syntactic con-
straints. Style-constrained classification exploits the shape-similarity of sets of 
same-source (isogenous) characters of either the same or different classes. For 
understanding tables and forms, 2-D structural and relational constraints are 
necessary. Applications of pattern recognition that do not exceed the limits of 
human senses and cognition can benefit from green interaction wherein opera-
tor corrections are recycled to the classifier.  
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1 INTRODUCTION 

Pierre Devijver and I shared several interests – nearest neighbors, Delaunay 
triangulation, clustering, connected components, error estimation, and context. 
I have dabbled in computational geometry, computer-aided design, remote 
sensing, and geographical information systems. However, most of my studies 
– and those of my students – have been devoted to document image analysis
and to one of its fundamental components, character recognition. 

The fact that research on character recognition has contributed so much to 
pattern recognition and machine learning cannot be attributed mainly to our 
desire to live in a paperless world. Character recognition is a limitless field of 
research in SPR because of the wealth of relationships induced by messages 
conveyed through sequences of visually recognizable patterns characterized 
by multi-dimensional feature vectors to be classified into possibly hierarchical 
classes with minimum error or cost. One can investigate and model the statis-
tical distributions of individual features, of all the features of a single sample, and 
the relationships between the features of multiple patterns and class variables. Any of 
the above patterns may consist of a single stroke, a single letter or numeral, part of a 
word, or a whole word, page, or document. The various models used or proposed in 
character recognition can be represented concisely by Bayesian networks [1].  
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If this paper fails to conform to some rules, I claim the Senior Citizens’ Ex-
emption. First I shall reminisce about Pierre Devijver and his technical legacy. 
Then I shall ruminate about some of my own hobby horses, including a few 
whose connection with statistical pattern recognition may be less than obvi-
ous. Table processing, for example, may fit better under “syntactic and struc-
tural.” The conclusions mention some developments that I did not anticipate. 
 
The reader will find no formulas or experimental results herein. Since all of 
what I recount has already been published – some of it more than once – I 
keep to a bird’s eye view. Details can be found in the references cited, or in 
the references cited in those references. 

2 PIERRE DEVIJVER 

Pierre Devijver was a man of many accomplishments, and I am honored to 
have a chance to talk about my favorite topic, statistical pattern recognition, 
under his aegis. I had occasion to meet Pierre at several conferences where 
our similar technical interests and a predilection for lunch-time walks promot-
ed conversation.  (If I had known that he was a marathon runner I would have 
worried about those long walks with him.)  
 
I missed the 1973 ICPR in Washington DC where Pierre first introduced his 
ideas about the relationship of the Bayes Risk to the Mean Square Error [2]. 
He published an article on error bounds the following year in the IEEE Trans-
actions on Computers (where the best papers on pattern recognition were pub-
lished before PAMI came along) [3]. So even before I ever met him I had 
studied some of his work. Later, when I taught pattern recognition and docu-
ment image processing at RPI, I benefited a great deal from his and Joseph 
Kittler’s rigorous text [4], which includes some of their results on the bias and 
variance of k-NN based error estimates. I still return to their lucid presentation 
of probabilistic distance measures.  
  
I know that Pierre and I interacted at the 1980 Pattern Recognition in Practice 
workshop organized by Edzard Gelsema† and Laveen Kanal in Amsterdam. 
We both presented papers at the ICPR earlier that year in Miami Beach, but I 
don’t recall any conversation between us. I also cannot remember any specific 
discussion at the 1984 ICPR in Montreal. By then Pierre was vice-president of 
IAPR, so he must have spent any time left after the technical sessions at 
committee meetings. In spite of his conscientious work for IAPR, the follow-
ing examples show that he found time for remarkable technical contributions. 



2.1 Connected Components 

For many years the Devijver-Ronse monograph on Connected Component 
Detection was the only book on the subject. It expounded efficient disk access 
while tracing a CC [5]. Pierre foresaw that CC detection would be a corner-
stone of document image analysis even though at the time only a small swath 
of a scanned page would fit into primary memory. 

2.2 Markov Algorithms 

In 1966, working under first-order Markov Chain assumptions, Joseph Raviv 
devised an iterative algorithm to convert the information from feature vectors 
of preceding patterns into the prior probability for the current pattern by using 
bigram and trigram class-transition probability tables. At the 1984 ICPR, 
Pierre extended this to take into account the information from any number of 
succeeding patterns by adding an iterative backward pass [6,]. He subsequent-
ly improved the numerical stability of Baum’s HMM training algorithm by 
computing joint rather than conditional probabilities [7].  
 
Already then his interest lay in Markov meshes and MRFs for image pro-
cessing, so he avoided any assumptions that applied only to 1-D. I wish that 
Pierre had completed his studies of MRFs a few years earlier, when my UNL 
students and I were struggling to set appropriate constraints on causal genera-
tion of 2-D Markov fields. Pierre’s deep insights would have been invaluable. 

2.3 Nearest Neighbors 

As Godfried Toussaint repeatedly demonstrated, statistical pattern recognition 
and computational geometry mix well. The decision boundaries of a nearest 
neighbor classifier are a subset of the edges of its Voronoi diagram in feature 
space. The Voronoi diagram, in turn, can be computed rapidly from its dual 
Delaunay triangulation. One way to speed up nearest-neighbor classification 
is by removing from the reference set all the patterns with same-class Voronoi 
Neighbors. However, removing a pattern changes both the Voronoi diagram 
and the underlying Delaunay triangulation. Pierre devised fast algorithms for 
dynamic Delaunay triangulation in high-dimensions [8]. He also derived 
bounds on the fraction of the training set that can be harmlessly edited out. 
 
Pierre’s research included methods of estimating the error rate on the test set 
from results on the training set (still a hot topic), feature extraction, the rela-
tionship between clustering and mixture identification, and applications rang-
ing from tumor detection to astronomy. This sketch of his contributions is far 
too superficial to do justice to his pervasive and persuasive ideas. 



3 MY OWN TRAIL 

Before I get into even a modicum of technicalities, I wish to acknowledge 
what good fortune I had in my collaborators and co-authors, and how much I 
learned from my students (some regrettably already retired). One of the best 
things about the field of pattern recognition is that it has attracted such bright, 
generous, and convivial scholars. 

3.1 Feature Extraction 

My first graduate student, at the Université de Montréal, was Kamal Abdali. I 
set him to solve the optimal feature extraction problem because nobody knew 
yet about NP-completeness. My last student, Xiaoli Zhang, confirmed my 
belief that the class-conditional statistical dependence structure (e.g., the co-
variance matrix) of features depends far more on the chosen feature set than 
on the data itself [9]. NP-complete it may be, but there is more to be done. 

3.2 Unsupervised Classification 

There is no such thing as unsupervised learning. Children learn without being 
explicitly taught, but only because they emulate the behavior of respected 
teachers (grown-up or other children). They often get to surpass the abilities 
of those whom they imitate. In 1965 we programmed a classifier to trust the 
labels assigned to scanned printed characters by an off-the-shelf journeyman 
classifier, and to use them for its own training set. On the data that it was re-
trained on, this apprentice classifier turned out to be better than the original 
classifier, and so we used it as a role model for still another classifier. To our 
surprise and delight, the error rate kept dropping during several iterations and 
then flattened out [10,11].  Almost three decades later, these results impressed 
Henry Baird, so we tried “mean adaptation” with his own features and his 
then humungous 100-font dataset [12]. Henry concluded that the expected 
gain is considerable, while the downside risk was small. 
 
Ho and Agrawala had pointed out earlier that we were lucky because the 
many datasets on which we had experimented all fell under restrictive con-
straints [13,14]. With features crafted by Hiromichi Fujisawa and Cheng-Lin 
Liu of the Hitachi Central Research Laboratory, Harsha Veeramachaneni used 
Expectation Maximization to re-estimate both the means and the class-
covariance matrices using classifier-assigned labels. This turned out even 
luckier (at least on NIST hand-printed digits) than just mean adaptation [15]. 
 
We have not yet found necessary and sufficient conditions that would guaran-
tee that adaptation will reduce the error on a set of same-source samples. Is 



there a principled way to predict the results of adaptation? A place to start 
might be Castelli’s and Cover’s insights on the relative values of labeled and 
unlabeled samples. 

3.3 Prototype Based Text-Image Compression 

Any clustering method can be viewed as data compression with each cluster 
prototype serving as surrogate for all the patterns in that cluster. In 1970 or 
thereabouts, Pete Welch, my boss’s boss at IBM Research, suggested that we 
apply the bitmap clustering methods that we had developed earlier for Chi-
nese character recognition [16] to image data compression. It worked like a 
charm! We could not patent it because of a Government anti-monopoly suit, 
so IBM waited four years before letting us publish it [17].  
 
Our method eventually resurfaced in DjVu and JBIG, but with a critical im-
provement that we had missed. We transmitted only run-length coded proto-
types, or their (compressed) id and position. Subsequent researchers encoded 
the difference between the prototype and the actual glyph, thereby rendering 
the scheme lossless. Current methods are nearing the theoretical limits. 

3.4 Decision Trees 

Although I worked at IBM on several OCR projects, including the three mil-
lion dollar  reader for the Social Security Administration, the only algorithm 
that made it into a product was a probabilistic decision tree for isolated bit-
mapped characters [18]. Dick Casey developed most of the theory, and I pro-
grammed it up in APL during a summer at the IBM San Jose Research Center. 
After everything was reprogrammed efficiently in Japan it became the IBM 
TextReader. I still have copies of the shrink-wrapped floppies. 

3.5 Language context 

Both children and adults expand their vocabulary by guessing and refining the 
meaning of unknown words or phrases according to what makes sense time 
after time. If in a foreign land most street signs end in a particular string, it is 
likely to mean “street” or ”avenue”. Early proponents of the use of language 
context in pattern recognition include Allen Hanson, Ed Riseman†, Joe Ra-
viv†, Godfried Toussaint, and Ching Suen. 
 
Meanings can be assigned to unknown alphabetic glyphs so that they form 
words that are part of the language. Substitution ciphers have been solved this 
way since at least the days of the Roman Empire. I have participated in three 
initiatives to automate this process and apply it to scanned text. 



In a first attempt, Dick Casey and I clustered bitmaps of scanned single-case 
English text in one of four different typefaces. We solved the resulting cryp-
tograms by matching the frequencies of cluster numbers and bigrams of clus-
ter numbers to the known letter unigram and bigram frequencies of the Eng-
lish language [19]. We were very pleased when Scientific American asked us 
to describe our methods in laymen’s terms [20].  Twenty years later at the 
University of Nebraska, we improved the scheme by recursive matching of 
trial assignments against a lexicon of a few hundred words instead of letter n-
grams [21]. In another ten years, Tin Ho at Bell Labs used a larger lexicon 
and improved the matching scheme. We demonstrated “OCR with no shape 
training” on Spitz glyphs at the Barcelona ICPR [22].  

3.6 Style 

At the 1992 ICPR I proposed exploiting the family resemblance of same-font 
letters and numerals for recognizing individually ambiguous characters when 
they appeared in their usual company [23]. I called this notion spatial context. 
During his doctoral research Prateek Sarkar dubbed the distinction between 
feature distributions originating from patterns from isogenous typeface, print-
er, writer or speaker, and distributions from patterns from heterogeneous 
sources, as style. Harsha Veeramachaneni explained style as follows:  “the 
way Alice writes 1 helps predict the way she will write 7.” Applying these 
concepts to fields of same-source patterns may not be so difficult, but defining 
them formally requires a lot of notation and subscripts. 
 
A critical property of style context defined by Harsha is order independence, 
known in probability theory as exchangeability [24]. Pure style implies that 
the probability of any pattern field given the field class is equal to the proba-
bility of any permutation of that pattern field given the field class subjected to 
the same permutation. Order independence vitiates most types of language 
context, but style and multi-pattern language context can still be combined. 
 
Another useful distinction can be made between intra-class style and inter-
class style. In intra-class style, an “e” in a field of patterns to be recognized is 
always in the same font, or was written by the same person. One might, how-
ever, find this “e” next to a “c” of a different font or by a different writer. So 
there is some statistical dependence between the feature distributions of all the 
patterns of the same class, but no way to tell anything about a pattern of class 
E from a pattern of class C. The inter-class constraint is more rigid: samples 
from all the classes must be isogenous. Therefore the features of patterns even 
of different classes exhibit observable statistical dependence. Most of the 
adaptive classifiers discussed above require only intra-class style. The style 
classifiers described below make use of inter-class style. 



Prateek Sarkar derived algorithms for optimal classification of style-consistent 
fields of arbitrary length [25]. He posited that the features of each pattern, 
while dependent on the features of other patterns in the field because of the 
same-style constraint, were independent of the classes of the other patterns. In 
other words, every “e” in the field looks the same, regardless of whether the 
field spells “element” or “dependent”. He formulated several ways of combin-
ing Gaussians as mixture distributions to model the class-and-style-
conditional probabilities via weighting factors that depend on both class and 
style. In terms of hand print, his method can classify fields of never-before-
seen hybrid Ann-Jen script after training only on separate fields of Ann’s, 
Bonnie’s, Dave’s and Jen’s writing. 
 
Because the computation of the optimal maximum likelihood assignment re-
quires lengthy sum-of-products-of-sums computations, Prateek devised a top-
label approximation equivalent to selecting from a set of style-specific feature 
classifiers the one that yields the highest field-feature likelihood. He trained 
his classifiers with a mixture of isogenous (isofont) fields, and tested them on 
isogenous fields of lengths different from those of the training set. 
 
Harsha Veeramachaneni considered a continuous distribution of Gaussians 
instead of mixtures of a predetermined fixed number.  His insight was that the 
posterior distribution of a field of any length can be determined from the 
cross-covariance matrices of only pairs of same-source pattern feature vec-
tors. This led to quadratic field classification with computation proportional 
rather than exponential with field length [26]. 
 
From the perspective of style-constrained field classification, the field of an 
adaptive classifier encompasses the entire set of isogenous data rather than a 
fixed number of patterns. This observation may explain why some adaptive 
classifiers exploit only intra-class consistency. On short fields, on the other 
hand, more powerful and more computation-intensive classifiers can take full 
benefit of inter-class style consistency.  
 
In practical OCR applications, style-constrained classification aims at scenar-
ios similar to font or writer recognition. Both of these are effective tools for 
decreasing the error rate by substituting a single-font or single-writer classifier 
for a more error-prone omnifont or omni-writer classifier. In theory, however, 
style classifiers should achieve a lower error rate because they do not “waste” 
any statistical information on font or writer identification. In some applica-
tions, however, it is desirable to identify font or writer in addition to produc-
ing a transcription. We have also pursued, with mixed, success, variations of 
style classification, based on nearest-neighbors and support-vector machines. 



4 TABLES 

We began our studies of tables twenty years ago with foreign language tables 
that gave us a chance to see how much information can be derived from table 
structure without lexical help. Since then mainstream table recognition has 
progressed from scanned paper tables to computer-generated HTML and PDF 
tables. All of this work has been part of a long-standing and most enjoyable 
collaboration with Dave Embley (BYU), Sharad Seth (UNL), Moorthy Krish-
namoorthy (RPI) and Dan Lopresti (Lehigh), often under the aegis  of 
TANGO [27]. We have written far too many surveys and reports, especially 
considering how often our views have shifted, so rather than reciting progres-
sive steps I just list some articles of faith (for which I take sole responsibility 
and which I may retract next year). 

• The underlying grid of a table reveals a 2-D indexing scheme. This geometric in-
dexing is interwoven with possibly higher-dimensional, logical “Wang” categories 
which can be interpreted as geometric indexing in a higher-dimensional space. 
 

• The essential task of table analysis is to establish the relationship of column and 
row headers to individual data cells. This is trickier than might first appear because 
of the possible occurrence of hierarchical headers, spanning cells and headers in 
the row stub, and because the appearance of a table depends on the rendering pro-
gram as well as the file containing the table Additional tasks require extracting 
metadata (table caption, title, footnote references, footnotes, aggregates, units, …). 
 

• Tables are distinguished from forms because tables are meant to disseminate in-
formation rather than collect it. The distinction is often obvious, but a filled-out 
spreadsheet might be either a table or a form. In most forms individual field cap-
tions take the place of 2-D indexing. Their structure can be represented by graphs. 
 

• Tables are distinguished from lists by 2-D indexing of data cells by row and col-
umn headers.. Even ordered lists like telephone books require a search to locate a 
cell. The table vs. list question arises only when nested lists of uniform length are 
laid out on a grid, or when table ill-formed table headers preclude unique indexing.  
 

• Tables prepared for human readers are different from relational tables. The design-
er of a relational table must determine what is an attribute and what is a key, and 
orient the table accordingly, with attributes on top. In contrast, the orientation of 
tables prepared for hardcopy or web publication is usually determined by matching 
the number of row and column headers to the page or display format. Therefore in 
tables of Canadian statistics the column headers are often provinces, while in tables 
of US statistics the states are usually row headers. Visual tables are essentially 
symmetric with respect to rows and columns, but relational tables are not. This 
does not preclude the transformation of visual tables into relational tables. 



5 GREEN INTERACTION 

CAVIAR (Computer Assisted Visual InterActive Recognition) for flowers is 
an attempt at efficient human-computer interaction [28]. When a flower im-
age is presented, the program extracts visually verifiable features (like the 
shape or number of petals), and classifies the flower into one of a hundred or 
so classes. If the user is unsatisfied, she or he can edit the features and reject 
or approve the classification according to the resemblance of the flower to 
reference samples. The classifier, in turn, adapts its parameters using what it 
learns from the user. Both the computer and the user improve with time. A 
most enjoyable part of this project was collecting over 600 wildflower sam-
ples.  
 
In OCR, a perennial problem is obtaining large-enough labeled training sets. 
Studies have shown that classification on the test set improves even after tens 
or hundreds of thousands of training samples. The output of an OCR system, 
especially in error intolerant applications like medical or financial form entry, 
is often routed to operators for verification or correction. The best possible 
training set is the stream of data encountered during actual operation. There-
fore all final corrected labels should be associated with the scanned patterns 
and routed back periodically to retrain the classifier.  
 
Green interaction means that expensive and time-consuming human effort 
devoted to approving or correcting the output of any pattern recognition sys-
tem should not be wasted. More on this at ICPR 2012. 

6 CONCLUSION 

We miss Pierre Devijver. We are fortunate that he left behind so much to 
think about. 
 
Claims made ever since Pierre and I were starting out, to the effect that OCR 
was essentially a solved problem, turned out to be uninformed. I had the good 
luck to work on a variety of related problems with perspicacious colleagues 
and students. The study of each problem revealed new problems begging for 
solution. Writing surveys has shown me many more. It is like a Garden of 
Eden where the quandary is which fruit to taste first. Fortunately there are still 
some sweet low-hanging fruit left. 
 
Progress in some areas surprises me. In 1968, when we worked on hand-
printed numeral recognition, I was sure that writer-independent cursive script 
recognition was a pipe dream. Speech and face recognition also work better 



than I expected. I underestimated the scope and power of Expectation Maxi-
mization (but eventually made a strenuous effort to understand it more thor-
oughly). While I did predict in a 1983 scanner survey that camera-based sys-
tems would be right along, I never dreamed that so much image processing 
and recognition software would be crammed into a KitKat-sized camera cell 
phone. I was skeptical that Wikipedia could become a useful and tolerably 
reliable source of information about pattern recognition. I hope that there are 
many more equally pleasant surprises coming down the pike! 
 
One of my most agreeable duties from 1967 till 2007 was teaching a graduate 
course in pattern recognition. I always offered students completing the course 
with at least a B a lifetime guarantee to make myself available for any tech-
nical question that they might want to discuss. Some have taken me up on it. 
Now that I am retired, I have gone back to being a full time student. In addi-
tion to the occasional déjà vu, I look forward to learning much new material 
during SSSPR and ICPR 2012. 
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