
VeriClick, an efficient tool for table format verification

George Nagy*, Mangesh Tamhankar†

DocLab, Electrical, Computer, and Systems Engineering, Rensselaer Polytechnic Institute,
Troy, NY, USA 12180

ABSTRACT

The essential layout attributes of a visual table can be defined by the location of four critical grid cells. Although these
critical cells can often be located by automated analysis, some means of human interaction is necessary for correcting
residual errors. VeriClick is a macro-enabled spreadsheet interface that provides ground-truthing, confirmation,
correction, and verification functions for CSV tables. All user actions are logged. Experimental results of seven subjects
on one hundred tables suggest that VeriClick can provide a ten- to twenty-fold speedup over performing the same
functions with standard spreadsheet editing commands.

Keywords: table analysis, well-formed table, interactive table layout verification, critical cells

1. INTRODUCTION

After two decades of experimentation on various aspects of table processing, research is reaching the stage where large
end-to-end experiments on information extraction are practicable. Attention has gradually shifted from scanned printed
tables to HTML and PDF tables that obviate the need for OCR. It is also becoming increasingly clear how much the
complexity of the formatting conventions developed and refined for human access to tables hampers the attainment of
perfectly accurate automated information extraction1. For some time to come, most practical applications will require
some human intervention to produce acceptable results.

Here we report the development of an interactive tool, VeriClick, which improves the accuracy of layout analysis of
spreadsheets containing tables imported from the web. In addition to confirming or correcting the results of computer
analysis of tables, VeriClick can also be used as a ground-truthing tool for large table data sets. Since human table
analysis is also imperfect, an add-on, Merge-Diff, allows comparison, arbitration, merger and concatenation of results
reached by several computer or human experts, thereby producing unified results for further downstream analysis of
table contents. These developments were also motivated by our long-term goal of human-machine symbiosis, where the
machine will take advantage of human interaction to avoid repeating the same mistake again and again.

Because many processing steps are common to tables, forms, and lists laid out on a grid, the word “table” is often used
for all three. Here we consider only well-formed tables where the data values can be indexed by row and column headers.
This definition includes tables with a single row of data cells indexed by a (possibly hierarchical and multi-row) column
header and only an implicit row header, and single-column tables indexed by a row header. Our definition excludes
nested and concatenated tables, and multi-column/row lists with only a column/row header.

1.1 Prior Work

Although there has been considerable research on table processing, especially on HTML tables, we are not aware of any
published research on interactive correction of computer-created errors in table layout analysis since the comprehensive
surveys of Zanibbi et al. and Embley et al2,3. The present work is part of the larger TANGO project, Table Analysis for
Growing Ontologies4, where we addressed similar goals of information extraction and aggregation from tables5,6,
attempted to formulate an analytical framework for characterizing tables7, proposed the notion of header paths8 , and

* nagy@ecse.rpi.edu
† tamham@rpi.edu

G. Nagy, M. Tamhankar, VeriClick, an efficient tool for table format verification, Procs. SPIE/EIT/DRR,
San Francisco, Jan. 2012.

demonstrated an end-to-end table processing pipeline that yielded relational tables and 34,110 subject-predicate-object
RDF triples from 200 tables9.

Our earlier experiments indicated that correcting the residual errors of even relatively accurate automated processing,
using standard table and text preparation and editing tools, requires an intolerable amount of human time. We
constructed two previous interactive table processing systems10,11. VeriClick, the interactive spreadsheet described here,
is our third and by far most successful endeavor to minimize the human effort necessary to verify or correct automated
layout analysis. VeriClick is freely available from the authors and is small enough for dissemination via email (if built-in
security measures don’t strip it from the attachment because of the embedded macros!). The macrocode embedded in a
VeriClick spreadsheet can be edited if necessary. We hope that other researchers can make use of it to ground-truth and
verify their own collections of tables.

Since nothing in VeriClick is dependent on our downstream analysis, we present the entire data flow (Fig. 1) only by
way of context. The selected tables are exported from the HTML pages to Excel and automatically converted to Comma
Separated Value (CSV) format. The critical cells extracted by Python layout analysis routines are verified corrected
using VeriClick. The header paths to each row and column of data cells are extracted and “factored” by open-source Sis
software designed for switching algebra. Sis outputs canonical sum-of-products expressions that are turned into
Relational Tables and Resource Description Framework (RDF) triples by a Java program. Duplicate row or column
headers can be detected by Sis. Beyond VeriClick, only the heuristic path extraction step can produce incorrect output,
but given correct layout information (i.e., the location of the critical cells) this step seldom fails. Therefore in our
methodology, careful interaction through VeriClick is the key to complete and accurate end-to-end information
extraction. For details, please see our earlier reports8.

DATA FLOW
Web page (HTML)
 Excel import
CSV table (text file)
 Python critical cell location (layout analysis)
List of critical cells (CSV)
 VeriClick interactive confirmation or correction
Corrected lists of critical cells (CSV)
 Python path extraction
Header paths (text file)
 Sis factoring
Canonical expression (text file)
 Java constructor
Relational tables and RDF triples
 SQL or OWL

Answers to queries

Fig. 1. Data flow for a web table processing pipeline. VeriClick provides an intermediate interactive step

2. WELL-FORMED TABLES AND CRITICAL CELLS
A well-formed table (WFT) has a rectangular array of data value cells, each uniquely indexed by a (column-header, row-
header) pair path. A simple configuration with a single-row column header and a single-column row header is shown in
Fig. 2. The array of data value cells is called the delta region. The part of the table above the delta region is the column-
header region, and the part to the left is the row-header region. The area to the left of the column header and above the
row header is the stub.

Fig. 2. A simple table configuration with an empty stub. The delta region is shaded.

 A B C
a d11 d12 d13
b d21 d22 d23
c d31 d32 D33

Row headers and column headers are often arranged in a hierarchy, as in the well-known table of Fig. 3. Although in
principle horizontal and vertical indexing is symmetric, this table displays the common practice of placing the roots of
row header trees in the stub. Therefore the row-header path to the top-left data cell (“85”) is Year-1991 + Term-Winter,
while the column-header path is Mark-Assignments-Ass1. Determining whether the contents of the stub contain the title
of the paper, or belong to the column header, or to the row header, requires semantics. Because the last configuration is
most common, our programs insert the contents of the stub at the top of the row category tree(s).

This table is often used to illustrate the concept of Wang categories12. There is only a single column category here, Mark.
The two row categories are Year and Term. The category trees are extracted from the header paths to rows and columns
by Sis for downstream processing.

Fig. 3. Prototypical Wang table.

A well-formed table can be partitioned into four (not necessarily contiguous) regions by four critical cells. Fig. 4 shows
the location of these critical cells for a general table layout. The critical cells are numbered according to the obvious
partial order. One pair of critical cells defines the bounding box of the stub, and the other pair defines the bounding box
of the delta region. The vertical dimension of the column header is governed by the height of the stub, and the horizontal
dimension of the row header is governed by the width of the stub. The other dimensions of the headers must be
commensurate with the height and width of the delta region. When the stub contains only a single cell, CC1 and CC2 are
identical. In single-row and single-column tables, CC3 and CC4 differ only in one of their coordinates. The table title is
usually in the cells above CC1, and footnotes are in the cells below CC4.

Fig. 4. Location of the critical cells CC1, CC2, CC3 and CC4. When a table is imported into a spreadsheet from a web
page, it may contain, in addition to the table proper, the title of the table, notes or footnotes, and sometimes empty
columns on the right. Here the stub could be empty, or it could contain row header roots like “Age” and “Gender”.

The first step in the pipeline extracts the critical cells from the CSV tables that were manually selected and imported
from randomly chosen HTML pages of large statistical web sites. Fig. 5 shows part of the file of critical cell lists created
by our Python program. When the program fails to find the critical cells in some table, it reports z0, z0, z0, z0 for that
table. The critical cells for each table are inspected and either confirmed or corrected via the VeriClick program
described in the next section.

Average Weight

CC1 YEAR
 CC

2
199
1

199
2

199
3

199
4

199
5

Adult

*
M CC3
F

Child
*

M
F CC4

*Adults are persons over 16 years old

Ass1 Ass2 Ass3 Midterm Final

Winter 85 80 75 60 75 75

Spring 80 65 75 60 70 70
Fall 80 85 75 55 80 75

Winter 85 80 70 70 75 75
Spring 80 80 70 70 75 75

Fall 75 70 65 60 80 70
1992

Grade
ExaminationsAssignments

Mark

1991

Year Term

Filename CC1 CC2 CC3 CC4
…..
C10112.csv A2 A3 B4 F26
C10113.csv A2 A2 B3 F19
C10114.csv A2 A3 B4 J13
C10115.csv A1 A2 B3 D22
C10116.csv A5 A5 B6 G7
C10117.csv A8 A9 B10 T20
C10118.csv A3 A3 B4 F36
C10119.csv A2 A3 B4 G5
C10120.csv z0 z0 z0 z0
C10121.csv A2 A2 B3 D19
C10122.csv A5 A5 B6 G7
C10123.csv A5 A5 B6 G7
C10124.csv A5 A5 B6 G7
C10125.csv A3 A3 B4 F35
C10126.csv A3 B3 C4 C11
C10127.csv A3 A3 B4 F17
C10128.csv A3 A3 B4 F24
…..

Fig. 5. Partial output of Python program that finds the critical cells.
Each row corresponds to one table. The spreadsheet addresses of the

critical cells follow the filename of the table.

The current python program can locate the critical cells only if the delta region consists of numerical values, or if the
stub is empty. The search algorithm for these conditions has several parameters. The first learning step we envision is
adapting these parameters to produce correct output for tables corrected via VeriClick (and, more importantly, for similar
uncorrected tables). More general aspects of learning will include appropriate processing of parameterized title, header,
data and footnote cell formats, partly-blank rows or columns, and data-frames for common table words like TABLE,
YEAR, and TOTAL. Although the Python programs could be hard-coded for these situations, we would like to be able
to parameterize them in order to demonstrate the effectiveness of operational human feedback.

3. VERICLICK

A new user is introduced to VeriClick with a short slide presentation, a five-minute video, and a set of a dozen practice
tables. The slide show explains the notion of critical cells, gives a preview of VeriClick, and gives some examples where
the choice of critical cells may require a close look at the table. The video demonstrates the method of correction of
misplaced critical cells. After the neophyte completes the practice, the results are compared to the correct results and any
discrepancy is noted.

VeriClick itself is a spreadsheet with embedded VBA code for (1) reading a file of critical cell coordinates, the parameter
file, (2) reading CSV tables from a designated directory, (3) translating operator clicks into the addresses of the critical
cell, (4) writing out the results, and (5) creating a log file.

When VeriClick is opened, it first gives the operator a choice between starting with a new set of files, or continuing
interrupted work on an earlier set. For a new set of files, browser windows are presented to designate the directory of
CSV files to be processed, the file containing the automatically assigned critical cells, and the directory in which the file
of corrected critical cells is to be saved. To continue earlier work, it is sufficient to indicate the log filename that contains
all necessary information. After these preliminaries, VeriClick loads all the tables and displays them one at a time.

Fig. 6 shows a table as displayed by VeriClick. Here C1 is wrong because the top left cell A1 is part of the title instead of
the stub. The operator clicks Cell A1 and the cell below (A2) in turn to correct the error. The location of any critical cell

is always corrected by first clicking on it, and then clicking on the correct location. The current location of a pair of
critical cells is indicated by the top-left and bottom-right corners of the highlighted region.

Fig. 6. VeriClick display of a table from a Finnish statistical web site.

Fig. 7 shows the top-left portion of the table after the correction described above. If all the critical cells are deemed
correct – either because the program located them correctly or because the operator has already corrected them – a
double click anywhere prompts the display of the next table. Except for the preliminary file selection, no buttons are
shown because larger tables cover the entire display. The operator may be required to scroll down to verify that CC4 is
correct (i.e., to ensure no footnotes are included in the delta-cell region). The session can be interrupted any time,
without loss of information, by closing the VeriClick spreadsheet.

Fig. 7. Partial display of the table of Fig. 5 after the operator has corrected the misplaced critical cell.

The logging subsystem records the time spent by the operator on each table. The date, start time and end time of every
session time is also recorded, along with the directory paths and filenames of every file used in the session. In addition to
its use for analysis of human effort, this information allows a user to resume an interrupted session

VeriClick contains about 500 lines of VBA macro code. Before loading any CSV tables, the “empty” VeriClick
spreadsheet is about 260 KB. Fig. 8 on the next page shows its top-level pseudo-code.

4. EXPERIMENTAL RESULTS

Critical cells were extracted from 100 tables randomly selected from our corpus of 1000 web tables from ten large
statistical sites. Seven subjects used VeriClick to correct the locations of critical cells in the 100-table test set. Five
subjects are members of the TANGO team, one is a recent CS graduate, and one is an engineering student.

The time taken by the subjects is shown in Table 1. When the critical cells were correctly extracted, the confirmation
time was close to the minimum except when large tables required scrolling to verify CC4. The Python program did not

find the critical cells in two of the tables, so the subjects had to correct all four critical cells. Corrections took about twice
as long as confirmations (usually only one critical cell had to be corrected), but a few tables where the correct
segmentation was not obvious took much longer.

Fig. 8. Pseudo-code of VeriClick macro.

Table 1. Seven subjects’ performance using VeriClick
Subject Average

time per
table (s)

STD
time per
table (s)

Minimum
time (s)

Maximum
time (s)

Session
time
(min)

Number
confirmed

number
corrected

S 1 3.2 2.6 0.77 14.8 6:06 87 13
S 2 9.5 9.8 0.02 74.5 19:03 80 20
S 3 14.8 18.0 2.67 105.2 24:47 84 16
S 4 8.4 7.6 2.19 49.8 14:50 65 35
S 5 5.1 8.1 0.75 61.1 9:13 89 11
S 6 4.2 4.1 1.15 22.8 8.27 81 19
S 7 8.3 11.2 1.37 74.2 14:50 85 15

Subjects were puzzled by the table of Fig. 9, where the Python program included the State column with the stub.
According to our definition, the rank column is sufficient for unique row headers. Subjects also had difficulty with the
table of Fig. 10. Here a quick look shows that the entries in the first column are not unique, but it requires closer

Initialize()
 Prompt user for Files and Directories
 Open all necessary Files
 Initialize Variables
End Function

Workbook_SheetSelectionChange()
 If SelectClick //First Click
 If ActiveCell is Critical Cell
 Save ActiveCell Coordinate
 Endif
 Endif

 If MoveClick //Second Click
 Change Saved Coordinate to ActiveCell Coordinate

 Remove Highlighting()

 If Cell Highlighting includes Flipped coordinates //rectangle
defined by top left and bottom right

 Unflip coordinates
 Endif
 ReHighlight Cells()
 Endif

End Function

Workbook_SheetBeforeDoubleClick
 StopTimer
 Update LogFile
 Advance to Next Sheet
 Restart Timer

End Function

inspection to reveal that the second (“Company”) column also has duplicates. Therefore the first three columns must be
considered row headers. One of the subjects took a long time on the unusual single-column table of Fig. 11.

Fig. 9. What is the correct row header here?

Fig. 10. Part of a long table where stub is three columns wide (the Python program reported four columns
because it was tricked by the numerical values further to the right, and the max stub width was set to 4.)

Fig. 11. A single column table with lots of metadata above

and below the table proper.

Table 2. Differences between the corrected critical cell
files of the six subjects, and between subjects and

automated analysis.

Table 2 shows that human subjects, even among table “experts”, often disagree on how to segment a table. Every
subject made at least one outright mistake; other differences are due to lack of precise definitions. Between the
experts, 5 or 6 disagreements involved tables similar to that of Fig. 9, where either one or two columns can be
reasonably considered part of the row header. In several others (e.g. Figs. 10 and 11) the disagreement involved a
blank row. None of these affect downstream analysis.

5. DISCUSSION

VeriClick improves the accuracy of table layout analysis without requiring excessive human time. With experience,
we believe that an average speed of 12 tables per minute, or 720 tables per hour, is readily attainable. This brings
within reach verifiable experiments on a few thousand tables. On an operational basis, 5 seconds per table
corresponds to 4 cents per table under an assumption of $25 per hour operating cost. This may be cost-effective for

S1 S2 S3 S4 S5 S6 S7 Auto
S1 0 11 10 28 11 14 12 13
S2 11 0 15 36 17 25 11 20
S3 10 15 0 33 15 22 14 16
S4 28 36 33 0 31 31 35 34
S5 11 17 15 31 0 20 15 11
S6 14 25 22 31 20 0 24 19
S7 12 11 14 35 15 24 0 5

Auto 13 20 16 34 11 19 15 0

M?ori Ethnic Group Population Summary(1)(2)
1991–2006 Censuses

Census yeaM?ori ethnic group population
1991 434,847
1996 523,371
2001 526,281
2006 565,329

(1) All figures are for the M?ori ethnic group census usually resident population.
(2) Information is unavailable for the M?ori ethnic group prior to 1991. Information about
M?ori collected in the censuses prior to 1991 was on the basis of descent/origin. From
1991 onwards, ethnic group and M?ori descent have been collected separately.

Note: This data has been randomly rounded to protect confidentiality.
Individual figures may not add up to totals, and values for the same data may vary in different tables.

($ millions)

Rank State Total Exports Imports
1 Michigan 24,266 3,992 20,274
2 Illinois 8,259 4,669 3,590
3 Texas 7,001 4,635 2,366

SOURCE: U.S. Department of Transportation, Bureau of Transportation Statistics, Transborder Surface Freight Data, 2008.

Renewable Energy Trends in Consumption and Electricity, 2007
Release Date: April 2009
Next Release Date: April 2010

Table 1.9 Net Summer Capacity of Plants Cofiring Biomass and Coal, 2007
(Megawatts)
State Company Name Plant I.D. Plant NamCounty Biomass/ C Total Plant
AL DTE Energy Services 50407 Mobile En Mobile 91 91
AL Georgia-Pacific Corp 10699 Georgia Pa Choctaw 31 78
… … … … … … …
MN Minnesota Power In 10686 Rapids Ene Itasca 27 28
MN Minnesota Power In 1897 M L HibbarSt Louis 73 123
MO University of Missou 50969 University Boone 6 91
MS Weyerhaeuser Co 50184 Weyerhae Lowndes 123 123

many applications. (These figures do not include the cost of automated harvesting of web tables, for which reliable
methods are already available13.)

Throughput per hour would of course improve if the extraction program made fewer mistakes, and therefore
increase the ratio of confirmations to corrections. We believe that the current ~14% error rate of automated critical
cell extraction can be halved (on similar data!) with relatively little programming effort. Progress beyond that
would, however, require developing heuristics for many rare special cases. VeriClick can, however, be easily
extended to additional critical cells for table titles and footnotes which will be useful for combining information
from multiple tables.

Rather than making an effort in improving our heuristics through intuitive notions, we propose to experiment with
machine learning techniques to improve critical cell extraction through feedback from normal interactive
verification and correction. We have been successful in exploiting operator feedback in other visual recognition
tasks14, 15 and have also followed other researchers’ progress in learning document classification and document
recognition tasks from human corrections16, 17. The necessary “training” information, i.e., the critical cells chosen by
the program and verified by the operator, is available in a simple format from the VeriClick log. The proposed
features for machine learning are format characteristics of each cell and of its row and column neighbors. Examples
of readily accessible features in CMS tables include alpha/digit distinctions, capitalization, decimal points and
commas, indentation, within-cell punctuation, special symbols ($, #, %), and data frames for recognizing dates,
monetary amounts, and so on.

“Green computing” means not wasting operator interactions. If we want to design systems that improve with use,
then human corrections must be integrated into an operational feedback loop instead of relegated to mere post-
processing,. VeriClick is a step in that direction.

ACKNOWLEDGMENTS

We gratefully acknowledge our collaborators David Embley (BYU), Sharad Seth (UNL), Dan Lopresti (Lehigh),
and Mukkai Krishnamoorthy (RPI) as our main source of ideas about tables over the years. We also thank students
P. Jha, R. Padmanathan, R. Jandhalaya (RPI), D. Jin (UNL), and S. Machado (BYU) for their important
contributions to refining and testing these ideas. The project was generously supported by the Rensselaer Open
Software Foundation.

REFERENCES

[1] Lopresti, D., and Nagy, G., “A Tabular Survey of Automated Table Processing,” Graphics Recognition: Recent

Advances, Springer-Verlag, Berlin, LNCS 1941, pp. 93-120, (2000).
[2] Zanibbi, R., Blostein, D., and Cordy, J.R., “A Survey of Table Recognition: Models, Observations,

Transformations, and Inferences,” J. Doc. Anal. Recognit. 7(1), 1–16, (2004).
[3] Embley, D.W., Hurst, M., Lopresti, D., and Nagy, G., “Table Processing Paradigms: A Research Survey,”

J. Doc. Anal. Recognit. 8 (2-3), Springer, Heidelberg, 66-86, (2006).
[4] Tijerino, Y. A. Embley, D.W., Lonsdale, D.W., and Nagy, G., “Towards Ontology Generation from Tables,”

World Wide Web Journal, vol. 6(3), 261-285, (2005).
[5] Krüpl, B., Herzog, M., and Gatterbauer, W., “Using Visual Cues for Extraction of Tabular Data from Arbitrary

HTML Documents,” Procs. of the 14th Int’l Conf. on World Wide Web, 1000-1001, (2005).
[6] Pivk, A., Ciamiano, P. , Sure, Y., Gams, M. Rahkovic, V., and Studer, R., “Transforming arbitrary tables into

logical form with TARTAR,” Data and Knowledge Engineering 60(3), 567-595, (2007).
[7] Jandhyala, R.C., Nagy, G., Seth, S., Silversmith, W. Krishnamoorthy, M., and Padmanabhan R.K.,

From “Tessellations to Table Interpretation,” L. Dixon et al. (Eds.): Calculemus/MKM 2009, Springer-Verlag,
Berlin, vol. 5625 LNCS, 422-437, (2009).

http://www.ecse.rpi.edu/homepages/nagy/PDF_files/Tijerino_ontology_05.pdf

[8] Embley, D.W. Krishnamoorthy, M., Seth, S., and Nagy, G. “Factoring WebTables,” Procs. ACM EIA/AIE,

Syracuse, NY: Modern Approaches in Applied Intelligence (Editors: G. Mehrotra, C. Mohan, J. C. Oh, and P.
K. Varshney), (2011).

[9] Nagy, G. Seth, S., Embley, D. W., Krishnamoorthy, M., Jin, D., and Machado, S., “Data Extraction from Web
Tables: the Devil is in the Details,” Procs. ICDAR 11, Beijing, (2011).

[10] Jha, P. and Nagy, G., “Wang Notation Tool: Layout Independent Representation of Tables,” Proceedings of
International Conference on Pattern Recognition XIX, Tampa, FL (2008).

[11] Padmanabhan, R.K., Jandhyala, R.C., Krishnamoorthy, M., Nagy, G., Seth, S. and Silversmith, W.
“Interactive Conversion of Web Tables,” J.-M. Ogier, W. Liu, and J. Lladós (Eds.): GREC 2009, LNCS 6020,
pp. 25–36, (2010).

[12] Wang, X., “Tabular Abstraction, Editing, and Formatting,” Ph.D Dissertation, University of Waterloo,
Waterloo, ON, Canada, (1996).

[13] Wang, Y. and Hu, J., “Automatic Table Detection in HTML Documents, in Web Document Analysis:
Challenges and Opportunities,” pp. 135-154, (2003).

[14] Zou, J. and Nagy G., “Human-computer interaction for complex pattern recognition problems,” in Data
Complexity in Pattern Recognition, pp. 271-286, M. Basu and T. K. Ho, Eds., Springer, (2006).

[15] Zou, J. and Nagy G., “Visible models for interactive pattern recognition,” Pattern Recognition Letters Vol. 28,
pp 2335-2342, (2007).

[16] Esposito, F., Ferilli, S., Di Mauro, N., and Basile, T.M.A. , “Incremental Learning of First Order Logic Theories
for the Automatic Annotations of Web Documents,” Procs. ICDAR-2007, Curitiba, Brazil, September 23-26,
IEEE Computer Society, Los Alamitos, CA, (2007).

[17] Ferilli, S., Biba, M., Basile, T.M.A., and Esposito, F., “Incremental Machine Learning Techniques for
Document Layout Understanding,” Procs ICPR 19. Tampa, FL, IEEE Computer Society (2008).

