
adfa, p. 1, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Boxy, semi-structured document elements

G. Nagy1, D. W. Embley2, D. P. Lopresti3

1Rensselaer Polytechnic Institute, 2Brigham Young University, 3Lehigh University
nagy@ecse.rpi.edu

Abstract. The characteristics of lists, forms and tables are compared from the
perspective of layout and indexing. Examples of ambiguous document elements
reveal barriers to interpreting them. As a common denominator, the collection
of facts in lists, forms, and tables all constitute first-order logic theories and can
be represented as machine-queriable relations in a relational database.

Keywords: Table, form, list, relational database

1 Introduction

Conflicting or inconsistent definitions of lists, forms, and tables hamper the devel-
opment and application of specialized methods for the interpretation of such “boxy,”
semi-structured document elements. Our objective is to determine their commonali-
ties and differences to the extent possible using only their structure, without semantics
or context. Although strictly structural criteria suffice to classify many of them into
exactly one category, others span two or even all three categories.

Differences aside, commonalities of lists, filled-in forms, and tables are that they
all serve to convey facts—assertions in first-order logic. Thus, in addition to facilitat-
ing understanding and analysis by humans, these concise, boxy representations of fact
collections can become machine “understandable” (e.g., queriable as relations in a
relational database). An acceptable set of definitions, which we offer here for consid-
eration, may accelerate research toward automating the recognition and ultimately the
machine "understanding" of graphic document elements, which has been a longstand-
ing objective of the GREC community.

In Section 2 we describe the structure and layout of these related families of semi-
structured document elements. In Section 3 we illustrate why it is difficult to classify
boxy, table-like document elements to everyone’s satisfaction and demonstrate com-
mon ambiguities. In Section 4 we address one goal of recent research: populating
databases or ontologies with data extracted from lists, filled-in forms, and tables.
Since our proposals are intended to stimulate discussion, we present no conclusion.

2 Observations on boxy document elements

Similarities and differences between lists, forms and tables are due to their pur-
pose, appearance, and embedded search mechanisms (i.e., indexability). The discus-
sion below is couched in the traditional printing and publishing vocabulary and may
be easier to follow with a glance at the figures in Section 3. Our presentation is ab-
stract in the sense that it is not tied to any data structure, algorithm or heuristic for
analysis or interpretation.

G. Nagy, D. W. Embley, D. P. Lopresti, Boxy, semi-structured
document elements, GREC’13 Record, Bethlehem, PA August 2013.

mailto:nagy@ecse.rpi.edu

2.1 Lists

Lists can be used either to collect or to disseminate information: List your favorite
radio stations vs. List of NYC Radio Stations.

Lists contain related items, but the nature of the relationship may be implicit. They
rarely have headers designating the types of items in the list (e.g., the list of authors of
a paper does not have a header, such as authors:). Lists are searched over data items
rather than headers. A list may be ordered, to facilitate search, or unordered. Ordering
may be implicit and possibly obscure (authors of a paper ordered by contribution to
the research or a grocery list ordered by aisle order in a store). A list can be laid out
like a table, but without rulings. Lists seldom contain checkmarks or only numerical
values. Vertical lists are often aligned, but items in horizontal lists are usually sepa-
rated only by punctuation.

In a single-item list each entry has only one item (an author name or the name of a
grocery item). Each entry in a multi-item list has many items (a student’s list of
courses currently being taken along with meeting times and places). Lists may be
juxtaposed. List entries may be complex (a list of box scores in the sports section of a
newspaper where the boxy elements themselves consist of lists and tables and even
forms filled in by the reporters). Occasionally, multi-item lists have in-line item des-
ignators (“John Jones born 1856 died 1907” where “born” and “died” are not list
items but serve to distinguish the two years). Most often, however, items in lists are
understood inherently within context and without item designators.

Lists may be nested (e.g., a list of children born to a family within a list of fami-
lies); mixed, interleaving different kinds of list entries (a list of references at the end
of a paper where entries for journals, books, theses, etc. are all intermixed); factored
(surnames in a telephone directory for each person listed below until the next surname
is encountered); or split (by page boundaries with footers and headers between, or
even within, list entries).

2.2 Forms

Forms are used for collecting information. They are also called bureaucratic forms,
office forms, official forms or, more specifically, tax forms, claim forms, betting
forms.

Forms were sometimes published in newspapers with a request for reader feed-
back. Currently many organizations maintain websites with downloadable forms, but
computer-fillable web forms are replacing typed and handwritten forms. All comput-
er-fillable forms can be printed. Security measures may, however, prevent filled-out
forms from being downloaded or saved by the client.

In addition to a Form Name (“Application for Driver’s License”), professionally
designed forms usually have a Form Number, Version Number, or Date of Issue.
Forms may also show instructions, organizational affiliation (including logos), source,
signature lines, spaces for stamps, and advertising. The preprinted instructions may
include lists or tables: e.g., state sales tax rates.

Data from individual forms is often manually or automatically entered into a data-
base. The aggregated data may be presented or published in table format.

The principal elements of a form are labeled fields demarcated by line art or color.
The blank spaces for entering information may include horizontal lines, combs, or
other aids to separate characters. Fields may be grouped by line art or color at one or
more levels to facilitate entering the required information.

The labels are preprinted in or near the blank space where the information is to be
entered. Labels may range from a single word to an entire paragraph, possibly in sev-
eral languages. Forms may also contain check boxes. Line art and labels may be
printed in a drop-out color invisible to the designated scanner. Mark sense forms rep-
resent an extreme combination of drop-out ink and check boxes.

In some web forms, the amount of space per entry expands as needed, up to a set
maximum. Others impose a strict word-count limit. Web forms, like payment forms
listing purchased items and prices and requesting credit card information, can be cre-
ated dynamically. Forms often solicit redundant information for error detection.

Form configurations may range from the very simple, like forms for recording
tournament chess games, to the outright recondite (like some tax forms). Even simple
forms may have dozens of repetitive fields and continuation pages.

Most filled-in forms cannot be confused with tables because they are not construct-
ed on an underlying uniform grid and form fields are distinguished by field labels
rather than horizontal and vertical headers. However, any table can be converted to a
form by deleting the contents of the value cells and adding a request to fill them.

Currently the conversion of forms to computer databases is far more important
commercially than that of tables or lists.

2.3 Tables

Tables are universally used for presenting data logically organized into two or
more categories. Their value cells (data cells) are laid out on a uniform grid. Each
value cell is indexed by its row and column headers. The 2-D indexing distinguishes
tables from multi-item lists. In conventional printing terminology, the principal re-
gions of a table are called stub head, stub, column header, and data.

An M x N table has M rows and N columns of value cells, in addition to one or
more columns of row headers and one or more rows of column headers. Some authors
include the header rows and columns in their counts.

A single category (Country) can be indexed by a flat header, or by a hierarchical
header (Africa/Chad,Tunisia; Asia/China,India,Japan) laid out in several rows or
columns or designated by indentations or font characteristics. Hierarchical headers
also allow 2-D display of more than two categories (column: Country/France; row:
Gender/Male//Year/2000); value: 81,200. Values may be conceived as populating a
multi-dimensional array where each dimension corresponds to a distinct category.

Since horizontal and vertical table organization is symmetric and permutable, the
number of possible table layouts increases combinatorially with the number of catego-
ries and their membership. The choice may be guided by the aspect ratio of the avail-
able page or display space, preference for horizontal or vertical labels, compatibility
with existing tables, and expected reader interests. Larger tables tend to be laid out
with more rows than columns. Thus Canadian provinces often appear as column
headers, while US states are typically row headers.

The order of rows and columns does not affect indexing: When row order is signif-
icant, the leading column may be populated with integers denoting rank. Since these
uniquely index all the remaining rows, they logically suffice for row headers in spite
of their descriptive poverty.

1xN or Mx1 tables are degenerate. A single-row table requires one or more col-
umn-header rows, but the row header for its single row is optional. Conversely, a
single-column table, unlike a single-column list, requires row headers, but no column
header. A degenerate table may have an arbitrary number of category dimensions.
The smallest non-degenerate table has 2x2 value cells.

Every category should be a rooted tree. Its root serves as its Category Name. In
practice, it is often omitted because it is obvious to the reader. For instance, a row or a
column consisting of a list of countries need not be designated by the root header
Country. When a category root is missing, an arbitrary string (e.g., RootHeader#2)
may be inserted to complete the category structure. Assigning a meaningful name
would require semantic analysis of the contents of the table, table title, notes, or of the
surrounding text. For instance a column showing hours and minutes could denote
arrival or departure times.

In some CSV tables it is difficult to distinguish between a column root header and
the title of the table. In others, the expected location of the root column header (above
the leaf column headers) contains the source of the data or the year when the data was
collected. The stub head may also contain root headers. Most of the data (value) re-
gion should be populated and may contain duplicate rows or columns. Sparse data can
be presented more compactly as a list.

In a Well-Formed Table (WFT), every value cell is uniquely indexed by its row and
column header paths. A hierarchical (row or column) header may index one or more
categories. A single-category header path consists of the root-to-leaf path of the corre-
sponding category tree. A multi-category header path consists of concatenated catego-
ry paths (Year, 2000; Gender, Male) or (Year, 2001; Gender, Female). WFTs are
generally amenable to automated data extraction using only structural information.

Egregious tables may not puzzle human readers, but they challenge algorithms and
require external context to extract values with their applicable indexes. A concatenat-
ed table merges distinct tables with identical or similar row or column headers. In
order to keep headers close to values of likely reader interest, an egregious table may
have headers elsewhere than only at the top or left edge. Nested tables, tables with
graphic cell contents, matrices, and tables with row and column headers that are im-
plicit or incomplete may also be considered egregious. However, right-to-left and top-
to-bottom scripts require only minor modifications of table layout expectations.

Good table layout is an art described in several books and in lengthy sections of the
US Government Printing Office Style Manual and in the Chicago Manual of Style.

3 List, Form, or Table?

The possible overlap between tables, forms, and lists can be visualized as a three-
variable Venn diagram with eight regions. We present boxy document elements that
fall into each of these regions (except in the null region). We use contrived examples
to keep the illustrations small and, we hope, easily understood.

 (a) (b) (c) (d)

Fig. 1.(a) Venn diagram of boxy document elements (b) a simple untitled list (c) titled list of
lists ((Ronaldo, Bryant, Federer),(Tennis, Basketball, Soccer),...,…) (d) three juxtaposed lists.

 Fig. 2. A survey form. Fig. 3. A table with row and column headers.

Classifying ambiguous document elements requires some context. For example in
Fig. 4a we have to know that Soccer is not a heading for Basketball, Hockey, and Soc-
cer, and that Bryant is not a kind of Ronaldo.

`

 (a) (b) (c)

Fig. 4. List or table? (a) is a list because it has no column index;
(b) is a table with a row and a column index; (c) is just a ruled and retitled version of (b).

 (a) (b)

Fig. 5. List, form or table? (a) The font and background colors suggest that it is a filled-in form.
(b) Could be any of the three: needs semantics to determine if it contains headers.

4 Queriable relational objects

A relation in a relational database is a set of n-tuples. An n-tuple functionally as-
sociates n attribute names with n values, forming a set of attribute-value pairs. Each
n-tuple in a relation has the same set of attribute names. When displayed as a 2-D
table, the attribute names appear as column headers and each row contains a tuple’s
values, positioned in the proper column. To illustrate the conversion of lists, tables,

Baseball
Football
Hockey
Tennis

Ronaldo Soccer Madrid

Bryant Basketball Los Angeles
Bryzgalov Hockey Philadelphia

Beckham Soccer Los Angeles

National Sports Survey

Rank Sport Athlete Event
1 Tennis Federer Wimbledon
2 Soccer Beckham World Cup
3 Basketball Bryant NBA Finals

Table V. Most watched athletes in Vermont

Ronaldo Bryant Federer
Tennis Basketball Soccer
Falcons Jets Real Madrid
Professional HighSchool Big Ten

Vermont TV Viewers' Preferences:

Rank Athelete Sport Team
1 Ronaldo Soccer Madrid
2 Bryant Basketball Los Angeles
3 Bryzgalov Hockey Philadelphia
4 Beckham Soccer Los Angeles

National Sprts Survey

Sport Team

Bryant Basketball Lakers
Bryzgalov Hockey Flyers

Beckham Soccer Galazy

National Sports Survey

Athlete Sport Team
Bryant Basketball Lakers

Bryzgaolov Hockey Flyers
Beckham Soccer Galaxy

Table VI. Top ranking athletes

Athletes Sports Teams
Bryant Soccer Yankees
Federer Basketball Bacelona FC

Sule Tennis Real Madrid
Dumervil Baseball Celtics

Fevorites:

Labarro Fira Barbotte
Tavoletta Bolvalle Dotti

Jocato Molzano Salpetra
Docci Parata Duchesi

Favorite sport, team, and player:

Soccer, Madrid, Ronaldo

Second most favorite:

Basketball, LA, Bryant

National Sports Survey

Third most favorite:

Soccer, L A, Beckham

and forms to database relations, and thus to machine “understandable” and queriable
objects, we give a list, table, and filled-in form in Figure 7 and show their relational
representation by giving the first two tuples of each relation:

The Ely child list for the
William & Charlotte Lathrop Family

 (a) (b)

 (c)

 (c)

Fig. 7. (a) A printed and scanned multi-item list (b) A web table (c) Part of a filled-in form.

{ {(ChildNr, 1), (Name, Maria Jennings), (BirthYear, 1838), (DeathYear, 1840)},
 {(ChildNr, 2), (Name, William Gerard), (BirthYear, 1840), (DeathYear, ⊥)}, …}

(The attribute names, which are only implicit or abbreviated in the list, are human provided.)

{ {(Rank, 1), (State, Michigan), (Total, 31821), (Exports, 13583), (Imports, 18238)},
 {(Rank, 2), (State, Ohio), (Total, 13627), (Exports, 9371), (Imports, 4256)}, …}

(These tuples can be derived from the table without additional assumptions.)

{ {(FirstName, Kelly), (LastName, Jones), (SSN, 111223333), (Relationship, child), (U17, no)},
 {(FirstName, Tracy), (LastName, Smith), (SSN, 444556666), (Relationship, step child), (U17,
yes)}, …}

(Although perhaps derivable from the form, these attribute names are human provided.)

The conversion of tables to database relations differs from the conversion of lists
or forms because tables have two or more indexing headers. When converting tables
to relations, one of the indexing headers becomes the set of attributes for the relation
and the others become key values. It does not matter which of the headers is chosen
to constitute the set of attributes since the indexing headers are all transposable with
one another. Key values in a table uniquely identify rows in a relation and thus serve
the purpose of row headers. For example, the row headers in the table in Figure 7b
are the rank values, and in the induced relation for the table, the rank values are keys.

Automating machine “understanding” for lists, forms, and tables consists of algo-
rithmically transforming human readable images of these boxy components to rela-
tions for query by SQL, or more generally, to ontologies representing first-order theo-
ries. Challenges include discriminating values from labels, properly associating la-
bels with values, replacing implicit headers with appropriate labels, and reformulating
facts as tuples in relations or as predicate assertions for ontologies.

Rank State Total Exports Imports
1 Michigan 31,821 13,583 18,238
2 Ohio 13,627 9,371 4,256
3 California 10,724 3,391 7,334

TABLE 3. Top 3 States for Trade via Detroit, MI: 2008

SOURCE: U.S. Department of Transportation, Research and Innovative
Technology Administration, Bureau of Transportation Statistics, Transborder
Surface Freight Data, 2008.

($ millions)

References
To be added from our bibliography of 200+ table papers if accepted for publication

Appendix: Notes on File Formats

Printed tables appear in books, newspapers and journals. Hardcopy tables are in-

creasingly scanned rather than keyed-in for computer analysis. The DIA literature
refers to scanned table in TIF, BMP or PNM files as bitmapped tables..

ASCII tables occasionally appear in email. Their structure is indicated by character
and line spacing, and a few printable symbols (_, -, ,=, |). They have been largely
supplanted by more expressive representations like HTML that also use only ASCII
(or equivalent) encoding.

HTML tables delimit rows and cells by tags. HTML also has tags for table titles
and footnotes. Tags originally intended for tables are, however, often used in web
pages to lay out non-table material.

Spreadsheets are WYSIWYG software for manipulating tables. The internal repre-
sentation may be proprietary (XLSX) or open (CSV). XLS and XLSX preserve ap-
pearance, including merged cells and relative row heights and column widths. CSV
tables must have the same number of cells in each row and in each column, so span-
ning cells are unmerged. CSV preserves the underlying uniform grid structure but it
loses most appearance features like cell size, internal cell layout, font and background
color, and ruling lines. Spreadsheets and CSV do not distinguish between header cells
and value cells and contain no explicit category indexing. CSV tables imported from
HTML include the table title and footnotes. In the original table they are usually posi-
tioned in a cell spanning several columns, but in CSV their value appears in the first
(top-left) of the resulting atomic cells.

Most programming languages can import and export tables in spreadsheet formats.
Off-the-shelf or built-in software is available for precise conversion between HTML,
word-processing formats (e.g. RTF) and spread sheets. Conversion of tables from
PDF is not necessarily lossless.

Many HTML and spreadsheet tables found on the web are automatically construct-
ed (sometimes dynamically, on demand) from a database. Usually the viewer does not
have access to the underlying database.

A computer file that contains a table must be distinguished from the rendered ver-
sion of that table because the rendering program may use table formatting information
that is not explicitly represented in the file. For instance, the program must know that
in a particular ASCII CSV file TABs delimit table cells and LF-CR pairs delimit
rows.

To the best of our knowledge, there are no generally accepted final formats that ac-
commodate structural information like header paths in tables. There are, however,
industry-specific conventions for associating form fields with HTML keywords.

