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ABSTRACT 

Confirming the labels of automatically classified patterns is generally faster than entering new labels or correcting 
incorrect labels. Most labels assigned by a classifier, even if trained only on relatively few pre-labeled patterns, are 
correct. Therefore the overall cost of human labeling can be decreased by interspersing labeling and classification. Given 
a parameterized model of the error rate as an inverse power law function of the size of the training set, the optimal splits 
can be computed rapidly. Projected savings in operator time are over 60% for a range of empirical error functions for 
hand-printed digit classification with ten different classifiers. 
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1. INTRODUCTION 

The goal of building a classifier is to achieve the highest possible accuracy for a specific task of interest at the lowest 
possible cost. This is often an unstated goal of published work. This goal can be met better by retraining the classifier 
again and again with larger and larger training sets than by “freezing” it. (This option was not available when OCR 
systems were implemented in hardware.) Furthermore, the required correction of residual errors is seldom exploited 
although the corrected output of the classifier makes an enlarged (and representative!) training set available gratuitously. 
Recycling human corrections is one aspect of what we call “green interaction”. In error-sensitive applications, the 
additional effort of retraining a classifier to increase accuracy from 98% to 99% may be worthwhile when we consider 
both development and operational costs over the lifetime of the system. We formulate a model for a multi-stage training 
regimen and compute its expected benefits for hand-printed digit recognition. 

OCR prices quoted on the web indicate that the cost of proofreading and correcting OCR errors is much higher than 
that of unverified OCR.1 We assume that the cost of machine time is insignificant (or at least constant) and that the error 
rate of the classifier decreases as an inverse power of the size of the training set. We propose a method of minimizing the 
total cost of perfect labeling of training samples and proof-reading the output of the classifier.  

We illustrate our approach on the task of error-free classification of 1000 patterns (say printed characters or 
handwritten words). The conventional approach is to manually label a random subset of the samples, say N0 patterns, 
train the classifier on the labeled training set, classify the remaining N1  = 1000 - N0. samples, and then inspect the entire 
“test” set and correct any residual errors. Posit further the availability of an interactive labeling system where the cost (in 
human time) of entering a label or correcting an incorrect label is three times the cost of confirming a correct label. The 
error rate of the classifier under consideration is 15% when trained on 300 patterns, and 10% when trained on 600 
patterns. These error rates are averages over randomly selected training and test sets. 

The expected total cost is proportional to the cost of labeling the training samples, plus the cost of confirming 
correctly classified samples, plus the cost of correcting wrong labels.  

 For N0 = 300, the total cost is: 
     Cost300 = 3×300 + (700×0.85) +3×(700×0.15) = 1810. 
 If N0 = 600, then the cost is 
     Cost600 = 3×600 + (400×0.90) +3×(400×0.10) = 2280. 
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Clearly choosing N0=300 is more economical. Below we show how to determine the optimal partition, given the error 
function, i.e., the error rate on an (infinite) test set as a function of N0 (the size of the training set). We also propose 
optimization for more than a single training set, where training and interactive verification (confirmation or correction) 
are interspersed over a set of N0, N1, N2, …, Nn  samples, with N0 + N1 + N2 + …+ Nn = Ntotal.  

The germ of this idea is described in a paper presented at ICPR 2012.2 Here we use a more appropriate error model, 
and a fast numerical solution instead of exhaustive search for optimization that limited our results to small data sets, We 
compute the expected savings for ten different classifiers on the same hand-printed digits, which shows the sensitivity of 
the cost function to alternative parameterizations of error curves. 

Interactive pattern recognition has been advocated for over 40 years.3, 4, 5  CAVIAR systems6, 7, 8, 9, active learning10 
and interactive polygons11 are more recent manifestations. “Unsupervised” classification methods like co-training12,13 
also make use of classifier-assigned labels for retraining, but cannot guarantee the same accuracy as human correction. 
As suggested in earlier work, automated classification interspersed with interactive labeling can reduce costs in error-
intolerant applications like financial and medical form entry.14  Our contribution here is quantification of the economies 
in terms of the size of splits. 

For the sake of completeness, in Section 2 we briefly review our model of the cost function, as we proposed in an 
earlier paper.2 Section 3 presents the revised model of the error function, including work by others on the derivation of 
the inverse power law and on the effect of sample size on estimating its parameters. Section 4 describes the numerical 
optimization procedure. Section 5 reports the computed savings in cost or time for a range of sample sizes and 
parameters derived from a practical application of machine learning. Section 6 offers conclusions based on both 
theoretical considerations and computations.  

2. MODEL OF THE COST FUNCTION 

Our model of the cost function for multistage labeling just accumulates the three types of costs shown in the introductory 
example: (1) initial labeling, (2) confirmation of correctly classified samples, and (3) correction of errors. The cost (or 
time) of confirmation that a label is correct is unity, and the cost of label entry or correction (which are essentially the 
same) is R > 1. The cost of each stage of Ni samples depends on Ni, and on the fraction of the Ni samples that were 
misclassified. In the initial stage, all N0 labels must be entered manually, therefore its cost is R×N0.  

In subsequent stages i, the cost depends on Ni as well as on the number Mi of classifier errors made by the classifier 
when (re-)trained on all the previously verified patterns. Mi is given by the error function f(Ntrain ;β), where β is the 
parameter vector of the error function (which is often called a learning curve).  

The ratio R of correction to confirmation depends on the application. It typically ranges from 3 to 10. It would be 
higher for word patterns than for character patterns, and higher for determination of table structure than for the content 
of individual table cells. It also depends on the device and modality used for corrections.15 It can be determined readily 
from the logged time-stamps of the interaction in a short labeling session. We expect it to be roughly equal to the base-
two logarithm of the number of classes because specifying one of C classes is equivalent to log2C  dichotomies, as 
predicted by the Hick-Hyman Law of psychometrics16,17,18. 

The number of samples to be labeled is 𝑁𝑡𝑜𝑡𝑎𝑙 = ∑ 𝑁𝑖𝑛
𝑖=0 . The problem we solve is the optimal split of Ntotal into n 

sets of Ni samples. There are n>0 stages, including the first stage of N0 initially unlabeled samples. All N0 samples of the 
initial training set must be labeled, therefore 𝑀0 = 𝑁0, and the number Mi of errors to be corrected at each stage i is: 
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The derivatives of Ttotal with respect to Ni are proportional to (R-1). Therefore the optimum split is independent of R 
if f(Ntrain, β). is a decreasing function, as assumed, of Ntrain. In other words the error rate drops—or at least does not 
increase—as the number training samples increases. 

3. ERROR FUNCTIONS (LEARNING CURVES) 

Since the error function is not available on patterns to be labeled, it must be extrapolated from a small training sample. 
The error function is the expected error rate EN of a classifier as a function of N, number of training patterns. There is 
some agreement that for a wide range of applications the error function can be modeled as: 

𝐸𝑁 = 𝑓(𝑁, 𝛽) = 𝑎𝑁−𝑏 + 𝑐, where 𝛽 = [𝑎, 𝑏, 𝑐] with 𝑎, 𝑏, 𝑐, > 0. 
The constant a is called the learning rate, b is the decay rate, and c is the Bayes error. The learning rate sets the 

initial error rate. The decay rate governs the rate of decrease of the error rate with the number of training samples. The 
Bayes error is the asymptotic error rate with an infinite training sample.  

 

 

 

 

 

 

 

Figure 1. Effect of the three parameters on the error curve. a is the learning rate, b is the decay rate, and c is the Bayes error. 

The effect of the learning rate, decay rate, and Bayes error  parameters on the error function is illustrated in Fig.1, 
which shows plots of  EN vs. N for selected parameters according to the above error function equation. The actual values 
of the parameters depend on the distribution of the dataset (as represented in the chosen feature space) and on the 
classifier. The Bayes error is zero unless the same pattern is sometimes in one class and sometimes in another. In OCR 
applications it is near zero except in low-resolution, noisy documents. Ho and Baird reported an empirical estimate of 
the Bayes error on millions of patterns.19 Although they present learning curves, we cannot use them here because they 
were derived on a dichotomy of two printed letters (e vs. c). In a two-class problem like this, both confirmation and 
correction require only a single bit per pattern, therefore the proposed method offers no cost saving whatsoever  (R = 1). 
In multi-class problems, however, it can be expected that correction is more expensive than confirmation, and hence it is 
worthwhile to optimize the splits. 

The inverse power law for regression or classification is justified from several different starting points (statistical 
mechanics, approximation theory) in Mukherjee et al.20 In general, the error curve is not known for the data about to be 
labeled. It can, however, be estimated and extrapolated from one or more small random subsets of samples. The 
authors20 derive the variability of the estimates of the parameters when the 25-percentile and 75-percentile error curves 
are estimated from subsamples. In addition to the uncertainty of the estimates due to the variability of the training set, 
estimating the error rate on a finite test set has also been  intensively studied.21,22,23 

Table 1 of the above article20 reports mean values a ranging from 0.5 to 2.0, of b from 0.1 to 0.7, and of c from 0.00 
to 0.01 on eight micro-array image datasets. However, the number of samples in these dichotomies (normal/abnormal), 
ranging from 58 to 280, is much smaller than in typical OCR datasets, and the feature space is also different.  



We demonstrate the proposed labeling policy on a set of error curves reported by Liu, Sako and Fujisawa for hand-
printed numerals classified by ten different classifiers.24 Digit recognition is a good example for us, because in contrast 
to text OCR, language context cannot be used to correct errors.25  

The primary objective of Liu, Sako and Fujisawa was to compare the performance of diverse classifiers under 
various conditions. Prof. C-L Liu kindly provided the numerical data underlying the published curves. The six 
progressively larger training sets for the learning curve experiments consisted of 2,064, 4,134, 8,273, 16,549, 33,103, 
and 66,214 samples. The test set contained 22,271 samples, roughly equally distributed between the ten classes of digits.  

To illustrate the derivation of the parameters of the error function required to compute the optimal size of the training 
set, we select the widely known Nearest Neighbor classifier. The parameter values obtained by fitting the inverse power 
law model to the 1-NN learning curve with three points and with six points are:  

a3 = 2.13, b3 = 0.579, c3 = 0.0123   and   a6= 0.962, b6 = 0.452, c6= 0.0071. 

Fig. 2 shows both the curves as reported in the Liu et al. IJDAR article, and as re-plotted in the format shown above 
from the numerical data. The curves with the above parameters provide an excellent fit to the experimental data, which 
confirms the accuracy of the model in this case. The learning rate a is higher than the values reported in by M.ukherjee 
et al.20 Duda, Hart and Stork26 suggest that all of the parameters must be less than unity, but that is not necessarily the 
case for published experimental data.  

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2. Learning curves for hand-printed digits. On the left is Fig. 5 reproduced from Liu et al.24  On the right, the curve for the  
1-NN (nearest-neighbor) classifier, re-plotted in the format of Fig. 1 above, and the superimposed three-point and six-point fitted 
inverse power-law curves. The difference between the empirical data and the curve fitted to the six points is barely visible. The three-
point estimates of the error rate, extrapolated to large training sets, are higher.  

4. NUMERICAL OPTIMIZATION 

The model was fitted to experimental data by least-squares minimization subject to the constraint of keeping all the 
parameters positive. At least three observations are necessary to determine the three model parameters a, b and c. The 
effective loss due to using only the three observations on the first 8,273 training samples is indicated by comparing the 
savings obtained with these parameters to the savings using all six observations (up to 66,214 training samples). The 
parameters are fitted separately to each of the error functions from all ten classifiers.  

The nonlinear least-squares optimization was performed by setting the derivative of the sum of the errors to zero. The 
nonlinear equation for b is solved by a linear scan in 0.1 step increments followed by application of the Secant Method 
to find the exact root of the equation. Then the values of a and c are obtained from their functional relation with b. The 
maximum fitting error on the last observation is only 15%. This indicates that fitting the parameters to only the first three 
observations is sufficient. The worst fit is the 1-NN classifier of Fig. 2. Values for four-point and five point fits are near 
those of the six-point fit. When all six points are fitted, the maximum relative error is 3%. Fig. 3 shows the re-plotted 
original data and the error curves for the ten classification experiments fitted with either three points or with all six. 



The next step is finding the optical splits given the error functions. The number of variable values to be determined 
by minimizing Ttotal is equal to the number of classifier training stages n. The minimization of the total cost by choice of 
either N0  or  N0 and N1 is achieved by setting the derivatives (for n=1) or partial derivatives (for n=2) of the error 
function to zero. The resulting nonlinear algebraic equations are solved with a linear scan followed by the Newton-
Raphson method. The convergence criterion of 10-10 was reached after four or five iterations. The constraint 0d c d 1 
affects only the MLP and LVQ classifiers, where unconstrained extrapolation from three points would yield a slightly 
negative Bayes error. In these cases c was set to zero.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Learning curves for hand-printed digits estimated from 8,273 training samples and 66,214 training samples respectively. The 
number of training sets used for estimation makes little difference in the estimates of the error rates beyond a few hundred samples. 



5. COMPUTED RESULTS 

The error curves for the 10 classifiers compared experimentally by Liu et al.24 provide examples of the potential savings. 
We computed the error curve the parameters of and the optimal splits from training the classifier on the first 8273 
training samples of each experiment, and also on all 66,214 training samples. The error rates were determined on a 
22,271 sample test set without overlap with the training set. The cost ratio R was set to 3 H log2 10. The cost savings S 
obtained by inspecting and correcting the classifier results instead of entering every label is computed as  
S = (Tmax - Ttotal) / Tmax = 1 - Ttotal / R×Ntotal . Table 1 shows the computed values of the optimal splits (N0 and N1), the 
total labeling time or cost, and the resulting cost savings S for all 20 cases.  

Table 1.  Computed results from experimental runs. The first row for each classifier shows results for parameters estimated from 
8,273 samples. The second row show the results for parameters fitted to the entire data set of 66,214 samples. The error rates are 
computed on 22,271 other samples. The ten classifiers tested are described in the article cited above24.  

 Parameters  n=1  n=2 

 a b c  N0 Ttotal S (%)  N0 N1 Ttotal S (%) 

MLP 
0.595 0.385 0.002  1065 73922 62.8  224 7725 70301 64.6 

0.501 0.354 0.000  1035 73886 62.8  214 7944 70261 64.6 

RBF 
1.185 0.495 0.005  1191 73829 62.8  267 7136 70155 64.7 

2.153 0.588 0.008  1278 73929 62.8  301 6708 70260 64.6 

PC 
1.367 0.574 0.007  1003 72502 63.5  218 6029 69422 65.1 

0.858 0.497 0.005  953 72443 63.5  200 6431 69339 65.1 

LVQ 
0.478 0.365 0.003  966 73661 62.9  197 7624 70251 64.6 

0.349 0.310 0.000  897 73554 63.0  177 7983 70193 64.7 

MDQF2 
27.908 1.079 0.016  1081 72418 63.5  281 4021 69862 64.8 

355.874 1.431 0.017  126 72652 63.4  383 3662 70111 64.7 

RDA 
8.635 0.927 0.017  942 72264 63.6  223 4120 69830 64.8 

1527.526 1.642 0.019  1299 72764 63.4  425 3431 70322 64.6 

QDF 
381.997 1.220 0.026  2387 77986 60.7  844 6500 73624 62.9 

1467.822 1.405 0.028  2433 77942 60.8  911 6132 73788 62.9 

LDF 
28.268 1.124 0.039  966 74930 62.3  245 3605 72690 63.4 

0.279 0.438 0.035  538 74208 62.6  94 5420 72218 63.6 

SLNN 
0.969 0.543 0.022  898 74047 62.7  187 5915 71215 64.1 

0.204 0.269 0.011  659 73666 62.9  119 7630 70945 64.3 

1-NN 
0.962 0.452 0.008  1200 74664 62.4  267 7506 70890 64.3 

2.132 0.579 0.012  1316 74790 62.3  312 6869 71041 64.2 

 

The savings vary relatively little between classifiers and between estimating the parameters on 8273 or 66,214 
training samples. The large differences among the values of some of the fitted parameters are not reflected in large 
differences in Ttotal and S.  The savings are all between 60% and 65%. The maximum possible value of the savings, with 
all samples confirmed and none corrected is Smax = (R-1)/R = 66.7%. (It would, of course, be larger with R>3.)  
Therefore in practice the error function parameters could be estimated with any classifier on a small training sample 
(here about one eights of the total number of samples to be labeled). The resulting splitting policy and savings should 
apply to similar data and any other classifier. 



For most classifiers N0 is about 1000 samples with n=1. The error rates at N0 range from 3.0% to 5.4%. Therefore 
fewer than 3000 samples need to be corrected on the remaining ~65,000 samples. This is, of course, the source of the 
savings.  

We perform the numerical optimization only for n=1 and n=2 because even with large sample sizes the maximum 
savings is almost reached with n=1. The savings obtained with n=2 are, only 2% larger than those obtained with n=1. 
The total time for the two-stage process is 3%-5% less than for a single stage. This justifies using only one or two stages 
for retraining the classifier: further stages could decrease the total time and cost only slightly. In either case (n=1 or 
n=2), only a small fraction (N0 / Ntotal) of the samples (less than 2%) needs to be initially manually labeled. 

6. DISCUSSION 

The results above show that on hand-printed digit classification, significant savings can be achieved by training the 
classifier on a small set of patterns and giving the human operator the option of quickly confirming correct labels. Our 
model assumes that the error function or learning curve is already known. When it is not known, our simulations suggest 
that the inverse power law learning curve can be accurately extrapolated from small training sets to large training sets. 
The savings obtained from an optimal split are nearly independent of what classifier is used. The size of the optimal 
training sample(s) increases slowly with the total number Ntotal of patterns to be recognized. Two-stage classification 
yields only a small advantage over the single optimal split. 

In practice, we envisage the following protocol: 

1. Use a general-purpose classifier to assign labels to a given number, say 10,000, pattern samples. 
 (If no general-purpose classifier is available, go to 2.) 

2. Interactively verify the labels of these samples. 

3. Split the data into a training set (say 6,000 samples) and a test set (4000 samples). 

4. Train the target classifier on 2,000, 4,000, and 6,000 sample training sets. 

5. Run each of the resulting classifiers on the test set. 

5. Estimate the learning curve and the optimal splits from the three error counts on the 4000 sample test set. 

6. If N0 < 6000, use the already trained classifier to label the next N1 samples before retraining it. 

7. If 6000 < N0 < 10000, retrain the classifier on all 10,000 labeled patterns and classify the next N1 samples. 

8. If 10000 < N0, use the already trained classifier to assign labels to the rest of the N0 patterns, verify them,  
 and then proceed to the next N1 samples. 

In Table 1 we did not take into account the cost of labeling the 22,271 test samples because in practice the test set 
would require only interactive verification of a small number of samples classified by a general-purpose classifier. 
Labeling these samples should be considered part of the initial labeling cost although it could, of course, already take 
advantage of the labels assigned by the general purpose classifier. Large test sets and cross validation are desirable 
primarily in ascertaining the error rate of classifiers operating at low error rates, as in the s66k experiments of Liu et al.24 
Because the split is decided using only small training samples resulting in relatively high error rates, variability 
introduced by a small test set is not a major concern. We could not, however, follow this procedure because we did not 
have error counts on the remainder of the 66,214 training samples after the classifier was trained on a smaller subset. We 
therefore estimated the cost of verification from the error rates obtained on the 22,271 test samples.  

In practice, the learning curves would usually be estimated from a sample smaller than N0 and extrapolated to Ntotal. 
Our results suggest that a three-point estimate is adequate, but we did not have fine-enough-grain data to confirm that 
estimates based on training and test samples smaller than N0 are acceptable. 

We have not found any published results on the ratio R of label entry or correction to confirmation. We believe that 
our estimate of R=3 is conservative for digit classification. R will be higher for classification into more classes, like 
alphabetic characters or words. This will yield higher savings. 

The actual value of R also is affected by the design of the interface and the skill and experience of the operators. 
Confirmation does not, of course, require an actual keystroke. It is sufficient to advance the display (or the operator’s 
attention) to the next pattern to be verified. The optimal size of the context window, i.e., how many scanned patterns and 



assigned labels are displayed at a time, is data dependent. Because humans are good at visual anomaly detection, in some 
applications it may be desirable to display the patterns grouped by assigned label rather than sequentially. The initial 
labeling stage can be speeded up by displaying cluster prototypes and labeling all the patterns in the cluster at once. 
Because these factors may all affect R, it is desirable to determine it from a log of time-stamped operator actions kept 
during the parameter estimation phase. 

Although we did not consider the cost of computing time, even if the cost is negligible the elapsed time may not be. 
If computing time and operator scheduling really did not matter, the optimal policy would be retraining the classifier 
after each pattern is classified. In an operational environment, adequate provisions must be made for a smooth workflow 
and minimal operator down-time. Therefore a low value n, the number stages, is preferable. Future refinement of the 
model should take these factors into account. 
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