
Discovery and Verification of Computed

Data Values in Heterogeneous Web Tables

David W. Embley

Brigham Young University

Provo, Utah, USA

Mukkai Krishanmoorthy

Rensselaer Polytechnic Institute

Troy, New York, USA

George Nagy

Rensselaer Polytechnic Institute

Troy, New York, USA

Sharad Seth

University of Nebraska–Lincoln

Lincoln, Nebraska, USA

Abstract—Based on automated analysis of table header

structures, keyword labels, and layout patterns, computed data

values are detected and checked in a corpus of 200 heterogeneous

web tables from international sites.

Keywords—table processing; table structure; computational

keywords, computational layout patterns

I. INTRODUCTION

Automated end-to-end table interpretation requires not only
discovery of a table’s structure—its row and column headers
and how they index the data values—but also which of the
table’s data values are computed and how they are computed
from other data values. This was demonstrated by V. Long on
simple financial reports [1]. Automated discovery of more
complex table structure is non-trivial but once discovered it
provides valuable structural and keyword clues that lead to the
discovery of a table’s computational formulas. Verification of
candidate computational formulas requires applying operator
functions to check computed values.

For automated data analysis, computed values, including
aggregates like the sums in the first two columns in Fig. 1,
should be clearly identified as derived values. Our approach to
discovering and verifying computational properties of tables is
based on definitions of well-formed table structure (row and
column headers and their relationship to the data values they
index), header keywords such as “total”, “average”, and
“percent difference”, and well-formed computational layout
patterns such as column aggregates in Fig. 1 and aggregates
associated with parent-node labels in Fig. 2.

II. WELL-FORMED TABLE STRUCTURE

Formally defined (see [2]), well-formed tables have n (n ≥
2) header category trees (often degenerate) whose root to leaf
header paths uniquely index the table’s data values. In Fig. 1,
the three category trees are (Country, (Norway, Germany,
total)), (Year, (2004, 2005)), (Assistance, (Million$, %GNI)).
The data value 2 199 is indexed by Country.Norway,
Year.2004, Assistance.Million$.

The table-structure processing steps are as follows:

Fig. 1 Fig. 2

(1) Segment the table to identify row and column headers,
data values, and ancillary information like table title,
footnotes, notes, and empty cells.

(2) Parse numeric fields to facilitate computations.

(3) Classifies each cell.

(4) Factor each header to reveal category trees.

Fig. 3 shows part of the classification table (as a relational
database table) obtained by the first three structure-processing
steps for the table in Fig. 1. Note that the Million$ values in
Fig. 1 are formatted with a space-separator for thousands. In
general, the parse must recognize numbers in all forms and
convert them appropriately.

Fig. 3. Generated classification table.

In Step 4, the category-trees are discovered by factoring a
sum-of-products expression from an indexing column or row
header [3]. In column headers, each column is a product of
labels, which are summed across the columns. For the column
header in Fig. 1, the expression Million$×2004 +
Million$×2005 + %GNI×2004 + %GNI×2005 factors as
(Million$ + %GNI) × (2004 + 2005); and for the row header,
the expression (Norway + Germany + total) is already in

Fig. 1. Table 22 in our 200-table
corpus, with some shortened text and

reduced to two countries.

Fig. 2. Table with sums and

averages associated with

hierarchical parent nodes.

DAS 2016 Santorini - "work-in-progress" short paper

factored form. Each of these parenthesized expressions
represents a category, which with the addition of a header root
node becomes a category tree. In our implementation we add
virtual root nodes since we do not yet match the category
values with a semantic resource to infer actual root-node label
names. Note that for the Country category, if we determine that
total is a header for computed values, we can remove it from
the category tree, leaving in this case a clean set of country
names for semantic matching; and, as we show in Section IV, a
way to identify operand values for the computed values in the
total row.

Our table-processing system properly segmented and
produced a classification table for 198 of the 200 tables in our
heterogeneous corpus (the two contained errors, duplicate
header labels, making indexing non-unique). All numeric data
values were parsed correctly. Factoring succeeded on all 21 of
the non-trivial, multi-category row (7) and column (14)
headers.

III. COMPUTATIONAL KEYWORDS

The appearance of keywords, such as total and %, often
suggest both the location and function of a computation. Table
2 shows the distribution of seven case-independent keyword
stems commonly associated with computations in our
collection of 200 tables. These keywords appear in 79% of the
tables. Total and its synonym All are by far the most prevalent.
Aggregate keywords (total, all, average) appear significantly
more often in row headers, while non-aggregate keywords
(change, %, percent, balance) are much more common in
column headers. Among the tables with keywords, 59%
include single occurrences and 78% include at most two
occurrences.

Table 1. Distribution of 275 computational keywords.

Key-

word

Row

Headers

Column

Headers
Total

total 35% 21% 56%

all 11% 4% 15%
average 3% 1% 4%

% 0% 7% 7%

percent 2% 4% 6%
change 3% 8% 11%

balance 0% 1% 1%

Computational keywords do not necessarily denote
computed values. In a sample of 42 tables selected randomly
from our 200 tables, only 60% of the keywords correspond to
computed values (true positives); the rest are false positives
(e.g., “Total patents granted”). Moreover, only 70% of the
computed values occur with a keyword in the header. The table
in Fig. 2, for example, contains no computational keywords in
row headers indexing computed data values.

IV. WELL-FORMED COMPUTATIONAL PATTERNS

Summation over a column of data values, as in the first two
columns in Fig. 1, is a common computational pattern.
Formally, we may represent the pattern as

(total,Million$,Year) = ∑
Country data

(Country,Million$,Year)

where the triples index data cells, the summation over the
Country category omits the total row, and data is the
designator of a data value (as in Fig. 3).

Fig. 2 shows a common pattern for row-header hierarchies:
aggregates at a root over immediate children. Million$
aggregates are sums across the years, and %GNI aggregates are
averages across the years. The %GNI “totals” in Fig. 1 are
computed by a complex pattern of computing the GNI for each
country for each year, summing these GNI’s for each year, and
finally computing the %GNI as (GNI/Million$total)×100.

As an example of finding and verifying computed values in
tables, we wrote an SQL query that checks for the summation
computational pattern in Fig. 1 and also another query that
checks the complementary row-total pattern. Fig. 3 shows the
relational classification table generated for the Table in Fig. 1.
Since all classification tables have the same uniform schema,
we can write a single query to find computational patterns in
all tables and check the column (row) sum of the non-total
column (row) data values against the tabulated total.

We applied this total’s check query and its complement
query to all 198 tables for which classification tables were
generated. The results appear in Table 2. Some web tables
included non-numeric string values and some marked empty
cells or value-hidden cells with a non-numeric mark such as
“x” or “-”. Other tables included partial sums, or pseudo-totals
like “Total factor productivity”. A surprising number of tables
included one or more incorrect stated totals.

Table 2. Results of total-pattern SQL query.

Our sample of web tables 200

Well-Formed Tables 198

Tables with a single row header
that includes “Total” or “total”

72

 Column-sum pattern satisfied 23

 Exact match of computed sum 7

Tables with a single column header
that includes “Total” or “total”

47

 Row-sum pattern satisfied 21

 Exact match of computed sum 13

V. SUMMARY AND CONCLUSIONS

Ordinary tables are wonderfully well suited for human
assimilation, but in the world of Big Data facts must often be
assembled and agglomerated from multitudes of disparate and
heterogeneous tables. Increasing emphasis on data provenance,
integrity and verifiability accentuates the desirability of
separating independent data values from derived data values.
Because tables, and especially table headers, carry considerable
structure, syntactic and algorithmic methods can take us
surprisingly far towards table understanding and interpretation
and can add enormous value to petabytes of machine-readable,
but not yet machine-understandable, information.

REFERENCES
[1] V. Long, An Agent-Based Approach to Table Recognition and

Interpretation, Macquarie University PhD dissertation, May 2010.

[2] D.W. Embley, S. Seth, G. Nagy, “Clustering Header Categories
Extracted from Web Tables,” Procs. DR&R 2015, San Francisco,
California, February 2015.

[3] D. W. Embley, M. Krishnamoorthy, G. Nagy, and S. Seth, “Factoring
Web Tables,” K.G. Mehrotra et al. (Eds.): IEA/AIE 2011, Part I, LNAI
6703, pp. 253–263, 2011. © Springer-Verlag Berlin Heidelberg 2011.

