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I. INTRODUCTION 

Automated end-to-end table interpretation requires not only 
discovery of a table’s structure—its row and column headers 
and how they index the data values—but also which of the 
table’s data values are computed and how they are computed 
from other data values. This was demonstrated by V. Long on 
simple financial reports [1]. Automated discovery of more 
complex table structure is non-trivial but once discovered it 
provides valuable structural and keyword clues that lead to the 
discovery of a table’s computational formulas. Verification of 
candidate computational formulas requires applying operator 
functions to check computed values. 

For automated data analysis, computed values, including 
aggregates like the sums in the first two columns in Fig. 1, 
should be clearly identified as derived values. Our approach to 
discovering and verifying computational properties of tables is 
based on definitions of well-formed table structure (row and 
column headers and their relationship to the data values they 
index), header keywords such as “total”, “average”, and 
“percent difference”, and well-formed computational layout 
patterns such as column aggregates in Fig. 1 and aggregates 
associated with parent-node labels in Fig. 2.  

II. WELL-FORMED TABLE STRUCTURE

Formally defined (see [2]), well-formed tables have n (n ≥ 
2) header category trees (often degenerate) whose root to leaf
header paths uniquely index the table’s data values. In Fig. 1, 
the three category trees are (Country, (Norway, Germany, 
total)), (Year, (2004, 2005)), (Assistance, (Million$, %GNI)). 
The data value 2 199 is indexed by Country.Norway, 
Year.2004, Assistance.Million$. 

The table-structure processing steps are as follows: 

Fig. 1                                      Fig. 2 

(1) Segment the table to identify row and column headers, 
data values, and ancillary information like table title, 
footnotes, notes, and empty cells. 

(2) Parse numeric fields to facilitate computations. 

(3) Classifies each cell. 

(4) Factor each header to reveal category trees. 

Fig. 3 shows part of the classification table (as a relational 
database table) obtained by the first three structure-processing 
steps for the table in Fig. 1. Note that the Million$ values in 
Fig. 1 are formatted with a space-separator for thousands. In 
general, the parse must recognize numbers in all forms and 
convert them appropriately. 

Fig. 3. Generated classification table. 

In Step 4, the category-trees are discovered by factoring a 
sum-of-products expression from an indexing column or row 
header [3]. In column headers, each column is a product of 
labels, which are summed across the columns. For the column 
header in Fig. 1, the expression Million$×2004 + 
Million$×2005 + %GNI×2004 + %GNI×2005 factors as 
(Million$ + %GNI) × (2004 + 2005); and for the row header, 
the expression (Norway + Germany + total) is already in 

Fig. 1. Table 22 in our 200-table 
corpus, with some shortened text and 

reduced to two countries. 

Fig. 2. Table with sums and 

averages associated with 

hierarchical parent nodes. 
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factored form. Each of these parenthesized expressions 
represents a category, which with the addition of a header root 
node becomes a category tree. In our implementation we add 
virtual root nodes since we do not yet match the category 
values with a semantic resource to infer actual root-node label 
names. Note that for the Country category, if we determine that 
total is a header for computed values, we can remove it from 
the category tree, leaving in this case a clean set of country 
names for semantic matching; and, as we show in Section IV, a 
way to identify operand values for the computed values in the 
total row. 

Our table-processing system properly segmented and 
produced a classification table for 198 of the 200 tables in our 
heterogeneous corpus (the two contained errors, duplicate 
header labels, making indexing non-unique). All numeric data 
values were parsed correctly. Factoring succeeded on all 21 of 
the non-trivial, multi-category row (7) and column (14) 
headers. 

III. COMPUTATIONAL KEYWORDS 

The appearance of keywords, such as total and %, often 
suggest both the location and function of a computation. Table 
2 shows the distribution of seven case-independent keyword 
stems commonly associated with computations in our 
collection of 200 tables. These keywords appear in 79% of the 
tables. Total and its synonym All are by far the most prevalent. 
Aggregate keywords (total, all, average) appear significantly 
more often in row headers, while non-aggregate keywords 
(change, %, percent, balance) are much more common in 
column headers. Among the tables with keywords, 59% 
include single occurrences and 78% include at most two 
occurrences. 

Table 1. Distribution of 275 computational keywords. 

Key-

word 

Row 

Headers 

Column 

Headers 
Total 

total 35% 21% 56% 

all 11% 4% 15% 
average 3% 1% 4% 

% 0% 7% 7% 

percent 2% 4% 6% 
change 3% 8% 11% 

balance 0% 1% 1% 

Computational keywords do not necessarily denote 
computed values. In a sample of 42 tables selected randomly 
from our 200 tables, only 60% of the keywords correspond to 
computed values (true positives); the rest are false positives 
(e.g., “Total patents granted”).  Moreover, only 70% of the 
computed values occur with a keyword in the header. The table 
in Fig. 2, for example, contains no computational keywords in 
row headers indexing computed data values. 

IV. WELL-FORMED COMPUTATIONAL PATTERNS 

Summation over a column of data values, as in the first two 
columns in Fig. 1, is a common computational pattern. 
Formally, we may represent the pattern as 

(total,Million$,Year) = ∑
Country data

(Country,Million$,Year)
 

where the triples index data cells, the summation over the 
Country category omits the total row, and data is the 
designator of a data value (as in Fig. 3). 

Fig. 2 shows a common pattern for row-header hierarchies: 
aggregates at a root over immediate children. Million$ 
aggregates are sums across the years, and %GNI aggregates are 
averages across the years. The %GNI “totals” in Fig. 1 are 
computed by a complex pattern of computing the GNI for each 
country for each year, summing these GNI’s for each year, and 
finally computing the %GNI as (GNI/Million$total)×100. 

As an example of finding and verifying computed values in 
tables, we wrote an SQL query that checks for the summation 
computational pattern in Fig. 1 and also another query that 
checks the complementary row-total pattern. Fig. 3 shows the 
relational classification table generated for the Table in Fig. 1. 
Since all classification tables have the same uniform schema, 
we can write a single query to find computational patterns in 
all tables and check the column (row) sum of the non-total 
column (row) data values against the tabulated total.   

We applied this total’s check query and its complement 
query to all 198 tables for which classification tables were 
generated. The results appear in Table 2. Some web tables 
included non-numeric string values and some marked empty 
cells or value-hidden cells with a non-numeric mark such as 
“x” or “-”. Other tables included partial sums, or pseudo-totals 
like “Total factor productivity”. A surprising number of tables 
included one or more incorrect stated totals. 

Table 2. Results of total-pattern SQL query. 

Our sample of web tables 200 

Well-Formed Tables 198 

Tables with a single row header 
that includes “Total” or “total” 

72 

      Column-sum pattern satisfied 23 

      Exact match of computed sum 7 

Tables with a single column header 
that includes “Total” or “total” 

47 

      Row-sum pattern satisfied 21 

      Exact match of computed sum 13 

V. SUMMARY AND CONCLUSIONS 

Ordinary tables are wonderfully well suited for human 
assimilation, but in the world of Big Data facts must often be 
assembled and agglomerated from multitudes of disparate and 
heterogeneous tables. Increasing emphasis on data provenance, 
integrity and verifiability accentuates the desirability of 
separating independent data values from derived data values. 
Because tables, and especially table headers, carry considerable 
structure, syntactic and algorithmic methods can take us 
surprisingly far towards table understanding and interpretation 
and can add enormous value to petabytes of machine-readable, 
but not yet machine-understandable, information. 
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