
TABLE HEADERS:
AN ENTRANCE TO THE DATA MINE

George Nagy
Electrical, Computer, and Systems Engineering

Rensselaer Polytechnic Institute
Troy, NY, USA

nagy@ecse.rpi.edu

Sharad Seth
Computer Science and Engineering

University of Nebraska-Lincoln
Lincoln, NE,USA
seth@cse.unl.edu

Abstract—Algorithmic methods are demonstrated for
information extraction from table header elements,
including data categories and data hierarchies. The table
headers are found with the Minimum Index Point Search
algorithm. The header-path alignment and header
completion algorithms yield database-ready table content
and configuration statistics on a random sample of 400
diverse tables with ground truth and 1120 tables without
ground truth from international statistical data sites.

Keywords—table headers; category hierarchies; spanning cells

I. INTRODUCTION
Almost any known quantitative information can be found in

some table on the web. Web tables are semi-structured data
types, designed and formatted for human reading convenience.
While the table formats that have evolved for printing and
publishing are admirably suited for quick human interpretation
of a single table, the cornerstone of Big Data analytics is
structured, platform-independent data representation across
diverse sources. The success of ontological approaches to
decision support is also directly dependent on the extent,
accuracy and completeness of the underlying data.
Consequently research on the conversion of tables into
structured collections of relational tables and Resource
Definition Framework (RDF) triples is of growing interest.

Estimates of the number of tables accessible to computer
search (mainly spreadsheets, HTML and PDF tables) range
into the billions. Only a minority originate in scanned
documents, which until recently were the focus of most table
research. The rest are either static computer-generated tables or
dynamic on-demand tables, derived in either case from a
database. In spite of the evident potential value of information
extraction from tables, we know of only a few curated, publicly
available table corpora. Quantitative analysis of such corpora
can help prioritize pertinent research.

The essential structural characteristic of tables is the
indexing relationship between row and column headers and
data values. We present algorithms for detailed analysis of
table headers that (1) augment our previously reported methods
of converting ordinary tables to relational tables and RDF
triples and (2) automate the derivation of the relevant

descriptive statistics and observations. We report experimental
results on 200 tables from six international agencies that we
collected several years ago (cf. http://www.iapr-
tc11.org/mediawiki/index.php/Datasets_List) and on a corpus
of 1320 Statistical Abstracts of the United States (SAUS)
spreadsheets posted by Professor Michael Cafarella in 2013.
Both corpora have been used by other groups. Although
research results have been published on much larger datasets,
these have not been released for public access.

We consider the CSV (Coma Separated Values) file format
as the greatest common denominator of all table formats,
including scanned printed tables, word-processing or page
layout formats, HTML, proprietary spread sheets and
minimally formatted ASCII tables from email and other text
transformed into grid tables by earlier methods. Requiring only
universally accessible CSV input gives our table processing
methods the widest applicability. We therefore convert HTML
and spreadsheets culled from the web into CSV grid files.

Although tables are laid out in two spatial dimensions, they
can, as first pointed out by X. Wang, represent any number of
data categories or logical dimensions. From a database
perspective, tables are therefore equivalent to an n-cube. As
shown in [1], we can extract such categories and export them to
relational databases and RDF triples. The current work extends
the analysis to the hierarchy of labels within each category.

Another aspect of our methodology that further
differentiates it from earlier work is the retention of the original
cell coordinates through the entire analysis. This not only
facilitates visual verification but also provides traceable
connections (provenance) between header and data cells, and
between footnote references and footnotes.

II. PRIOR WORK
We first acknowledge Wang’s pioneering research on the

two-dimensional representation of multi-category data
hierarchies that has long guided our approach to table
understanding [2]. Hurst and Douglas were early advocates of
converting tables into relational form [3]. Hurst provided a
taxonomy of category attributes and emphasized the
importance of natural language analysis for table
understanding, including the syntax of within-cell strings [4].
He presented many examples of thought-provoking tables [5].

George
Sticky Note
in Procs. ICPR 2016, Cancun, Mexico

This work was reviewed and augmented by Costa e Silva et al.
[6], who analyzed prior work in detail in terms of contributions
to the tasks of table location, segmentation, functional analysis
(tagging cells as data or attribute), structural analysis (header
index identification), and interpretation (semantics).

Partially overlapping surveys of earlier table research
include [7,8]. Kim and Lee reviewed web table analysis from
2000 to 2006 and found logical hierarchies in HTML tables
using cell formats and syntactic coherency [9]. They extracted
the table caption and divided spanning cells correctly. Like us,
but in contrast to many other researchers, they handled vertical
and horizontal column headers symmetrically.

Pivk et al. “cleaned and canonicalized” HTML tables into a
matrix representation similar to our grid table, but they
depended on cell formats (letters, numerals, capitalization, and
punctuation) rather than indexing properties [10]. Like Hurst
they labeled cells as access or data cells and assembled them
into a Functional Table Model. The final output was a semantic
(F-logic) frame constructed with WordNet. Their complex
evaluation scheme was hampered by human disagreement over
the appropriate description of the frames

After Halevy, Norvig, and Pereira pointed out the
importance of sheer data size [11], Google researchers
collected and analyzed (necessarily with very limited manual
verification) millions of tables harvested from the web [12,13].
Their general approach has been to treat table rows as tuples
with attributes specified by the top row. Extending this work
beyond simple relational tables, Adelfio and Samet generated
interpretations for spreadsheet and HTML tables [14]. Using
Conditional Random Fields (CRF), they classified each table
row as header, data, title, group header, aggregate, non-
relational metadata, or blank. With their test set of 1048
spreadsheet tables and 928 HTML tables, they achieved an
accuracy of 76.0% for classifying header and data rows for
spreadsheet tables and 85.3% for HTML tables, and for
classifying all rows, 56.3% and 84.6% respectively. These
heuristic approaches, unlike ours, do not reveal the precise
alignment of column-header cells with data elements.
Furthermore, they depend on appearance features, whereas we
use indexing properties for further analysis.

Also heavily row-oriented is V. Long’s analysis of a large
sample of tables from Australian Stock Exchange financial
reports [15]. A valuable aspect of this work is the detection and
verification of the scope and value of aggregates like totals,
subtotals, and averages. The analysis is based on a blackboard
framework with a set of cooperating agents. Other work
dealing with aggregates in tables includes [16].

Chen and Cafarella transformed spreadsheet tables into
relational database tables [17]. Like Adelfio and Samet and
Pinto et al. [18], they adapt a CRF to label each row as title,
header, data, and footnote, using similar row features. (Rows
labeled as “data” also include the cells in the stub, hence to
distinguish between the two, they must assume, unlike us, that
the data region is purely numeric.) Their hierarchy extractor
builds parent-child candidates of cells in the header region
using formatting, syntactic, and layout features. The candidate
list is pruned by an SVM classifier. In the experiments reported

below we benefited from their observations and insights and
gratefully made use of their posted SAUS corpus [19].

Logical analysis of table header structure, as we do here,
has received scant attention in the literature. Fang et al. identify
a set of features to segregate and detect table headers in a
random sample drawn from the CiteSeer’s PDF files [20]. The
rule-based table segmentation and header analysis of [21]
includes experiments on our data with similar canonical output.

Interactive methods based on expert advice and user
feedback [22,23,24] will remain of interest until wholly
automated and error-free table analysis is demonstrated.

The foundations for analyzing table headers that we
developed over the years have been published in a succession
of conference papers cited in our report at ICPR 2014 [25] and
updated in our recent IJDAR article [1].

III. TABLE STRUCTURE
The most important part of a table, and the subject of most

prior research to date, is the principal region that consists of
the stub head, column header, row header and data The
essential structure of human-readable tables is that every data
cell is indexed by a sequence of header-path cells in the row
header and by a sequence of header-path cells in the column
header. Our table analysis is based on algorithmic
determination of this indexing structure [26]. It is the analysis
and exploitation of the indexing structure, instead of
dependence on formatting and appearance features that
differentiates our work from all other prior table research that
we are aware of.

The size of the stub head, at the top-left of the principal
region, is determined by the height of the column header and
the width of the row header. The bottom-right corner of the
stub header is the minimum indexing point. The rest of the table
(ancillary regions) may include a table title, rows or columns
of notes (often source, date of origin or explanations), footnote
references, footnotes and footnote markers, and empty rows or
columns for improved legibility. Notes may occur anywhere. In
very long or wide tables, headers may be repeated for visibility
under scrolling. Peculiarities of the table generation process
may produce superfluous external empty rows or columns.

Conversion to CSV loses most formatting information:
color, typeface, type size, and style (bold, italic, small caps).
When a spanning cell is split into elementary cells, its content
is copied into the top-left elementary cell and the other
elementary cells are left empty. The textual and numerical
content of other cells are retained as within-cell strings. Excel
right-justifies numeric strings unless they contain thousands-
separators symbols, and displays some date strings as text.

The indexing structure is preserved by the above
transformation, but the precise alignment of the labels of
subdivided spanning cells requires algorithmic prefixing. Our
Minimum Indexing Point Search (MIPS) algorithm finds the
minimal indexing headers (i.e., the minimum number of
rows/columns in the column/row header) that suffice to index
the data [26]. However, the column headers often contain
additional information that can be recovered by header

extension via analysis of spanning cell configuration. Prefixing
(§IV), header extension (§V), and detailed table configuration
statistics (§VI) are the main contributions of this report.

IV. PREFIXING
In an ideal table, the labels necessary to uniquely index any

data cell are directly to the left or above that data cell. Header
labels within the same header row or column may be repeated,
like “First Quarter” for different years. In column headers the
distinguishing labels can be placed in the row above the one
that contains repeated labels. However, table designers are
reluctant to add extra columns to the row header, and therefore
usually insert the distinguishing labels in the same column,
with some formatting convention, like indentation, bold face,
color, or type case and size. These conventions vary from
source to source (and even within the same source), are often
inconsistent and, except for some indentation, cannot be
preserved in CSV files of ASCII or Unicode strings.

In order to avoid depending on formatting or appearance
features for locating the minimal indexing headers, our
algorithm prefixes each repeated label with a unique label.
Even though only a few labels may be repeated, an entire
column or row must be added in order to maintain the
rectangularity of the table grid. For deeper label hierarchies,
more than one row or column must be added. Although the
process is the same for row and column headers, we illustrate it
only for row headers where it is far more often necessary.

The prefixing algorithm processes successive columns left
to right as long as the current columns contain any duplicate
rows,	
 as	
 shown	
 by	
 the	
 following	
 pseudo-­‐code.	
 A check (not shown)
for a new column identical to some previous column prevents a
conceptually possible infinite loop.	

Prefix(RowHeader)	

#	
 RowHeader	
 is	
 an	
 Nrows	
 ×	
 Ncols	
 array	
 of	
 table	
 cell	
 values.	
 	

#	
 PrefixedRowHeader,	
 the	
 return	
 argument,	
 has	
 no	
 duplicate	
 rows.	

#	
 Prefixing	
 the	
 rightmost	
 column	
 replaces	
 it	
 by	
 two	
 new	
 columns,	
 	

	
 the	
 second	
 of	
 which	
 can	
 also	
 be	
 prefixed.	

NLastCol	
 ←	
 Ncols	
 	
 #	
 Ncols	
 is	
 the	
 number	
 of	
 columns	
 in	
 RowHeader	

while	
 there	
 are	
 any	
 duplicates	
 among	
 the	
 rows	
 of	
 RowHeader:	
 	

LastCol	
 ←	
 null;	
 	
 	
 	
 NewCol	
 ←	
 null;	
 	
 	
 	
 Prefix	
 ←	
 ‘NOPREFIX’	

LastCol	
 ←	
 RowHeader(:,	
 NLastCol)	
 	
 	

SinglesList	
 ←	
 set	
 of	
 cell	
 values	
 that	
 occur	
 only	
 once	
 in	
 LastCol	

for	
 krow	
 =	
 1:Nrows:	
 	
 #	
 Check	
 for	
 duplicates	
 in	
 rightmost	
 column	
 	

Target	
 ←	
 RowHeader(krow,	
 NLastCol)	

if	
 Target	
 is	
 in	
 SinglesList:	
 	
 	
 	
 Prefix	
 ←	
 Target;	

Append	
 Target	
 to	
 LastCol;	
 	
 	
 	
 Append	
 ‘DITTO’	
 to	
 NewCol	

else:	
 	
 	
 Append	
 Prefix	
 to	
 LastCol;	
 	
 	
 	
 	
 Append	
 Target	
 to	
 NewCol	

end	
 if-­‐else	
 	
 	
 #	
 Target	
 not	
 in	
 Singles,	
 therefore	
 prefixed.	

end	
 for	
 	
 #	
 new	
 columns	
 constructed	
 for	
 RowHeader	

delete	
 RowHeader(NLastCol);	
 	
 	
 append	
 LastCol	
 to	
 RowHeader	

append	
 NewCol	
 to	
 RowHeader;	
 	
 	
 NLastCol	
 ←	
 NLastCol	
 +	
 1	

end	
 while	

PrefixedRowHeader	
 ←	
 RowHeader	

Return	
 PrefixedRowHeader	

	

Fig. 1 shows an HTML table with a column added by
prefixing to allow indexing the data despite duplicate labels.
The four categories of the table in Fig. 2 (families/individuals,
quantiles, years, and transfers) are found after prefixing
repeated row-header labels with “Economic Families” and
“Unattached Individuals”.

Fig. 1. A web table from Statistics Finland (left) and part of the the two-
column row header created by prefixing (right). “1 - 2 storey” is one of
several duplicate labels that are prefixed by a previous unique label. The
printout truncates all labels to 12 characters.

Government	
 transfers	
 and	
 income	
 tax	

(Government	
 transfers)

2006 2007
Government	
 transfers
Average	
 	
 $	

constant	

2007

Implicit	

transfer	

rates1	
 %

Shares	
 % Average	
 $	

constant	

2007

Implicit	

transfer	

rates1	
 %

Shares	
 %

Economic	
 families,	
 two	
 people	
 or	
 more8900 10.7 100 9000 10.4 100
Lowest	
 quintile 12500 47.2 28.1 12800 45.7 28.4
Second	
 quintile 11000 22.8 24.7 11300 22.7 25.1
Third	
 quintile 9200 13.2 20.7 9200 12.9 20.4
Fourth	
 quintile 7000 7.2 15.6 6900 6.9 15.4
Highest	
 quintile 4,800E 2.7E 10.9E 4900 2.6 10.8
Unattached	
 individuals5500 15.8 100 5700 15.9 100
Lowest	
 quintile 3600 49 13.2 4300 53.3 15
Second	
 quintile 9100 54.3 32.7 9600 55.7 33.7
Third	
 quintile 8000 31 28.9 7300 27.6 25.9
Fourth	
 quintile 4300 10.6 15.6 4700 11.3 16.5
Highest	
 quintile 2700 3.2 9.6 2600 3 9
E	
 :	
 use	
 with	
 caution.
Note:	
 After-­‐tax	
 income	
 quintiles	
 constitute	
 one	
 method	
 of	
 categorising	
 a	
 population	
 by	
 income.	
 The	
 lowest	
 quintile	
 represents	
 the	
 20%	
 of	
 the	
 population	
 whose	
 income	
 is	
 lowest.	
 By	
 the	
 same	
 token,	
 the	
 highest	
 quintile	
 represents	
 the	
 20%	
 of	
 the	
 population	
 whose	
 income	
 is	
 highest.
1.	
 The	
 "implicit"	
 rate	
 of	
 either	
 transfers	
 or	
 taxes	
 demonstrates	
 the	
 relative	
 importance	
 of	
 transfers	
 received	
 or	
 taxes	
 paid.	
 For	
 a	
 given	
 individual	
 or	
 family,	
 the	
 implicit	
 rate	
 is	
 the	
 amount	
 of	
 transfers	
 or	
 taxes	
 expressed	
 as	
 a	
 percentage	
 of	
 their	
 total	
 income.
Source:	
 Statistics	
 Canada,	
 CANSIM,	
 table	
 (for	
 fee)	
 202-­‐0301	
 and	
 Catalogue	
 no.	
 75-­‐202-­‐X.

Fig. 2. CSV version of a four category HTML table from Canada Statistics.
Cells with footnote references are hilighted yellow.

f i nal _R_header :
[' Tot al ' , ' DI TTO
']
[' Tot al ' , ' 1 - 2
s t or e y']
[' Tot al ' , ' 3 - 9
s t or e y']
[' Tot al ' , ' 10 +
s t or e ys ']
[' Tot al ' , ' unknown
numb']
[' De t ac he d hi o' , ' DI TTO
']
[' At t ac he d hou' , ' DI TTO
']
[' Bl oc ks of f l ' , ' DI TTO
']
[' Bl oc ks of f l ' , ' 1 - 2
s t or e y']
[' Bl oc ks of f l ' , ' 3 - 9
s t or e y']
[' Bl oc ks of f l ' , ' 10 +
s t or e ys ']
[' Bl oc ks of f l ' , ' unknown
numb']
[' Ot he r t han r ' , ' DI TTO
']
[' Ot he r t han r ' , ' 1 - 2
s t or e y']
[' Ot he r t han r ' , ' 3 - 9
s t or e y']
[' Ot he r t han r ' , ' 10 +
s t or e ys ']
[' Ot he r t han r ' , ' unknown
numb']

The column header needs no prefixing because after being
copied into the empty cells to their right (cf. Section V), the
unique 2006 and 2007 labels distinguish the duplicate labels in
the fifth row. The program also finds the two references to
footnote E and to footnote 1, and labels all the notes rows. Here
we can use only very small tables for illustration.

V. SPANNING CELLS AND HEADER EXTENSION
Spanning Cells: The information about which groups of cells
constitute spanning cells in the original table is lost during the
CSV conversion. Although a left filling algorithm, which fills
each empty cell with the label of the nearest non-empty cell in
the same row, is sufficient for segmentation, it cannot correctly
recreate the spanning cells when the header includes both
horizontal and vertical spanning cells, as illustrated in Fig. 3.
The correct filling for this example, using the pseudo-code
below, is shown in Fig. 4. 	

Fill(Table):	

#	
 Table	
 is	
 the	
 original	
 table	
 with	
 surrounding	
 blank	
 rows/columns	
 removed.	
 	

#	
 Row_range	
 	
 (Col_range)	
 are	
 the	
 set	
 of	
 non-­‐empty	
 rows	
 (columns)	
 	

	
 in	
 the	
 table,	
 in	
 top-­‐to-­‐bottom	
 (left-­‐to-­‐right)	
 order.	
 	

	

for	
 c	
 in	
 Col_range:	
 	
 flag	
 =	
 	
 	
 #	
 Top	
 Fill	

	
 for	
 r	
 in	
 Row_range:	

	
 	
 if	
 Table[r][c]	
 !=	
 null:	
 top_fill	
 =	
 Table[r][c];	
 flag	
 =	
 1	

	
 	
 else	
 if	
 flag	
 ==	
 1:	
 Table[r][c]	
 =	
 top_fill	

	
 	
 if	
 r+1	
 in	
 list_empty_rows:	
 flag	
 =	
 0	

for	
 r	
 in	
 Row_range:	
 	
 flag	
 =	
 0	
 	
 #	
 Left	
 Fill	

	
 for	
 c	
 in	
 Col_range:	

	
 	
 if	
 Table[r][c]	
 !=	
 null:	

	
 	
 	
 if	
 (Table[r+1][c]	
 	
 !=	
 Table[r][c])	
 or	
 (Table[r-­‐1][c]	
 !=	
 Table[r][c]):	

	
 	
 	
 	
 left_fill	
 =	
 Table[r][c];	
 flag	
 =	
 1	

	
 	
 	
 else:	
 flag	
 =	
 0	

	
 	
 else	
 if	
 flag	
 ==	
 1:	
 Table[r][c]	
 =	
 left_fill	

	
 	
 if	
 c+1	
 in	
 list_empty_cols:	
 flag	
 =	
 0	

return	
 Table	

After the columns are filled, the algorithm shifts to filling
the rows from top to bottom. For every row, an initial group of
leftmost blank cells, if any, is skipped. Then, the label of a non-
blank cell that differs from the label of the cell immediately
below it is used to fill the group of any blank cells immediately
to its right.

A row of blank cells (for column filling) or a column of
blank cells (for row filling) is treated as a barrier to the filling
described above. That is, it resets the process to the beginning
of the column or row.

Header Extension: The minimal headers produced by our
segmentation algorithm do not always capture their full extent.
For the column header of the SAUS-200 table shown in Fig. 5,
for example, MIPS identifies the column header as the blue
cells in row 8 because they suffice to index the data columns.
The header extension algorithm identifies any additional
neighboring rows to create the intended header. In the example,
rows 7 and 9, shown in tan, are added to the header found by
MIPS.

The input to the algorithm is a CSV table and the critical
cells CC1 and CC2 that define the extent of the stub head
determined by MIPS. The header extension of rows above
CC1 is carried out one row at a time using the following rule:

Add the new row if it does not consist of cells with
identical values and if it adds at least one non-blank cell that
has a value different from the cell immediately below it.

The header extension of rows below CC2 is done using a
symmetrical rule.

Fig. 3. The left fill algorithm, applied to the Troy Table 0058, with the filled labels shown in red. Note: Excel renders Grades “1-6” in cell D4
and “7-9” in cell E4 as dates, but they can be preserved correctly if the conversion from HTML is carried out into text-formatted Excel CSV tables..

Fig. 4. The vertical-first filling of the Troy Table 0058 that captures both the horizontal spanning cell “Pupils” and the other vertical spanning cells.

Fig. 5. Column header for the SAUS Table 0334 determined by MIPS (blue)
and extended to include additional rows (hilighted tan).

VI. EXPERIMENTAL RESULTS
Table 1 shows our observations on the CSV versions of 200

(“Troy”) HTML tables from 6 international statistical sites, 200
randomly selected SAUS spreadsheet tables with ground truth,
and 1120 SAUS spreadsheets for which we don’t have ground
truth. VeriClick [23] allows rapid and accurate interactive
ground-truthing of segmentation for tables that fit on the
screen. However, ground-truthing some SAUS tables with
hundreds of rows and columns and complex headers proved to
be extremely time consuming and required resolving many
disagreements between independent human observers. Over 1.5
million table cells were classified into ten categories.

On average, the tables in the three data sets have three
times as many rows as columns. The SAUS tables are about
twice as wide and 2.5 times as long as the HTML tables. The
average number of data cells (85) is about a third the total
number of cells (290) in the csv version of the HTML tables,
and about one half (676/1184) in the spreadsheets. The largest
tables (with 183 columns and 828 rows, respectively) have 10-
25 times n cells as the average. Run time is roughly
proportional to the number of cells: about 12 HTML tables per
second on a 2.4 Ghz Dell Optiplex under Windows 7 running
Python 2.7.

More than 10% of both HTML and spreadsheet tables have
multi-category headers, with multiple column categories more
common than multiple row categories. Row headers with three
or more columns and column headers with three or more rows
are far more frequent in spreadsheets than in HTML tables.

Discriminating labels above or below the minimal indexing
column headers were found in 2 Troy tables and 44 SAUS_200
tables. These headers were extended by adding the necessary
rows. We found no instances of row headers that require
extension.

We converted to CSV only the first worksheet of the SAUS
XLSX workbook files. The footnotes are on separate
worksheets and never appear in our CSV files. The program
found 56 Troy tables with footnotes ant 158 references to the
footnotes. Fifteen footnote markers did not appear in the tables
above them or were missed. Our HTML tables have an average
of 5 note rows, with typically only one filled cell in each row.

Spreadsheets average 8 note rows and 1 notes column, and also
have many empty rows and columns.

The segmentation of HTML row and column headers and
data region was 98% correct versus 96% for the spreadsheets.
The Minimum Indexing Point was located with 99% accuracy
on both sets. The errors in delimiting the data region are due to
a few notes rows mistaken for data or vice versa. Since all of
the above observations (except for the gross size of the tables)
are based directly on the results of the segmentation, we
believe that they are as reliable as the segmentation.
Furthermore, the consistency of the header sizes and of
prefixing and category counts suggests that the segmentation
accuracy of the 1120 tables without ground truth does not
differ much from that of the validated 200 SAUS tables.

TABLE I. CHARACTERISTICS OF SEGMENTED TABLES
Observations Troy SAUS_

200
SAUS_

1120
Number of tables 200 200 1120
 Number of tables processed 199 198 1107
 Trivial tables 1 2 5
Segmentation errors

 Minimum indexing point 2 2 NA
 Critical cells 4 9 NA
Gross size of tables

 Rows average
 (maximum)

25
(183)

64
(453)

61
(828)

 Columns average
 (maximum)

11
(80)

17
(81)

17
(201)

 Cells average
 (maximum)

290
(7320)

1184
(14094)

1117
(21294)

Net size of tables
 Data rows average 15 45 41

 Data columns average 5 15 15
 Data cells average 85 676 664
Categories

 Multi-category row headers 7 12 75
 Multi-category col headers 14 13 105
Prefixed headers

 Row headers 23 63 378
 Column headers 3 0 7
Size of headers

 1-col 1-row header 145 56 273
 Row headers with ≥3 columns 1 9 51
 Column headers with ≥3 rows 3 44 301
 Tables with extended headers 2 44 192
Footnotes

 Footnoted tables 56 NA NA
 Reference markers (total) 91 NA NA
 References found (total) 158 NA NA
 References not found (total) 15 NA NA
Notes

 Rows (average) 5.13 8.00 8.45
 Columns (average) 0.06 0.89 0.73

 Total run time (sec) w/o file output 15.6 61.9 308.2

In total, the program segmented 1504 of 1520 tables. Of the
remaining 16, 8 were trivial tables (with only one row or
column of data) that the program did not attempt to analyze.
Visual examination of the remaining 8 revealed some source
errors, as did the 4 tables with MIP errors. Two of the SAUS
worksheets had side-by-side tables, some had repeated columns
or undifferentiable repeated column labels, and we found two
spreadsheets under constructions with repeated data rows and
informal notes to staff members.

VII. SUMMARY
Tables provide compact data display with subtle means of

representing complex relationships. Formalization and
exploitation of intrinsic structural table constraints opens the
way for algorithmic conversion of vast amounts of tabulated
data to uniform standard data analysis formats.

Segmentation and classification based on the minimum
indexing point provide effective means for inferring category
hierarchies and explicit header-data relationships, and for
labeling ancillary table constituents. In contrast to recent
machine learning approaches based on formatting and
appearance features, methods based on 2-D table syntax offer
the advantage of language, domain, and format independence.

Experiments on 1520 diverse tables demonstrate a practical
and reliable solution to important aspects of information
extraction from HTML tables and spreadsheets.

We are confident that algorithmic analysis can be extended
to scanned and OCR’d tables transformed to a CSV grid
format. It should be considered as a complement, rather than an
alternative, to published methods based on format and
semantics. For example, indexing cannot separate the header
from data when there is only a single row or a column of data,
and our program (and even the authors) are occasionally
stumped by the ambiguity of some notes or data cells.

Any claim of automatically derived descriptors raises
questions about the validity of the results. The accuracy of the
segmentation and category extraction, verified against
laboriously collected ground truth on a random subset of 400
heterogeneous tables, provides some confidence in the
applicability of the proposed algorithms to arbitrary tables. The
most important remaining task is to flag for human editors the
inevitable residue of tables that cannot be automatically parsed.

REFEREMCES

1 D.W. Embley, M. Krishnamoorthy, G. Nagy, and S. Seth, “Converting
Heterogeneous Statistical Tables on the Web to Searchable Databases,”
Int’l J. Document Analysis and Recognition, Vol. 19, 2, 119-138, June

2 X. Wang, Tabular abstraction, editing, and formatting, Ph.D. thesis,
University of Waterloo 1996.

3 M. Hurst, S. Douglas, “Layout and language: Preliminary investigations
in recognizing the structure of tables,” Procs. Int. Conf. Doc’t Analysis
& Recog’n (ICDAR’97), 1043–1047, 1997.

4 M. Hurst, “Towards a theory of tables,” 8 (2-3), Springer, Heidelberg,
66-86, 2006.

5 M. Hurst, The Interpretation of Tables in Texts. Ph.D. thesis, University
of Edinburgh, 2000.

6 A. Costa e Silva, A. M. Jorge and L. Torgo, “Design of an end-to-end

method to extract information from tables,” Int. J. Doc. Anal. Recognit.
8 (2-3), Springer, Heidelberg, 66-86, 2006.

7 R. Zanibbi, D. Blostein, J. R. Cordy: “A survey of table recognition,”
Int. J. Doc. Anal. Recognit., 7(1): 1-16, 2004.

8 D.W. Embley, D. Lopresti, M. Hurst, and G. Nagy, “Table
Processing Paradigms: A Research Survey,” Int. J. Doc. Anal.
Recognit. 8 (2-3), 66-86, Springer, June 2006.

9 Y-S Kim, K-Y Lee, “Extracting logical structures from HTML
tables,” Computer Standards & Interfaces, 30, 5 296-308, July 2008.

10 A. Pivk, P. Cimiano, Y. Sure, M. Gams,V. Rajkovic, R. Studer,
“Transforming arbitrary tables into logical form with TARTAR,”
Data & Knowledge Engineering 60, 567–595, 2007.

11 A. Halevy, P. Norvig, and F. Pereira, “The Unreasonable
Effectiveness of Data,” IEEE INTELLIGENT SYSTEMS.
March/April 2009.

12 P. Venetis, A. Halevy. J. Madhavan, M. Pasca, W. Shen, F. Wu, G.
Miao, C. Wu, “Recovering Semantics of Tables on the Web,”
Proceedings of the LDB Endowment, Vol. 4, No. 9, 2011.

13 H. Gonzalez, A. Y. Halevy, C. S. Jensen, A. Langen, J. Madhavan,
R. Shapley, W. Shen, J. Goldberg-Kidony, “Google Fusion Tables:
Web-Centered Data Management and Collaboration,” SIGMOD’10,
June 6–11, 2010, Indianapolis, Indiana, USA.2010.

14 M.D. Adelfio and H. Samet, “Schema Extraction for Tabular Data
on the Web,” Procs.The 39th International Conference on Very
Large Data Bases, (Proceedings of the VLDB Endowment, Volume
6, Number 6), Riva del Garda, Trento, Italy 26–30 August, 2013.

15 V. Long, An Agent-Based Approach to Table Recognition and
Interpretation, Macquarie University PhD dissertation, May 2010.

16 N. Astrakhantsev, “Extracting Objects and Their Attributes from
Tables in Text Documents,” Proceedings of the Institute for System
Programming Volume 21, 297-310., Moscow, Russia, 2011.

17 Z. Chen and M. Cafarella, “Automatic Web Spreadsheet Data
Extraction,” Proceedings of the 3rd International Workshop on
Semantic Search over the Web (SSW 2013), Riva del Garda,
Trento, Italy, 30 August 2013.

18 D. Pinto, A. McCallum, X. Wei, W.B. Croft, “Table extraction using
conditional random fields,” Procs 26th Annual Int. ACM SIGIR
Conference on R&D in Information Retrieval, 235–242 2003.

19 SAUS dataset: http://wwweb.eecs.umich.edu/db/sheets/datasets.html
(accessed 12/23/2015).

20 J. Fang, P. Mitra, Z. Tang, L. Giles, “Table Header Detection and
Classification,” Proceedings of the Twenty-Sixth AAAI Conference
on AI, 2012.

21[A.O. Shigarov et al. “Rule-Based Canonicalization of Arbitrary
Tables in Spreadsheets,” accepted, 22nd Int’l Conf. on Information
and Software Technologies, Druskininkai, Lithuania, October 2016,

22 N. Astrakev, D. Turdakov, N. Vassilieva, “Semi-automatic Data
Extraction from Tables,” Proceedings of the 15th All-Russian Conf.
on Digital Libraries: Advanced Methods and Technologies, Digital
Collection ― RCDL, Yaroslavl, Russia, 2013.

23 G. Nagy, M. Tamhankar, “VeriClick, an efficient tool for table
format verification,” Proc. SPIE 8297, Document Recognition and
Retrieval XIX, 82970M, January 23, 2012.

24 T. Kasar, T. K. Bhowmik and A. Belaid, “Table information
extraction and structure recognition using query patterns,”
Procs.13th International Conference on Document Analysis and
Recognition, ICDAR 2015, Vol. 1, pp. 1086-1080, 2015.

25 D.W. Embley, S. Seth, G. Nagy, “Transforming Web tables to a
relational database,” Procs. ICPR 2014, Stockholm, Sweden, 2014.

26 S. Seth, and G. Nagy, “Segmenting Tables via Indexing of Value Cells
by Table Headers,” Proceedings ICDAR 2013, Washington, D.C.,
August 2013.

