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Abstract—Algorithmic methods are demonstrated for 
information extraction from table header elements, 
including data categories and data hierarchies. The table 
headers are found with the Minimum Index Point Search 
algorithm. The header-path alignment and header 
completion algorithms yield database-ready table content 
and configuration statistics on a random sample of 400 
diverse tables with ground truth and 1120 tables without 
ground truth from international statistical data sites.  
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I.  INTRODUCTION 
Almost any known quantitative information can be found in 

some table on the web. Web tables are semi-structured data 
types, designed and formatted for human reading convenience. 
While the table formats that have evolved for printing and 
publishing are admirably suited for quick human interpretation 
of a single table, the cornerstone of Big Data analytics is 
structured, platform-independent data representation across 
diverse sources. The success of ontological approaches to 
decision support is also directly dependent on the extent, 
accuracy and completeness of the underlying data. 
Consequently research on the conversion of tables into 
structured collections of relational tables and Resource 
Definition Framework (RDF) triples is of growing interest. 

Estimates of the number of tables accessible to computer 
search (mainly spreadsheets, HTML and PDF tables) range 
into the billions. Only a minority originate in scanned 
documents, which until recently were the focus of most table 
research. The rest are either static computer-generated tables or 
dynamic on-demand tables, derived in either case from a 
database. In spite of the evident potential value of information 
extraction from tables, we know of only a few curated, publicly 
available table corpora. Quantitative analysis of such corpora 
can help prioritize pertinent research.  

The essential structural characteristic of tables is the 
indexing relationship between row and column headers and 
data values. We present algorithms for detailed analysis of 
table headers that (1) augment our previously reported methods 
of converting ordinary tables to relational tables and RDF 
triples and (2) automate the derivation of the relevant 

descriptive statistics and observations. We report experimental 
results on 200 tables from six international agencies that we 
collected several years ago (cf. http://www.iapr-
tc11.org/mediawiki/index.php/Datasets_List ) and on a corpus 
of 1320 Statistical Abstracts of the United States (SAUS) 
spreadsheets posted by Professor Michael Cafarella in 2013. 
Both corpora have been used by other groups. Although 
research results have been published on much larger datasets, 
these have not been released for public access.  

We consider the CSV (Coma Separated Values) file format 
as the greatest common denominator of all table formats, 
including scanned printed tables, word-processing or page 
layout formats, HTML, proprietary spread sheets and 
minimally formatted ASCII tables from email and other text 
transformed into grid tables by earlier methods. Requiring only 
universally accessible CSV input gives our table processing 
methods the widest applicability. We therefore convert HTML 
and spreadsheets culled from the web into CSV grid files.  

Although tables are laid out in two spatial dimensions, they 
can, as first pointed out by X. Wang, represent any number of 
data categories or logical dimensions. From a database 
perspective, tables are therefore equivalent to an n-cube. As 
shown in [1], we can extract such categories and export them to 
relational databases and RDF triples. The current work extends 
the analysis to the hierarchy of labels within each category. 

Another aspect of our methodology that further 
differentiates it from earlier work is the retention of the original 
cell coordinates through the entire analysis. This not only 
facilitates visual verification but also provides traceable 
connections (provenance) between header and data cells, and 
between footnote references and footnotes. 

II. PRIOR WORK 
We first acknowledge Wang’s pioneering research on the 

two-dimensional representation of multi-category data 
hierarchies that has long guided our approach to table 
understanding [2]. Hurst and Douglas were early advocates of 
converting tables into relational form [3]. Hurst provided a 
taxonomy of category attributes and emphasized the 
importance of natural language analysis for table 
understanding, including the syntax of within-cell strings [4]. 
He presented many examples of thought-provoking tables [5]. 
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This work was reviewed and augmented by Costa e Silva et al. 
[6], who analyzed prior work in detail in terms of contributions 
to the tasks of table location, segmentation, functional analysis 
(tagging cells as data or attribute), structural analysis (header 
index identification), and interpretation (semantics).  

Partially overlapping surveys of earlier table research 
include [7,8]. Kim and Lee reviewed web table analysis from 
2000 to 2006 and found logical hierarchies in HTML tables 
using cell formats and syntactic coherency [9]. They extracted 
the table caption and divided spanning cells correctly. Like us, 
but in contrast to many other researchers, they handled vertical 
and horizontal column headers symmetrically. 

Pivk et al. “cleaned and canonicalized” HTML tables into a 
matrix representation similar to our grid table, but they 
depended on cell formats (letters, numerals, capitalization, and 
punctuation) rather than indexing properties [10]. Like Hurst 
they labeled cells as access or data cells and assembled them 
into a Functional Table Model. The final output was a semantic 
(F-logic) frame constructed with WordNet. Their complex 
evaluation scheme was hampered by human disagreement over 
the appropriate description of the frames 

After Halevy, Norvig, and Pereira pointed out the 
importance of sheer data size [11], Google researchers 
collected and analyzed (necessarily with very limited manual 
verification) millions of tables harvested from the web [12,13]. 
Their general approach has been to treat table rows as tuples 
with attributes specified by the top row. Extending this work 
beyond simple relational tables, Adelfio and Samet generated 
interpretations for spreadsheet and HTML tables [14].  Using 
Conditional Random Fields (CRF), they classified each table 
row as header, data, title, group header, aggregate, non-
relational metadata, or blank.  With their test set of 1048 
spreadsheet tables and 928 HTML tables, they achieved an 
accuracy of 76.0% for classifying header and data rows for 
spreadsheet tables and 85.3% for HTML tables, and for 
classifying all rows, 56.3% and 84.6% respectively. These 
heuristic approaches, unlike ours, do not reveal the precise 
alignment of column-header cells with data elements. 
Furthermore, they depend on appearance features, whereas we 
use indexing properties for further analysis.  

Also heavily row-oriented is V. Long’s analysis of a large 
sample of tables from Australian Stock Exchange financial 
reports [15]. A valuable aspect of this work is the detection and 
verification of the scope and value of aggregates like totals, 
subtotals, and averages. The analysis is based on a blackboard 
framework with a set of cooperating agents. Other work 
dealing with aggregates in tables includes [16]. 

Chen and Cafarella transformed spreadsheet tables into 
relational database tables [17]. Like Adelfio and Samet and 
Pinto et al. [18], they adapt a CRF to label each row as title, 
header, data, and footnote, using similar row features. (Rows 
labeled as “data” also include the cells in the stub, hence to 
distinguish between the two, they must assume, unlike us, that 
the data region is purely numeric.) Their hierarchy extractor 
builds parent-child candidates of cells in the header region 
using formatting, syntactic, and layout features. The candidate 
list is pruned by an SVM classifier. In the experiments reported 

below we benefited from their observations and insights and 
gratefully made use of their posted SAUS corpus [19]. 

Logical analysis of table header structure, as we do here, 
has received scant attention in the literature. Fang et al. identify 
a set of features to segregate and detect table headers in a 
random sample drawn from the CiteSeer’s PDF files [20]. The 
rule-based table segmentation and header analysis of [21] 
includes experiments on our data with similar canonical output.  

Interactive methods based on expert advice and user 
feedback [22,23,24] will remain of interest until wholly 
automated and error-free table analysis is demonstrated.  

The foundations for analyzing table headers that we 
developed over the years have been published in a succession 
of conference papers cited in our report at ICPR 2014 [25] and 
updated in our recent IJDAR article [1]. 

III. TABLE STRUCTURE 
The most important part of a table, and the subject of most 

prior research to date, is the principal region that consists of 
the stub head, column header, row header and data The 
essential structure of human-readable tables is that every data 
cell is indexed by a sequence of header-path cells in the row 
header and by a sequence of header-path cells in the column 
header. Our table analysis is based on algorithmic 
determination of this indexing structure [26]. It is the analysis 
and exploitation of the indexing structure, instead of 
dependence on formatting and appearance features that 
differentiates our work from all other prior table research that 
we are aware of. 

The size of the stub head, at the top-left of the principal 
region, is determined by the height of the column header and 
the width of the row header. The bottom-right corner of the 
stub header is the minimum indexing point. The rest of the table 
(ancillary regions) may include a table title, rows or columns 
of notes (often source, date of origin or explanations), footnote 
references, footnotes and footnote markers, and empty rows or 
columns for improved legibility. Notes may occur anywhere. In 
very long or wide tables, headers may be repeated for visibility 
under scrolling. Peculiarities of the table generation process 
may produce superfluous external empty rows or columns. 

Conversion to CSV loses most formatting information: 
color, typeface, type size, and style (bold, italic, small caps). 
When a spanning cell is split into elementary cells, its content 
is copied into the top-left elementary cell and the other 
elementary cells are left empty. The textual and numerical 
content of other cells are retained as within-cell strings. Excel 
right-justifies numeric strings unless they contain thousands-
separators symbols, and displays some date strings as text.  

The indexing structure is preserved by the above 
transformation, but the precise alignment of the labels of 
subdivided spanning cells requires algorithmic prefixing. Our 
Minimum Indexing Point Search (MIPS) algorithm finds the 
minimal indexing headers (i.e., the minimum number of 
rows/columns in the column/row header) that suffice to index 
the data [26]. However, the column headers often contain 
additional information that can be recovered by header 



extension via analysis of spanning cell configuration. Prefixing 
(§IV), header extension (§V), and detailed table configuration 
statistics (§VI) are the main contributions of this report. 

IV. PREFIXING 
In an ideal table, the labels necessary to uniquely index any 

data cell are directly to the left or above that data cell. Header 
labels within the same header row or column may be repeated, 
like “First Quarter” for different years. In column headers the 
distinguishing labels can be placed in the row above the one 
that contains repeated labels. However, table designers are 
reluctant to add extra columns to the row header, and therefore 
usually insert the distinguishing labels in the same column, 
with some formatting convention, like indentation, bold face, 
color, or type case and size. These conventions vary from 
source to source (and even within the same source), are often 
inconsistent and, except for some indentation, cannot be 
preserved in CSV files of ASCII or Unicode strings. 

In order to avoid depending on formatting or appearance 
features for locating the minimal indexing headers, our 
algorithm prefixes each repeated label with a unique label. 
Even though only a few labels may be repeated, an entire 
column or row must be added in order to maintain the 
rectangularity of the table grid. For deeper label hierarchies, 
more than one row or column must be added. Although the 
process is the same for row and column headers, we illustrate it 
only for row headers where it is far more often necessary.  

The prefixing algorithm processes successive columns left 
to right as long as the current columns contain any duplicate 
rows,	
  as	
  shown	
  by	
  the	
  following	
  pseudo-­‐code.	
  A check (not shown) 
for a new column identical to some previous column prevents a 
conceptually possible infinite loop.	
  
Prefix(RowHeader)	
  
#	
  RowHeader	
  is	
  an	
  Nrows	
  ×	
  Ncols	
  array	
  of	
  table	
  cell	
  values.	
  	
  
#	
  PrefixedRowHeader,	
  the	
  return	
  argument,	
  has	
  no	
  duplicate	
  rows.	
  
#	
  Prefixing	
  the	
  rightmost	
  column	
  replaces	
  it	
  by	
  two	
  new	
  columns,	
  	
  
	
   the	
  second	
  of	
  which	
  can	
  also	
  be	
  prefixed.	
  

NLastCol	
  ←	
  Ncols	
  	
  #	
  Ncols	
  is	
  the	
  number	
  of	
  columns	
  in	
  RowHeader	
  
while	
  there	
  are	
  any	
  duplicates	
  among	
  the	
  rows	
  of	
  RowHeader:	
  	
  

LastCol	
  ←	
  null;	
  	
  	
  	
  NewCol	
  ←	
  null;	
  	
  	
  	
  Prefix	
  ←	
  ‘NOPREFIX’	
  
LastCol	
  ←	
  RowHeader(:,	
  NLastCol)	
  	
  	
  
SinglesList	
  ←	
  set	
  of	
  cell	
  values	
  that	
  occur	
  only	
  once	
  in	
  LastCol	
  
for	
  krow	
  =	
  1:Nrows:	
  	
   #	
  Check	
  for	
  duplicates	
  in	
  rightmost	
  column	
  	
  
Target	
  ←	
  RowHeader(krow,	
  NLastCol)	
  

if	
  Target	
  is	
  in	
  SinglesList:	
  	
  	
  	
  Prefix	
  ←	
  Target;	
  
Append	
  Target	
  to	
  LastCol;	
  	
  	
  	
  Append	
  ‘DITTO’	
  to	
  NewCol	
  

else:	
  	
  	
  Append	
  Prefix	
  to	
  LastCol;	
  	
  	
  	
  	
  Append	
  Target	
  to	
  NewCol	
  
end	
  if-­‐else	
  	
  	
   #	
  Target	
  not	
  in	
  Singles,	
  therefore	
  prefixed.	
  

end	
  for	
   	
   #	
  new	
  columns	
  constructed	
  for	
  RowHeader	
  
delete	
  RowHeader(NLastCol);	
  	
  	
  append	
  LastCol	
  to	
  RowHeader	
  
append	
  NewCol	
  to	
  RowHeader;	
  	
  	
  NLastCol	
  ←	
  NLastCol	
  +	
  1	
  

end	
  while	
  
PrefixedRowHeader	
  ←	
  RowHeader	
  
Return	
  PrefixedRowHeader	
  
	
  

Fig. 1 shows an HTML table with a column added by 
prefixing to allow indexing the data despite duplicate labels. 
The four categories of the table in Fig. 2 (families/individuals, 
quantiles, years, and transfers) are found after prefixing 
repeated row-header labels with “Economic Families” and 
“Unattached Individuals”. 

 
Fig. 1. A web table from Statistics Finland (left) and part of the the two-
column row header created by prefixing (right). “1 - 2 storey” is one of 
several duplicate labels that are prefixed by a previous unique label. The 
printout truncates all labels to 12 characters. 

Government	
  transfers	
  and	
  income	
  tax	
  
(Government	
  transfers)

2006 2007
Government	
  transfers
Average	
  	
  $	
  
constant	
  
2007

Implicit	
  
transfer	
  
rates1	
  %

Shares	
  % Average	
  $	
  
constant	
  
2007

Implicit	
  
transfer	
  
rates1	
  %

Shares	
  %

Economic	
  families,	
  two	
  people	
  or	
  more8900 10.7 100 9000 10.4 100
Lowest	
  quintile 12500 47.2 28.1 12800 45.7 28.4
Second	
  quintile 11000 22.8 24.7 11300 22.7 25.1
Third	
  quintile 9200 13.2 20.7 9200 12.9 20.4
Fourth	
  quintile 7000 7.2 15.6 6900 6.9 15.4
Highest	
  quintile 4,800E 2.7E 10.9E 4900 2.6 10.8
Unattached	
  individuals5500 15.8 100 5700 15.9 100
Lowest	
  quintile 3600 49 13.2 4300 53.3 15
Second	
  quintile 9100 54.3 32.7 9600 55.7 33.7
Third	
  quintile 8000 31 28.9 7300 27.6 25.9
Fourth	
  quintile 4300 10.6 15.6 4700 11.3 16.5
Highest	
  quintile 2700 3.2 9.6 2600 3 9
E	
  :	
  use	
  with	
  caution.
Note:	
  After-­‐tax	
  income	
  quintiles	
  constitute	
  one	
  method	
  of	
  categorising	
  a	
  population	
  by	
  income.	
  The	
  lowest	
  quintile	
  represents	
  the	
  20%	
  of	
  the	
  population	
  whose	
  income	
  is	
  lowest.	
  By	
  the	
  same	
  token,	
  the	
  highest	
  quintile	
  represents	
  the	
  20%	
  of	
  the	
  population	
  whose	
  income	
  is	
  highest.
1.	
  The	
  "implicit"	
  rate	
  of	
  either	
  transfers	
  or	
  taxes	
  demonstrates	
  the	
  relative	
  importance	
  of	
  transfers	
  received	
  or	
  taxes	
  paid.	
  For	
  a	
  given	
  individual	
  or	
  family,	
  the	
  implicit	
  rate	
  is	
  the	
  amount	
  of	
  transfers	
  or	
  taxes	
  expressed	
  as	
  a	
  percentage	
  of	
  their	
  total	
  income.
Source:	
  Statistics	
  Canada,	
  CANSIM,	
  table	
  (for	
  fee)	
  202-­‐0301	
  and	
  Catalogue	
  no.	
  75-­‐202-­‐X.  

Fig. 2. CSV version of a four category HTML table from Canada Statistics. 
Cells with footnote references are hilighted yellow. 

f i nal _R_header :  
[ ' Tot al        ' ,  ' DI TTO       
' ]  
[ ' Tot al        ' ,  ' 1 -  2 
s t or e y' ]  
[ ' Tot al        ' ,  ' 3 -  9 
s t or e y' ]  
[ ' Tot al        ' ,  ' 10 + 
s t or e ys ' ]  
[ ' Tot al        ' ,  ' unknown 
numb' ]  
[ ' De t ac he d hi o' ,  ' DI TTO       
' ]  
[ ' At t ac he d hou' ,  ' DI TTO       
' ]  
[ ' Bl oc ks  of  f l ' ,  ' DI TTO       
' ]  
[ ' Bl oc ks  of  f l ' ,  ' 1 -  2 
s t or e y' ]  
[ ' Bl oc ks  of  f l ' ,  ' 3 -  9 
s t or e y' ]  
[ ' Bl oc ks  of  f l ' ,  ' 10 + 
s t or e ys ' ]  
[ ' Bl oc ks  of  f l ' ,  ' unknown 
numb' ]  
[ ' Ot he r  t han r ' ,  ' DI TTO       
' ]  
[ ' Ot he r  t han r ' ,  ' 1 -  2 
s t or e y' ]  
[ ' Ot he r  t han r ' ,  ' 3 -  9 
s t or e y' ]  
[ ' Ot he r  t han r ' ,  ' 10 + 
s t or e ys ' ]  
[ ' Ot he r  t han r ' ,  ' unknown 
numb' ]  



The column header needs no prefixing because after being 
copied into the empty cells to their right (cf. Section V), the 
unique 2006 and 2007 labels distinguish the duplicate labels in 
the fifth row. The program also finds the two references to 
footnote E and to footnote 1, and labels all the notes rows. Here 
we can use only very small tables for illustration. 

V. SPANNING CELLS AND HEADER EXTENSION 
Spanning Cells: The information about which groups of cells 
constitute spanning cells in the original table is lost during the 
CSV conversion. Although a left filling algorithm, which fills 
each empty cell with the label of the nearest non-empty cell in 
the same row, is sufficient for segmentation, it cannot correctly 
recreate the spanning cells when the header includes both 
horizontal and vertical spanning cells, as illustrated in Fig. 3. 
The correct filling for this example, using the pseudo-code 
below, is shown in Fig. 4. 	
  
Fill(Table):	
  
#	
  Table	
  is	
  the	
  original	
  table	
  with	
  surrounding	
  blank	
  rows/columns	
  removed.	
  	
  
#	
  Row_range	
  	
  (Col_range)	
  are	
  the	
  set	
  of	
  non-­‐empty	
  rows	
  (columns)	
  	
  
	
   in	
  the	
  table,	
  in	
  top-­‐to-­‐bottom	
  (left-­‐to-­‐right)	
  order.	
  	
  
	
  
for	
  c	
  in	
  Col_range:	
  	
   flag	
  =	
  	
   	
   #	
  Top	
  Fill	
  
	
   for	
  r	
  in	
  Row_range:	
  
	
   	
   if	
  Table[r][c]	
  !=	
  null:	
  top_fill	
  =	
  Table[r][c];	
  flag	
  =	
  1	
  
	
   	
   else	
  if	
  flag	
  ==	
  1:	
  Table[r][c]	
  =	
  top_fill	
  
	
   	
   if	
  r+1	
  in	
  list_empty_rows:	
  flag	
  =	
  0	
  
for	
  r	
  in	
  Row_range:	
  	
   flag	
  =	
  0	
   	
   #	
  Left	
  Fill	
  
	
   for	
  c	
  in	
  Col_range:	
  
	
   	
   if	
  Table[r][c]	
  !=	
  null:	
  
	
   	
   	
   if	
  (Table[r+1][c]	
  	
  !=	
  Table[r][c])	
  or	
  (Table[r-­‐1][c]	
  !=	
  Table[r][c]):	
  
	
   	
   	
   	
   left_fill	
  =	
  Table[r][c];	
  flag	
  =	
  1	
  
	
   	
   	
   else:	
  flag	
  =	
  0	
  
	
   	
   else	
  if	
  flag	
  ==	
  1:	
  Table[r][c]	
  =	
  left_fill	
  
	
   	
   if	
  c+1	
  in	
  list_empty_cols:	
  flag	
  =	
  0	
  
return	
  Table	
  

After the columns are filled, the algorithm shifts to filling 
the rows from top to bottom. For every row, an initial group of 
leftmost blank cells, if any, is skipped. Then, the label of a non-
blank cell that differs from the label of the cell immediately 
below it is used to fill the group of any blank cells immediately 
to its right. 

A row of blank cells (for column filling) or a column of 
blank cells (for row filling) is treated as a barrier to the filling 
described above. That is, it resets the process to the beginning 
of the column or row. 

Header Extension: The minimal headers produced by our 
segmentation algorithm do not always capture their full extent.  
For the column header of the SAUS-200 table shown in Fig. 5, 
for example, MIPS identifies the column header as the blue 
cells in row 8 because they suffice to index the data columns. 
The header extension algorithm identifies any additional 
neighboring rows to create the intended header. In the example, 
rows 7 and 9, shown in tan, are added to the header found by 
MIPS. 

The input to the algorithm is a CSV table and the critical 
cells CC1 and CC2 that define the extent of the stub head 
determined by MIPS.  The header extension of rows above 
CC1 is carried out one row at a time using the following rule: 

Add the new row if it does not consist of cells with 
identical values and if it adds at least one non-blank cell that 
has a value different from the cell immediately below it.  

The header extension of rows below CC2 is done using a 
symmetrical rule. 

 
 

 
 
 
 
 
 
 
 
 
 
 
Fig. 3. The left fill algorithm, applied to the Troy Table 0058, with the filled labels shown in red. Note: Excel renders  Grades “1-6” in cell D4  
and “7-9” in cell E4 as dates, but they can be preserved correctly if the conversion from HTML is carried out into text-formatted Excel CSV tables.. 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4. The vertical-first filling of the Troy Table 0058 that captures both the horizontal spanning cell “Pupils” and the other vertical spanning cells.  



 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5. Column header for the SAUS Table 0334 determined by MIPS (blue) 
and extended to include additional rows (hilighted tan). 

VI. EXPERIMENTAL RESULTS 
Table 1 shows our observations on the CSV versions of 200 

(“Troy”) HTML tables from 6 international statistical sites, 200 
randomly selected SAUS spreadsheet tables with ground truth, 
and 1120 SAUS spreadsheets for which we don’t have ground 
truth. VeriClick [23] allows rapid and accurate interactive 
ground-truthing of segmentation for tables that fit on the 
screen. However, ground-truthing some SAUS tables with 
hundreds of rows and columns and complex headers proved to 
be extremely time consuming and required resolving many 
disagreements between independent human observers. Over 1.5 
million table cells were classified into ten categories. 

On average, the tables in the three data sets have three 
times as many rows as columns. The SAUS tables are about 
twice as wide and 2.5 times as long as the HTML tables. The 
average number of data cells (85) is about a third the total 
number of cells (290) in the csv version of the HTML tables, 
and about one half (676/1184) in the spreadsheets. The largest 
tables (with 183 columns and 828 rows, respectively) have 10-
25 times n cells as the average. Run time is roughly 
proportional to the number of cells: about 12 HTML tables per 
second on a 2.4 Ghz Dell Optiplex under Windows 7 running 
Python 2.7. 

More than 10% of both HTML and spreadsheet tables have 
multi-category headers, with multiple column categories more 
common than multiple row categories. Row headers with three 
or more columns and column headers with three or more rows 
are far more frequent in spreadsheets than in HTML tables.  

Discriminating labels above or below the minimal indexing 
column headers were found in 2 Troy tables and 44 SAUS_200 
tables. These headers were extended by adding the necessary 
rows. We found no instances of row headers that require 
extension. 

We converted to CSV only the first worksheet of the SAUS 
XLSX workbook files. The footnotes are on separate 
worksheets and never appear in our CSV files. The program 
found 56 Troy tables with footnotes ant 158 references to the 
footnotes. Fifteen footnote markers did not appear in the tables 
above them or were missed. Our HTML tables have an average 
of 5 note rows, with typically only one filled cell in each row. 

Spreadsheets average 8 note rows and 1 notes column, and also 
have many empty rows and columns.  

The segmentation of HTML row and column headers and 
data region was 98% correct versus 96% for the spreadsheets. 
The Minimum Indexing Point was located with 99% accuracy 
on both sets. The errors in delimiting the data region are due to 
a few notes rows mistaken for data or vice versa. Since all of 
the above observations (except for the gross size of the tables) 
are based directly on the results of the segmentation, we 
believe that they are as reliable as the segmentation. 
Furthermore, the consistency of the header sizes and of 
prefixing and category counts suggests that the segmentation 
accuracy of the 1120 tables without ground truth does not 
differ much from that of the validated 200 SAUS tables.  

TABLE  I. CHARACTERISTICS OF SEGMENTED TABLES 
Observations Troy SAUS_ 

200 
SAUS_ 

1120 
Number of tables 200 200 1120 
      Number of tables processed 199 198 1107 
      Trivial tables  1 2 5 
Segmentation errors 

         Minimum indexing point  2 2 NA 
      Critical cells 4 9 NA 
Gross size of tables   

       Rows average  
      (maximum) 

25  
(183) 

64  
(453) 

61  
(828) 

      Columns average  
      (maximum) 

11  
(80) 

17  
(81) 

17  
(201) 

      Cells average  
      (maximum) 

290  
(7320) 

1184  
(14094) 

1117 
(21294) 

Net size of tables 
         Data rows average 15 45 41 

      Data columns average 5 15 15 
      Data cells average 85 676 664 
Categories 

         Multi-category row headers 7 12 75 
      Multi-category col headers 14 13 105 
Prefixed headers 

       Row headers 23 63 378 
    Column headers 3 0 7 
Size of headers 

         1-col 1-row header 145 56 273 
      Row headers with ≥3 columns 1 9 51 
      Column headers with ≥3 rows 3 44 301 
      Tables with extended headers 2 44 192 
Footnotes 

         Footnoted tables 56 NA NA 
      Reference markers (total) 91 NA NA 
      References found (total) 158 NA NA 
      References not found (total) 15 NA NA 
Notes 

         Rows (average) 5.13 8.00 8.45 
      Columns (average) 0.06 0.89 0.73 

    Total run time (sec) w/o file output 15.6 61.9 308.2 



In total, the program segmented 1504 of 1520 tables. Of the 
remaining 16, 8 were trivial tables (with only one row or 
column of data) that the program did not attempt to analyze. 
Visual examination of the remaining 8 revealed some source 
errors, as did the 4 tables with MIP errors. Two of the SAUS 
worksheets had side-by-side tables, some had repeated columns 
or undifferentiable repeated column labels, and we found two 
spreadsheets under constructions with repeated data rows and 
informal notes to staff members. 

VII. SUMMARY 
Tables provide compact data display with subtle means of 

representing complex relationships. Formalization and 
exploitation of intrinsic structural table constraints opens the 
way for algorithmic conversion of vast amounts of tabulated 
data to uniform standard data analysis formats.  

Segmentation and classification based on the minimum 
indexing point provide effective means for inferring category 
hierarchies and explicit header-data relationships, and for 
labeling ancillary table constituents. In contrast to recent 
machine learning approaches based on formatting and 
appearance features, methods based on 2-D table syntax offer 
the advantage of language, domain, and format independence. 

Experiments on 1520 diverse tables demonstrate a practical 
and reliable solution to important aspects of information 
extraction from HTML tables and spreadsheets. 

We are confident that algorithmic analysis can be extended 
to scanned and OCR’d tables transformed to a CSV grid 
format. It should be considered as a complement, rather than an 
alternative, to published methods based on format and 
semantics. For example, indexing cannot separate the header 
from data when there is only a single row or a column of data, 
and our program (and even the authors) are occasionally 
stumped by the ambiguity of some notes or data cells. 

Any claim of automatically derived descriptors raises 
questions about the validity of the results. The accuracy of the 
segmentation and category extraction, verified against 
laboriously collected ground truth on a random subset of 400 
heterogeneous tables, provides some confidence in the 
applicability of the proposed algorithms to arbitrary tables. The 
most important remaining task is to flag for human editors the 
inevitable residue of tables that cannot be automatically parsed. 
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