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Abstract— Repetitively formatted historical books are 
tokenized and tagged according to eight token types 
(capitalized words, numbers, punctuation …). To extract 
family information, templates of short sequences of tags are 
generated around frequent proper nouns and specified 
tokens like “born”.  Each template is associated with a user-
assigned class (head of household, father, mother, spouse, 
geographic location …) and a pointer to an overlapping or 
nearby fragment of text to be extracted. Matching the 
template against the book text yields class-labeled factoids.  
In an interaction cycle, new extraction templates are 
proposed for user approval or editing.  Each edit-then-
extract cycle typically yields thousands of factoids and a 
dozen new templates. With five approximately half-hour 
interactive sessions, 44,000 genealogical factoids were 
extracted from a 17th century Scottish register of marriages 
and births and from published 19th–20th century Ohio 
funeral parlor records. The experience indicates that this 
method quickly yields quality results with higher F-score 
than reported for hand-constructed rule templates. 

Keywords-text template matching; information extraction; 
historical do-cuments; green interaction  

I. INTRODUCTION 
Many historical books contain family information as 

organized and quasi-repetitively formatted collections of 
factoids.  Several hundred thousand of these books have 
already been scanned, OCR’d, and placed online with ever 
more being added [1],[ 2].  Fig. 1 shows part of a page 
image and the corresponding OCR’d transcript from two 
of these books.  Genealogical information needs to be 
extracted and organized for a variety of applications 
including, medical research on inherited diseases, 
understanding the economics of intergenerational poverty, 
sociological studies of family communities, and tracing the 
family trees of interested individuals.  Tediously extracting 
the information by hand is nearly infeasible—even by 
crowd sourcing with thousands of interested volunteers 
and paid participants—causing those engaged in providing 
this information to turn to automated information 
extraction for help. The accommodation of OCR errors is 
discussed at the end of Section III. 

Research on automated information extraction can be 
dated back at least to Salton’s groundwork [3]. For free-
running text, NLP and IR researchers’ sustained interest in 
Named Entity Recognition (NER) is exhibited by the 
NIST-sponsored Text REtrieval Conference [ 4 ] which 

began in 1992 and the major supportive software web sites 
such as the Stanford CoreNLP NER site [5]. For semi-
structured text, researchers within the database, 
library/information science, document analysis, and AI 
communities have sought to make documents more easily 
searchable and to extract specified items of information.  
Early research in these areas was based on grammars: [6] 
describes a rule-based system created for address block 
extraction from text strings, and [7] shows how to induce 
wrappers to extract information from commercial web 
sites. Other early applications of information extraction 
from semi-structured documents include dictionaries [8] 
and bibliographies and library catalogs [9].  Since these 
early beginnings, hundreds of research papers in these 
various disciplines have been published in many journals 
and conference proceedings. Surveys of this work include 
[10], [11], [12] and [13], which in addition to surveying 
the work evaluates and compares several dozen 
information extraction systems that have been developed 
over the years.   

Several research endeavors specifically relate to 
various aspects of the work presented here.  Extraction of 
family information from OCR’d documents is described in 
[14] and [15].   The work in [14] applies machine learning, 
statistical analyses, and rule-based processing techniques 
to extract information from obituaries in old newspapers, 
and in [15] patterns in the abstracted text of full books are 
discovered from which HMM extraction rules are 
generated. Our example-based approach for user 
interaction has some similarities with the end-user-
provided training examples used commercially for scanned 
business documents [16]. Some aspects of our templates, 
like the use of literals and semantic tags, are anticipated in 
[17]. The effects of OCR errors on information extraction 
were discussed in [18]. Being rule-based, the extraction 
tool we present here is an example of the research called 
for in [19], which points out that although most recent 
academic research on automated information extraction 
relies on machine learning as the methodology of choice, 
in practice rule-based methodologies dominate deployed 
information extraction systems. 

Like other rule-based systems, our methodology (called 
GreenQQ) exploits the quasi-repetitive format of factoids 
in semi-structured text to generate and execute extraction 
rules. GreenQQ is unique, however, in the way it interacts 
with users to obtain effective new rule templates.  It is 
Green because, like other “green” systems [ 20 ], its  
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Figure 1.  Text images from (a) Kilbarchan [Grant1912] and (c) Miller 
[Miller1990] with respective OCR (b) and (d).  The Kilbarchan book 
was typeset from a transcribed manuscript of original entries in the 
Kilbarchan Parish Record handwritten by parish vicars.  The Miller 
book, copied from original Miller Funeral Home burial records, was 
typewritten.  Both books were scanned and OCR’d yielding characters 
with bounding boxes which were then rendered as left-justified lines of 
text with heuristically set spacing between words and letters in words.   

interactive feedback loop increases user productivity.   
(Q1) it is Quick because its suggestions aid users to 
quickly generate effective extraction templates and also 
because it executes quickly allowing for real-time 
synergies and (Q2) it produces Quality results. 

II. METHOD 
Users interact with GreenQQ through either user- or 

machine-selected samples from the OCR’d text.  Initially, 
users must decide what categories or classes of 
information are to be extracted, which generally depends 
on the expected downstream application. For the 
Kilbarchan parish record, the classes we chose for the 
evaluation reported below are HEAD (head of household), 
WIFE, BABY, GEO (geographic location), and DATE of 
christening, birth, marriage, or proclamation of marriage. 
From the more complex Miller funeral home burial 
records, we extracted HEAD (the person being interred), 
D_Date (death date), BUPD (burial place and date), 

B_DATE (birth date), AGE, SPOUSE, FATHER, 
MOTHER, and NRGRANDCH (number of 
grandchildren).  For each class, users select a sample 
search phrase, and the text to be extracted: e.g. [BABY 
“James, 15” “James”] where BABY is an explicitly 
declared class, “James, 15” is the potentially 
discriminative search phrase, and “James” tells what to 
extract.  The program derives a range index for locating 
the text to be extracted relative to the search phrase. Here 
the index is [0, 1] because the extract is the first token of 
the search phrase. The extracted text can span preceding 
and following lines and page boundaries, but the current 
program requires the search phrase to be part of a single 
line that begins with SOL and ends with EOL 

GreenQQ converts the search phrase into a pattern 
template by tagging each token. The template for “James, 
15” is a capitalized word followed by a comma, and a 
number. (The identical template and index could equally 
well have been derived from “Margaret, 6” or from many 
other lines with the same pattern.)  Now GreenQQ can 
search the document for this text pattern and extract the 
specified information for the class. From (b) in Figure 1, 
GreenQQ would extract not only “James” as a BABY but 
also “Robert” “Margaret”, and “Janet”—and hundreds of 
others in the Kilbarchan book with this same pattern. 

Moreover, and more importantly for the green aspect of 
GreenQQ, it also compiles patterns with frequent user-
specified tokens (e.g. “born”, “p.”, … for Kilbarchen) and 
for proper nouns in the extracted text (here “James”, 
“Robert”, “Margaret”, …) that were identified as being 
part of the original pattern template but failed to be 
identified when they occurred in other text configurations.  
After completion of each extraction phase on the entire 
book with all available templates, GreenQQ generates 
example candidates to help the user create new extraction 
rules as follows.  If some occurrences of “William” (a 
capitalized word) are identified as BABY because they are 
followed by a comma and a number, and capitalized words 
also occur frequently at the beginning of a line and are 
followed by a comma and “born”, then GreenQQ might 
return an instance from Figure 1b like [BABY “SOL 
William , born 23 June 1747 . EOL”].  The user can then 
mark the part of the text to be extracted (“William” in this 
example) so that GreenQQ can generate a new extraction-
rule template (e.g. [SOL capitalized-word comma 
“born”]).  The program also derives the appropriate index 
(here [1, 2]), which tells the search routine to extract the 
first word after the start-of-line tag (SOL) wherever the 
text matches this template.  The new rule is then executed, 
extracting as BABY from the text in Figure 1b not only 
“William” but also “James”, “Mary” , “Janet”, another 
“William”, another “James”, and “Isobel” and many more 
from the full book. 

After each extraction cycle, GreenQQ offers a user-
specified number of search phrases and extract candidates. 
We find 25 candidates a comfortable batch size to edit.  
Editing may include changing the class or the extract. 
(Here, the user could change the class from BABY to 
DATE and mark “23 June 1747” as the text to be 
extracted.  If the extract is changed, the program adjusts 
the index.) Continuing in this way, GreenQQ assists in 
compiling the extracted items into family groups and 
writing out the collected information into the results file. 
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Table 1 defines the terminology used in Fig. 2, which 
shows the overall data flow, and in the list below that 
illustrates the required steps.  To draw attention to the 

terminology, we capitalize and italicize the terms in Table 
1 and in the steps below that describe the process.  

 

TABLE I.  TERMINOLOGY  

Candidate Extract Tokens to be displayed  to the left and right of the first Token of the Search Phrase of a Candidate Template  

Candidate Template automatically generated Template with an associated sample Search Phrase and corresponding Candidate 
Extract to be approved or edited by the user 

Class descriptors chosen by the user to label the categories of extracted facts 

Context Scope number and location of Tags to be prepended and appended to a Keyword to construct Candidate Templates 

Coordinates page, line and offset of a Token in the Text or of the corresponding Tag in Tagged Text 

Extract sequence of Tokens (typically 1-4) to be extracted from the Text and recorded as output 

Display Scope user-specified length of Candidate Extract preceding and following the first word of the Search Phrase of a 
Candidate Template 

Family Group factoids associated with the immediately preceding HEAD Class, in order of appearance in the text 

Index location of the Extract relative to the start of the corresponding Template 

Keyword proper nouns and book-specific labels (e.g. John, born, of) that appear in both matched (and therefore 
classified) and unmatched (still to be classified) portions of the Text 

Match List list of the Coordinates and Class segments of Text that matched some Template 

Page Files unicode text files of OCR’d pages of a family book 

Search Phrase A sample of a sequence of Tokens corresponding to a sequence of Tags 
Tag preset label applied to each Token (e.g. CAP, NUM) 

Template sequence of Tags corresponding to the Tokens of a Search Phrase 

Tagged Text sequence of Tags corresponding to the Tokens of the Text of the book 

Template sequence of Tags (typically 2–5) to be matched against the Tagged Text 

Text OCR’d and tokenized book 

Token a punctuation symbol or an alphanumeric string without a blank (space) character 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.  Data flow.  (The capitalized terms in the diagram are defined in Table 1). 
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The list below illustrates the program steps:  
 

1. Read and merge the Page Files  (cf. Fig. 1b and 1d). 

2. Tokenize and tag the Text, e.g.: 
Text -line (Page 4, Line 6):  / William, born 23 June 1747. 
Text-line Tokens:                   / William / , / born / 23 / June / 1747 / . / 
Tagged Text line: / SOL / CAP / , / born /ANUM / CAP /ANUM / . /EOL/ 

3. Enter initial Search Phrases and Extracts; on 
subsequent cycles, edit Candidate Templates. In either 
case, users select representative and discriminative 
sequences of contiguous Text, and a subsequence 
thereof to be extracted, e.g.: 

HEAD SOL Adam, James,   Adam, James 
WIFE  and Janet Bannatyne  Janet Bannatyne 

 BABY James, 15   James 

4. Construct Templates. Tag the Search Phrase and add 
Indexes to the initial Templates. On subsequent cycles, 
do the same for Candidate Templates, e.g.: 

HEAD SOL CAP , CAP [1,4] 
WIFE  and CAP CAP [1,3] 

 BABY SOL CAP , NUM [1,2] 

5. Sweep each Template against the Tagged Text and 
record in a Match List the coordinates of every match 
in the Text and the Class of the matching Template, 
e.g.: 

[3, 3, 10, 4, 1, 'GEO'] 
[3, 5, 0, 0, 4, 'HEAD'] 
[3, 5, 5, 1, 2, 'WIFE'] 
[3, 5, 9, 5, 1, 'GEO'] 
[3, 6, 0, 6, 3, 'BABY'] 

 …. 

6. Compile the list of Keywords that appear most often in 
both the matched and the unmatched portions of the 
Text. Their appearance in the matched portion reveals 
their Class. Some Keywords: 

Jonet, James, John, Agnes, Robert, Elizabeth, Paisley, William, 
Lochwinnoch, Kilbarchan, born, m., p. 

7. Prepend and append to every appearance of the tagged 
Keyword in the unmatched Text the number of Tags 
specified by the Context Scope (here [-1,2]), e.g.: 

Keyword:    William 
Context Scope:   [0, 2] 
Frequent Tag Sequence:  SOL CAP , born 

           -1           0     +1     +2 

8. Compile the most frequently occurring Tag 
sequences formed around Keywords. In our running 
example these include [SOL CAP , born] which is associated 
with BABY because “William”, its source Keyword, was 
matched most often by the initial BABY Template. 

9. Write a file of Candidate Templates consisting of the 
Tokens of the first appearance of each of the most 
frequently occurring Tag sequences and of the 
corresponding Candidate Extracts of surrounding 
Tokens specified by the Display Scope, e.g.: 
Candidate Extract  (with Display Scope = 6)::   
 p. 2 Aug. 1746 EOL SOL William , born 23 June 1747 . 
 -6    -5     -4             -3          -2          -1                0           +1     +2        +3       +4            +5    +6   
Complete Candidate Template (EXX, Ex, and ExOut are program 
generated separators of the components of the Candidate Template):  
[EXX 4, 11, 0, 2, BABY,  
   Ex:  ‘SOL William , born’, 
   ExOut: ‘p. 2 Aug. 1746 EOL SOL William , born 23 June1747 .’] 

10. Go to Step 3 for another edit-and-search cycle, or to 
Step 11 to complete the process.   

11. Assemble from the final Match List the Family 
Groups between consecutive HEADs and write them 
into the Results Out file, e.g.: 

['HEAD', 4, 6, 1, 1, 5, 'Adam', ',', 'James', 'WIFE', 4, 6, 6, 2, 3, 'Jannet', 
'Bannatyne', 'GEO', 4, 6, 10, 7, 2, 'Hair', 'BABY', 4, 7, 1, 13, 4, 'James', 
'DATE', 4, 7, 4, 3, 3, '15', 'Dec.', '1672', 'BABY', 4, 8, 1, 13, 4, 'Robert', 
'DATE', 4, 8, 4, 3, 3, '15', 'Oct.', '1676', 'BABY', 4, 9, 1, 13, 4, 'Margaret', 
'DATE', 4, 9, 4, 3, 3, '6', 'April', '1679'] 

Steps 1 and 2 are executed only once (the initialization in 
Fig. 2). Step 3 is either the user’s initial selection of 
Search Phrases and Extracts for each class or, on 
subsequent cycles, the user correction of the Candidate 
Templates and Extracts (the user-interaction loop in Fig. 
2). Steps 4 and 5 construct and apply the templates (the 
first three trapezoidal boxes). Steps 6 to 9 generate new 
Candidate Templates (the larger green trapezoidal box).  
In Step 10 the user decides whether to edit the Candidate 
Templates or accept the current output. Step 11 constructs 
and emits the final results (the output in Fig. 2). 

III. EVALUATION 
We evaluated GreenQQ on two books, Kilbarchan [21] 

and Miller [22], generating the results shown in Tables II, 
III, and IV. The interactive editing sessions on successive 
batches of candidate templates, each ending with execution 
of GreenQQ.py, took less than half-an-hour each (two 
sessions for Kilbarchan and three for Miller). 

TABLE II.  EXPERIMENTS. 

Book Lines Tokens Classes Templates Matches Runtime User Time

Kilbarchan 9,464 89,391 5 40 17,206 5 s ~50 min

Miller 16,835 240,198 11 51 27,647 11 s ~ 95 min
 

 
For evaluating accuracy by inspection of selected 

output, GreenQQ generates the Check File of Fig. 3 for the 
selected pages, with three lines for every line of input text. 
The results in Tables III and IV were obtained from Check 
Files on pseudo-randomly selected pages 20, 41 and 123 of 
the 143 Kilbarchan book and pages 296, 318, and 363 of 
the 396 page Miller book.  Results are reported using both 
Soft and Hard scoring rules. We judged an extract to be 
partially correct if the sequence of labeled tokens for the 
extract was a proper subsequence of the ground-truth token 
sequence for the extract.  Soft scoring counted partially 
correct extracts as being correct, while Hard scoring 
counted them as being incorrect. Common causes of errors 
are discussed at the end of this section. 

Post-extraction, GreenQQ formed family groups by 
consolidating consecutive extracts between identified 
family starting anchors found in the text—fathers in 
Kilbarchan as is clear from Figure 1a and deceased persons 
in Miller as seen in Figure 1c.  In both Kilbarchan and 
Miller, we chose to label these anchors as HEADs. 
Retaining the comma differentiates last-name/,/given-name 
from first-name/last-name for spouses. The generated 
family-grouping files were about 500KB in size for 
Kilbarchan and 1MB for Miller.  

As it so happened, the GreenQQ run over the test pages 
for both Kilbarchan and Miller missed one family HEAD. 
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page 4  line 6 
"  SOL Adam, James, and Jannet Bannatyne, in Hair Lavvis, 1676 
EOL" 
"  SOL HEAD HEAD HEAD , and WIFE WIFE , in Hair Lavvis , 
1676 EOL" 
"  SOL T0 T0 T0 , and T1 T1 , in Hair Lavvis , 1676 EOL" 

page 4  line 7 
"  SOL James, 15 Dec. 1672. EOL" 
"  SOL James , DATE DATE DATE . EOL" 
"  SOL James , T2 T2 T2 . EOL" 

page 4  line 8 
"  SOL Robert, 15 Oct. 1676. EOL" 
"  SOL Robert , DATE DATE DATE . EOL" 
"  SOL Robert , T2 T2 T2 . EOL" 

page 4  line 9 
"  SOL Margaret, 6 April 1679. EOL" 
"  SOL Margaret , DATE DATE DATE . EOL" 
"  SOL Margaret , T2 T2 T2 . EOL" 

page 4  line 10 
"  SOL Adam, James, in Kilbarchan, and Jane Lyle p. 2 Aug. 1746 
EOL" 
"  SOL HEAD HEAD HEAD , in Kilbarchan , and WIFE WIFE p. 
DATE DATE DATE EOL" 
"  SOL T0 T0 T0 , in Kilbarchan , and T1 T1 p. T2 T2 T2 EOL" 
page 4  line 11 

"  SOL William, born 23 June 1747. EOL" 
"  SOL BABY , born 23 June 1747 . EOL" 
"  SOL T3 , born 23 June 1747 . EOL" 

 
Figure 3.  Fig. 3 GreenQQ output for checking its accuracy on selected 
pages. The first line in each group is from the text file after insertion of 
the line markers SOL and EOL.  The second line shows the class 
assigned to each token (in line 6 Hair Lavvis, was not labeled because 
this initial run had no “in” GEO template).  The third line displays the 
source template responsible for each match. 

TABLE IV.  KILBARCHAN ACCURACY RESULTS. 

 

TABLE III.  MILLER ACCURACY RESULTS*. 

 
*Two classes, B_PLACE and DATE, are not included because their 
extracts were sometimes superseded by the extracts of other classes and 
therefore not retained in the Check File. 
 
The missed HEAD caused two families to be grouped 
together as one—a precision error.  And it caused both of 
the grouped families to be misidentified—two recall 
errors.  Thus, for the 72 Kilbarchan families, the Recall is 
0.97, the Precision is 0.99, and the F-score is 0.98, 
compared to the F-score of 0.95 obtained with REGEX in 
[23].  The corresponding results for the 30 Miller families 
are 0.93, 0.97 and 0.95.  

Precision results for Kilbarchan are near perfect except 
for the GEO class and are also high for Miller (Soft). Not 
only does this bode well for genealogical applications, it 
also means that GreenQQ could be a good candidate for 
semi-automatic labeling of training data for machine 
learning.  (See [24] and [25] as representative examples of 
the work being done in this area.)   

Recall results vary depending on the complexity of the 
template.  BUPD is by far the most complex, having a 
Hard Recall of only 0.28, although the Recall jumps to 
0.69 when we consider partials as being correct.  Many of 
the multi-line BUPD entries were partial only because the 
current program does not process templates that cross line 
boundaries.  Some of the lower Recall errors in Miller 
were caused by not creating templates to accommodate 
some common OCR errors.  For example, mothers are 
identified by “m” , but the OCR often recognized “rn” as 
“rn” (“r” followed by “n”).  The HEAD missed in Miller 
was also caused by an OCR error in which 
“SHUMAKER” was rendered as “SlillMAKER”.  The 
HEAD missed in Kilbarchan was caused by a combination 
of a typesetting error and an OCR error: “Uwing, John” 
was typeset as “Uwing,John” and OCR’d as “Uwingjohn”. 

GreenQQ reprocesses every previous template on each 
run, so templates can be added or corrected any time. 
Some of the many hurdles that we encountered are: 

 
• OCR errors like born/bom     cem/cern     1/I/l/!/]     

J/j     0/O     ,/.    ./- that need additional templates. 

• Incorrect re-rendering of OCR output as a 
sequence of text tokens: spaces before 
punctuation and conjoined words such as 
“Annejordan” instead of “Anne jordan”. 

• Page headers and footers, like PARISH OF 
KILBARCHAN and REGISTER OF 
MARRIAGES, 1649-1772. Templates must be 
specific enough to avoid matching their contents. 

• Irrelevant pages, like Foreword, Copyright 
notice. Acknowledgment.  The program has 
provisions for specifying the first and last pages 
to be processed. 

• Tokenization errors.  For instance, “Nov.” 
become a single token, but “Mar.” yields two 
tokens because “mar” is an English word. This 
augments the number of templates. 

• Proper names that are also the names of months. 
This is apparently only a springtime phenomenon: 
April, May, June. We have not yet encountered a 
child christened October or November. 

• Family names that are also geographic locations, 
such as Paisley, which can result in mislabeled 
Candidate Templates. 

• Inconsistent punctuation.  In Kilbarchan, most, 
but not all, of the family heads are listed with a 
comma after their last name. Periods are often 
dropped at the end of a line. Parentheses are used 
somewhat arbitrarily.  
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• Missing items. Spouses’ last names are 
occasionally omitted.  The day of the month for 
some births is sometimes missing, and only 
occasionally labeled with n. or none or unknown.   

• Unexpected additional information: known as, 
brother of, presented by,  jun. natural, born in 
adultery, Mr., minister, …. Such words and 
phrases require additional care in formulating 
templates and extracts.   

IV. CONCLUSION 
This work has application not only to family history 

and its support of medical, intergenerational economic, 
community demographics but also to semi-automatic 
labeling of training data. We believe that effective user 
interaction will be vital for the rule-based information 
extraction systems that are poised to assume an even more 
dominant role in the market when combined with machine-
learning. 

The Hard F-score’s 0.98 for Kilbarchan and 0.75 for 
Miller are respectable considering the irregularities hidden 
under the seemingly uniform appearance of these books. 
Since the evaluations were conducted by ourselves, they 
are necessarily suspect. However, we posted our page 
image and text files at http://tango.byu.edu/data/ and we 
will gladly make our code (about 1500 lines of python) 
and output available for any non-commercial research. 
Since our results have been improving weekly since the 
DAS submission date of November 2017, we plan to delay 
public posting of the dozens of input and out files till 
GreenQQ stabilizes. 

With a view to transferring the technology to 
publishers of genealogical data, we are currently 
improving the code to bridge line/page ends, compute 
additional features,  and give users a convenient clickable 
interface. A parallel effort aims to extend the analysis of 
the extracted items to interfamily relationships. 

REFERENCES 
 

[1] FamilySearch, https://www.familysearch.org. 
[2] National Archives, 

https://www.archives.gov/research/genealogy. 
[3] G. Salton, Automatic Information Organization and 

Retrieval, McGrawHill 1968. 
[4] Text Retrieval Conference (TREC), http://trec.nist.gov. 
[5] Stanford Named Entity Recognizer (NER), 

https://nlp.stanford.edu/software/CRF-NER.shtml. 
[6] D.B. Searls and S.L. Taylor, Document Image Analysis 

Using Logic-Grammar-Based Syntactic Pattern Recognition, 
in Structured Document Analysis, H.S. Baird, H. Bunke, K. 
Yamamoto (Eds.), Springer Verlag, 1992, 520-545. 

[7] N. Kushmerick, D.S. Weld, and R. Doorenbos, Wrapper 
Induction for Information Extraction, Proceedings of the 
1997 International Joint Conference on Artificial 
Intelligence, 1997, 729–735. 

[8] D.J. Ittner and H.S. Baird, Programmable Document 
Analysis, Proceedings of the First IAPR International 
Workshop on Document Analysis Systems, DAS’94, A.L. 
Spitz and A. Dengel (Eds), World Scientific 1995, 76-93. 

 
[9] Belaïd and Y. Chenvoy, Document Analysis for 

Retrospective Conversion of Library Reference Catalogues, 
Proc. ICDAR’97, Ulm, Germany, 1997. 

[10] J. Turmo, A. Ageno, and N. Català, Adaptive Information 
Extraction, ACM Computing Surveys, 38:2, 2006. 

[11] S. Sarawagi, Information Extraction, in Foundations and 
Trends in Databases, 1:3, 2008, 261–377. 

[12] R. Grishman, Information Extraction, IEEE Intelligent 
Systems, 30, Sept.-Oct., 2015, 8–15. 

[13] P. Jiménez, R. Corchuelo, and H.A. Sleiman, ARIEX: 
Automated Ranking of Information Extractors, Knowledge-
Based Systems, 93:2, 2016, 84–108. 

[14] P. Schone and J. Gehring, Genealogical Indexing of 
Obituaries Using Automatic Processes, Proceedings of the 
Family History Technical Workshop (FHTW’16), Provo, 
Utah, USA, February, 2016 
(https://fhtw.byu.edu/archive/2016).   

[15] T.L. Packer and D.W. Embley, Unsupervised Training of 
HMM Structure and Parameters for OCRed List 
Recognition and Ontology Population, Proceedings of the 
3rd International Workshop on Historical Document 
Imaging and Processing, Nancy, France, 22 August 2015, 
23–30.   

[16] D. Schuster et al., Intellix -- End-User Trained Information 
Extraction for Document Archiving, Proc. ICDAR’13, 
Washington DC 2013. 

[17] Sutherland, S., Learning Information Extraction Rules for 
Semi-structured and Free Text. Machine Learning, 34, 
1999, 232-272. 

[18] K. Taghve, T.A. Nartker, and J. Borsack, Information 
access in the presence of OCR errors. Procs. ACM 
Hardcopy Document Processing Workshop, , 
Washington, D.C. Nov 2004, 1-8. 

[19] L. Chiticariu, Y. Li, and F.R. Reiss, Rule-based 
Information Extraction is Dead! Long Live Rule-
based Information Extraction Systems!, Proceedings 
of the 2013 Conference on Empirical Methods in 
Natural Language Processing, Seattle, Washington, 
USA, October, 2013, 827–832. 

[20] G. Nagy, Estimation, Learning, and Adaptation: Systems 
that Improve with Use, Proceedings of the Joint IAPR 
International Workshop on Structural, Syntactic, and 
Statistical Pattern Recognition, Hiroshima, Japan, 
November, 2012, 1–10. 

[21] F.J. Grant (editor), Index to The Register of Marriages and 
Baptisms in the PARISH OF KILBARCHAN, 1649 –1772. 
J. Skinner & Company, LTD, Edinburgh, Scotland, 1912. 

[22] Miller Funeral Home Records, 1917 – 1950, Greenville, 
Ohio, 1990. 

[23] D. Embley, S. Liddle, T. Eastmond, D. Lonsdale, J. Price, 
S. Woodfield. Conceptual Modeling in Accelerating 
Information Ingest into Family Tree. In: J. Cabot, C. 
Gómez, O. Pastor, M. Sancho. (eds.) Conceptual Modeling 
Perspectives, Springer, Cham, Switzerland, 2017, 69–84. 

[24] N. Kooli and A. Belaïd, Entity Local Structure Graph 
Matching for Mislabeling Correction, Proceedings of the 
12th IAPR Workshop on Document Analysis Systems, 
Santorini, Greece, April 11–14, 2016, 257–262. 

[25] I. Rehbein and J. Ruppenhofer, Detecting Annotation Noise 
in Automatically Labelled Data, Proceedings of the 55th 
Annual Meeting of the Association for Computational 
Linguistics, Vancouver, Canada, 30 July–4 August 2017, 
1160–1170. 

http://tango.byu.edu/data/

