
Green Interaction for Extracting Family
Information from OCR’d Books

David W. Embley
Brigham Young University

Department of Computer Science
Provo, UT, USA

embley@cs.byu.edu

George Nagy
Rensselaer Polytechnic Institute

Electrical, Computer and Systems Engineering
Troy, NY, USA

nagy@ecse.rpi.edu

Abstract— Repetitively formatted historical books are
tokenized and tagged according to eight token types
(capitalized words, numbers, punctuation …). To extract
family information, templates of short sequences of tags are
generated around frequent proper nouns and specified
tokens like “born”. Each template is associated with a user-
assigned class (head of household, father, mother, spouse,
geographic location …) and a pointer to an overlapping or
nearby fragment of text to be extracted. Matching the
template against the book text yields class-labeled factoids.
In an interaction cycle, new extraction templates are
proposed for user approval or editing. Each edit-then-
extract cycle typically yields thousands of factoids and a
dozen new templates. With five approximately half-hour
interactive sessions, 44,000 genealogical factoids were
extracted from a 17th century Scottish register of marriages
and births and from published 19th–20th century Ohio
funeral parlor records. The experience indicates that this
method quickly yields quality results with higher F-score
than reported for hand-constructed rule templates.

Keywords-text template matching; information extraction;
historical do-cuments; green interaction

I. INTRODUCTION
Many historical books contain family information as

organized and quasi-repetitively formatted collections of
factoids. Several hundred thousand of these books have
already been scanned, OCR’d, and placed online with ever
more being added [1],[2]. Fig. 1 shows part of a page
image and the corresponding OCR’d transcript from two
of these books. Genealogical information needs to be
extracted and organized for a variety of applications
including, medical research on inherited diseases,
understanding the economics of intergenerational poverty,
sociological studies of family communities, and tracing the
family trees of interested individuals. Tediously extracting
the information by hand is nearly infeasible—even by
crowd sourcing with thousands of interested volunteers
and paid participants—causing those engaged in providing
this information to turn to automated information
extraction for help. The accommodation of OCR errors is
discussed at the end of Section III.

Research on automated information extraction can be
dated back at least to Salton’s groundwork [3]. For free-
running text, NLP and IR researchers’ sustained interest in
Named Entity Recognition (NER) is exhibited by the
NIST-sponsored Text REtrieval Conference [4] which

began in 1992 and the major supportive software web sites
such as the Stanford CoreNLP NER site [5]. For semi-
structured text, researchers within the database,
library/information science, document analysis, and AI
communities have sought to make documents more easily
searchable and to extract specified items of information.
Early research in these areas was based on grammars: [6]
describes a rule-based system created for address block
extraction from text strings, and [7] shows how to induce
wrappers to extract information from commercial web
sites. Other early applications of information extraction
from semi-structured documents include dictionaries [8]
and bibliographies and library catalogs [9]. Since these
early beginnings, hundreds of research papers in these
various disciplines have been published in many journals
and conference proceedings. Surveys of this work include
[10], [11], [12] and [13], which in addition to surveying
the work evaluates and compares several dozen
information extraction systems that have been developed
over the years.

Several research endeavors specifically relate to
various aspects of the work presented here. Extraction of
family information from OCR’d documents is described in
[14] and [15]. The work in [14] applies machine learning,
statistical analyses, and rule-based processing techniques
to extract information from obituaries in old newspapers,
and in [15] patterns in the abstracted text of full books are
discovered from which HMM extraction rules are
generated. Our example-based approach for user
interaction has some similarities with the end-user-
provided training examples used commercially for scanned
business documents [16]. Some aspects of our templates,
like the use of literals and semantic tags, are anticipated in
[17]. The effects of OCR errors on information extraction
were discussed in [18]. Being rule-based, the extraction
tool we present here is an example of the research called
for in [19], which points out that although most recent
academic research on automated information extraction
relies on machine learning as the methodology of choice,
in practice rule-based methodologies dominate deployed
information extraction systems.

Like other rule-based systems, our methodology (called
GreenQQ) exploits the quasi-repetitive format of factoids
in semi-structured text to generate and execute extraction
rules. GreenQQ is unique, however, in the way it interacts
with users to obtain effective new rule templates. It is
Green because, like other “green” systems [20], its

2

(a)

(b)

(c)

(d)

Figure 1. Text images from (a) Kilbarchan [Grant1912] and (c) Miller
[Miller1990] with respective OCR (b) and (d). The Kilbarchan book
was typeset from a transcribed manuscript of original entries in the
Kilbarchan Parish Record handwritten by parish vicars. The Miller
book, copied from original Miller Funeral Home burial records, was
typewritten. Both books were scanned and OCR’d yielding characters
with bounding boxes which were then rendered as left-justified lines of
text with heuristically set spacing between words and letters in words.

interactive feedback loop increases user productivity.
(Q1) it is Quick because its suggestions aid users to
quickly generate effective extraction templates and also
because it executes quickly allowing for real-time
synergies and (Q2) it produces Quality results.

II. METHOD
Users interact with GreenQQ through either user- or

machine-selected samples from the OCR’d text. Initially,
users must decide what categories or classes of
information are to be extracted, which generally depends
on the expected downstream application. For the
Kilbarchan parish record, the classes we chose for the
evaluation reported below are HEAD (head of household),
WIFE, BABY, GEO (geographic location), and DATE of
christening, birth, marriage, or proclamation of marriage.
From the more complex Miller funeral home burial
records, we extracted HEAD (the person being interred),
D_Date (death date), BUPD (burial place and date),

B_DATE (birth date), AGE, SPOUSE, FATHER,
MOTHER, and NRGRANDCH (number of
grandchildren). For each class, users select a sample
search phrase, and the text to be extracted: e.g. [BABY
“James, 15” “James”] where BABY is an explicitly
declared class, “James, 15” is the potentially
discriminative search phrase, and “James” tells what to
extract. The program derives a range index for locating
the text to be extracted relative to the search phrase. Here
the index is [0, 1] because the extract is the first token of
the search phrase. The extracted text can span preceding
and following lines and page boundaries, but the current
program requires the search phrase to be part of a single
line that begins with SOL and ends with EOL

GreenQQ converts the search phrase into a pattern
template by tagging each token. The template for “James,
15” is a capitalized word followed by a comma, and a
number. (The identical template and index could equally
well have been derived from “Margaret, 6” or from many
other lines with the same pattern.) Now GreenQQ can
search the document for this text pattern and extract the
specified information for the class. From (b) in Figure 1,
GreenQQ would extract not only “James” as a BABY but
also “Robert” “Margaret”, and “Janet”—and hundreds of
others in the Kilbarchan book with this same pattern.

Moreover, and more importantly for the green aspect of
GreenQQ, it also compiles patterns with frequent user-
specified tokens (e.g. “born”, “p.”, … for Kilbarchen) and
for proper nouns in the extracted text (here “James”,
“Robert”, “Margaret”, …) that were identified as being
part of the original pattern template but failed to be
identified when they occurred in other text configurations.
After completion of each extraction phase on the entire
book with all available templates, GreenQQ generates
example candidates to help the user create new extraction
rules as follows. If some occurrences of “William” (a
capitalized word) are identified as BABY because they are
followed by a comma and a number, and capitalized words
also occur frequently at the beginning of a line and are
followed by a comma and “born”, then GreenQQ might
return an instance from Figure 1b like [BABY “SOL
William , born 23 June 1747 . EOL”]. The user can then
mark the part of the text to be extracted (“William” in this
example) so that GreenQQ can generate a new extraction-
rule template (e.g. [SOL capitalized-word comma
“born”]). The program also derives the appropriate index
(here [1, 2]), which tells the search routine to extract the
first word after the start-of-line tag (SOL) wherever the
text matches this template. The new rule is then executed,
extracting as BABY from the text in Figure 1b not only
“William” but also “James”, “Mary” , “Janet”, another
“William”, another “James”, and “Isobel” and many more
from the full book.

After each extraction cycle, GreenQQ offers a user-
specified number of search phrases and extract candidates.
We find 25 candidates a comfortable batch size to edit.
Editing may include changing the class or the extract.
(Here, the user could change the class from BABY to
DATE and mark “23 June 1747” as the text to be
extracted. If the extract is changed, the program adjusts
the index.) Continuing in this way, GreenQQ assists in
compiling the extracted items into family groups and
writing out the collected information into the results file.

3

Table 1 defines the terminology used in Fig. 2, which
shows the overall data flow, and in the list below that
illustrates the required steps. To draw attention to the

terminology, we capitalize and italicize the terms in Table
1 and in the steps below that describe the process.

TABLE I. TERMINOLOGY

Candidate Extract Tokens to be displayed to the left and right of the first Token of the Search Phrase of a Candidate Template

Candidate Template automatically generated Template with an associated sample Search Phrase and corresponding Candidate
Extract to be approved or edited by the user

Class descriptors chosen by the user to label the categories of extracted facts

Context Scope number and location of Tags to be prepended and appended to a Keyword to construct Candidate Templates

Coordinates page, line and offset of a Token in the Text or of the corresponding Tag in Tagged Text

Extract sequence of Tokens (typically 1-4) to be extracted from the Text and recorded as output

Display Scope user-specified length of Candidate Extract preceding and following the first word of the Search Phrase of a
Candidate Template

Family Group factoids associated with the immediately preceding HEAD Class, in order of appearance in the text

Index location of the Extract relative to the start of the corresponding Template

Keyword proper nouns and book-specific labels (e.g. John, born, of) that appear in both matched (and therefore
classified) and unmatched (still to be classified) portions of the Text

Match List list of the Coordinates and Class segments of Text that matched some Template

Page Files unicode text files of OCR’d pages of a family book

Search Phrase A sample of a sequence of Tokens corresponding to a sequence of Tags
Tag preset label applied to each Token (e.g. CAP, NUM)

Template sequence of Tags corresponding to the Tokens of a Search Phrase

Tagged Text sequence of Tags corresponding to the Tokens of the Text of the book

Template sequence of Tags (typically 2–5) to be matched against the Tagged Text

Text OCR’d and tokenized book

Token a punctuation symbol or an alphanumeric string without a blank (space) character

Figure 2. Data flow. (The capitalized terms in the diagram are defined in Table 1).

4

The list below illustrates the program steps:

1. Read and merge the Page Files (cf. Fig. 1b and 1d).

2. Tokenize and tag the Text, e.g.:
Text -line (Page 4, Line 6): / William, born 23 June 1747.
Text-line Tokens: / William / , / born / 23 / June / 1747 / . /
Tagged Text line: / SOL / CAP / , / born /ANUM / CAP /ANUM / . /EOL/

3. Enter initial Search Phrases and Extracts; on
subsequent cycles, edit Candidate Templates. In either
case, users select representative and discriminative
sequences of contiguous Text, and a subsequence
thereof to be extracted, e.g.:

HEAD SOL Adam, James, Adam, James
WIFE and Janet Bannatyne Janet Bannatyne

 BABY James, 15 James

4. Construct Templates. Tag the Search Phrase and add
Indexes to the initial Templates. On subsequent cycles,
do the same for Candidate Templates, e.g.:

HEAD SOL CAP , CAP [1,4]
WIFE and CAP CAP [1,3]

 BABY SOL CAP , NUM [1,2]

5. Sweep each Template against the Tagged Text and
record in a Match List the coordinates of every match
in the Text and the Class of the matching Template,
e.g.:

[3, 3, 10, 4, 1, 'GEO']
[3, 5, 0, 0, 4, 'HEAD']
[3, 5, 5, 1, 2, 'WIFE']
[3, 5, 9, 5, 1, 'GEO']
[3, 6, 0, 6, 3, 'BABY']

 ….

6. Compile the list of Keywords that appear most often in
both the matched and the unmatched portions of the
Text. Their appearance in the matched portion reveals
their Class. Some Keywords:

Jonet, James, John, Agnes, Robert, Elizabeth, Paisley, William,
Lochwinnoch, Kilbarchan, born, m., p.

7. Prepend and append to every appearance of the tagged
Keyword in the unmatched Text the number of Tags
specified by the Context Scope (here [-1,2]), e.g.:

Keyword: William
Context Scope: [0, 2]
Frequent Tag Sequence: SOL CAP , born

 -1 0 +1 +2

8. Compile the most frequently occurring Tag
sequences formed around Keywords. In our running
example these include [SOL CAP , born] which is associated
with BABY because “William”, its source Keyword, was
matched most often by the initial BABY Template.

9. Write a file of Candidate Templates consisting of the
Tokens of the first appearance of each of the most
frequently occurring Tag sequences and of the
corresponding Candidate Extracts of surrounding
Tokens specified by the Display Scope, e.g.:
Candidate Extract (with Display Scope = 6)::
 p. 2 Aug. 1746 EOL SOL William , born 23 June 1747 .
 -6 -5 -4 -3 -2 -1 0 +1 +2 +3 +4 +5 +6
Complete Candidate Template (EXX, Ex, and ExOut are program
generated separators of the components of the Candidate Template):
[EXX 4, 11, 0, 2, BABY,
 Ex: ‘SOL William , born’,
 ExOut: ‘p. 2 Aug. 1746 EOL SOL William , born 23 June1747 .’]

10. Go to Step 3 for another edit-and-search cycle, or to
Step 11 to complete the process.

11. Assemble from the final Match List the Family
Groups between consecutive HEADs and write them
into the Results Out file, e.g.:

['HEAD', 4, 6, 1, 1, 5, 'Adam', ',', 'James', 'WIFE', 4, 6, 6, 2, 3, 'Jannet',
'Bannatyne', 'GEO', 4, 6, 10, 7, 2, 'Hair', 'BABY', 4, 7, 1, 13, 4, 'James',
'DATE', 4, 7, 4, 3, 3, '15', 'Dec.', '1672', 'BABY', 4, 8, 1, 13, 4, 'Robert',
'DATE', 4, 8, 4, 3, 3, '15', 'Oct.', '1676', 'BABY', 4, 9, 1, 13, 4, 'Margaret',
'DATE', 4, 9, 4, 3, 3, '6', 'April', '1679']

Steps 1 and 2 are executed only once (the initialization in
Fig. 2). Step 3 is either the user’s initial selection of
Search Phrases and Extracts for each class or, on
subsequent cycles, the user correction of the Candidate
Templates and Extracts (the user-interaction loop in Fig.
2). Steps 4 and 5 construct and apply the templates (the
first three trapezoidal boxes). Steps 6 to 9 generate new
Candidate Templates (the larger green trapezoidal box).
In Step 10 the user decides whether to edit the Candidate
Templates or accept the current output. Step 11 constructs
and emits the final results (the output in Fig. 2).

III. EVALUATION
We evaluated GreenQQ on two books, Kilbarchan [21]

and Miller [22], generating the results shown in Tables II,
III, and IV. The interactive editing sessions on successive
batches of candidate templates, each ending with execution
of GreenQQ.py, took less than half-an-hour each (two
sessions for Kilbarchan and three for Miller).

TABLE II. EXPERIMENTS.

Book Lines Tokens Classes Templates Matches Runtime User Time

Kilbarchan 9,464 89,391 5 40 17,206 5 s ~50 min

Miller 16,835 240,198 11 51 27,647 11 s ~ 95 min

For evaluating accuracy by inspection of selected

output, GreenQQ generates the Check File of Fig. 3 for the
selected pages, with three lines for every line of input text.
The results in Tables III and IV were obtained from Check
Files on pseudo-randomly selected pages 20, 41 and 123 of
the 143 Kilbarchan book and pages 296, 318, and 363 of
the 396 page Miller book. Results are reported using both
Soft and Hard scoring rules. We judged an extract to be
partially correct if the sequence of labeled tokens for the
extract was a proper subsequence of the ground-truth token
sequence for the extract. Soft scoring counted partially
correct extracts as being correct, while Hard scoring
counted them as being incorrect. Common causes of errors
are discussed at the end of this section.

Post-extraction, GreenQQ formed family groups by
consolidating consecutive extracts between identified
family starting anchors found in the text—fathers in
Kilbarchan as is clear from Figure 1a and deceased persons
in Miller as seen in Figure 1c. In both Kilbarchan and
Miller, we chose to label these anchors as HEADs.
Retaining the comma differentiates last-name/,/given-name
from first-name/last-name for spouses. The generated
family-grouping files were about 500KB in size for
Kilbarchan and 1MB for Miller.

As it so happened, the GreenQQ run over the test pages
for both Kilbarchan and Miller missed one family HEAD.

5

page 4 line 6
" SOL Adam, James, and Jannet Bannatyne, in Hair Lavvis, 1676
EOL"
" SOL HEAD HEAD HEAD , and WIFE WIFE , in Hair Lavvis ,
1676 EOL"
" SOL T0 T0 T0 , and T1 T1 , in Hair Lavvis , 1676 EOL"

page 4 line 7
" SOL James, 15 Dec. 1672. EOL"
" SOL James , DATE DATE DATE . EOL"
" SOL James , T2 T2 T2 . EOL"

page 4 line 8
" SOL Robert, 15 Oct. 1676. EOL"
" SOL Robert , DATE DATE DATE . EOL"
" SOL Robert , T2 T2 T2 . EOL"

page 4 line 9
" SOL Margaret, 6 April 1679. EOL"
" SOL Margaret , DATE DATE DATE . EOL"
" SOL Margaret , T2 T2 T2 . EOL"

page 4 line 10
" SOL Adam, James, in Kilbarchan, and Jane Lyle p. 2 Aug. 1746
EOL"
" SOL HEAD HEAD HEAD , in Kilbarchan , and WIFE WIFE p.
DATE DATE DATE EOL"
" SOL T0 T0 T0 , in Kilbarchan , and T1 T1 p. T2 T2 T2 EOL"
page 4 line 11

" SOL William, born 23 June 1747. EOL"
" SOL BABY , born 23 June 1747 . EOL"
" SOL T3 , born 23 June 1747 . EOL"

Figure 3. Fig. 3 GreenQQ output for checking its accuracy on selected
pages. The first line in each group is from the text file after insertion of
the line markers SOL and EOL. The second line shows the class
assigned to each token (in line 6 Hair Lavvis, was not labeled because
this initial run had no “in” GEO template). The third line displays the
source template responsible for each match.

TABLE IV. KILBARCHAN ACCURACY RESULTS.

TABLE III. MILLER ACCURACY RESULTS*.

*Two classes, B_PLACE and DATE, are not included because their
extracts were sometimes superseded by the extracts of other classes and
therefore not retained in the Check File.

The missed HEAD caused two families to be grouped
together as one—a precision error. And it caused both of
the grouped families to be misidentified—two recall
errors. Thus, for the 72 Kilbarchan families, the Recall is
0.97, the Precision is 0.99, and the F-score is 0.98,
compared to the F-score of 0.95 obtained with REGEX in
[23]. The corresponding results for the 30 Miller families
are 0.93, 0.97 and 0.95.

Precision results for Kilbarchan are near perfect except
for the GEO class and are also high for Miller (Soft). Not
only does this bode well for genealogical applications, it
also means that GreenQQ could be a good candidate for
semi-automatic labeling of training data for machine
learning. (See [24] and [25] as representative examples of
the work being done in this area.)

Recall results vary depending on the complexity of the
template. BUPD is by far the most complex, having a
Hard Recall of only 0.28, although the Recall jumps to
0.69 when we consider partials as being correct. Many of
the multi-line BUPD entries were partial only because the
current program does not process templates that cross line
boundaries. Some of the lower Recall errors in Miller
were caused by not creating templates to accommodate
some common OCR errors. For example, mothers are
identified by “m” , but the OCR often recognized “rn” as
“rn” (“r” followed by “n”). The HEAD missed in Miller
was also caused by an OCR error in which
“SHUMAKER” was rendered as “SlillMAKER”. The
HEAD missed in Kilbarchan was caused by a combination
of a typesetting error and an OCR error: “Uwing, John”
was typeset as “Uwing,John” and OCR’d as “Uwingjohn”.

GreenQQ reprocesses every previous template on each
run, so templates can be added or corrected any time.
Some of the many hurdles that we encountered are:

• OCR errors like born/bom cem/cern 1/I/l/!/]

J/j 0/O ,/. ./- that need additional templates.

• Incorrect re-rendering of OCR output as a
sequence of text tokens: spaces before
punctuation and conjoined words such as
“Annejordan” instead of “Anne jordan”.

• Page headers and footers, like PARISH OF
KILBARCHAN and REGISTER OF
MARRIAGES, 1649-1772. Templates must be
specific enough to avoid matching their contents.

• Irrelevant pages, like Foreword, Copyright
notice. Acknowledgment. The program has
provisions for specifying the first and last pages
to be processed.

• Tokenization errors. For instance, “Nov.”
become a single token, but “Mar.” yields two
tokens because “mar” is an English word. This
augments the number of templates.

• Proper names that are also the names of months.
This is apparently only a springtime phenomenon:
April, May, June. We have not yet encountered a
child christened October or November.

• Family names that are also geographic locations,
such as Paisley, which can result in mislabeled
Candidate Templates.

• Inconsistent punctuation. In Kilbarchan, most,
but not all, of the family heads are listed with a
comma after their last name. Periods are often
dropped at the end of a line. Parentheses are used
somewhat arbitrarily.

6

• Missing items. Spouses’ last names are
occasionally omitted. The day of the month for
some births is sometimes missing, and only
occasionally labeled with n. or none or unknown.

• Unexpected additional information: known as,
brother of, presented by, jun. natural, born in
adultery, Mr., minister, …. Such words and
phrases require additional care in formulating
templates and extracts.

IV. CONCLUSION
This work has application not only to family history

and its support of medical, intergenerational economic,
community demographics but also to semi-automatic
labeling of training data. We believe that effective user
interaction will be vital for the rule-based information
extraction systems that are poised to assume an even more
dominant role in the market when combined with machine-
learning.

The Hard F-score’s 0.98 for Kilbarchan and 0.75 for
Miller are respectable considering the irregularities hidden
under the seemingly uniform appearance of these books.
Since the evaluations were conducted by ourselves, they
are necessarily suspect. However, we posted our page
image and text files at http://tango.byu.edu/data/ and we
will gladly make our code (about 1500 lines of python)
and output available for any non-commercial research.
Since our results have been improving weekly since the
DAS submission date of November 2017, we plan to delay
public posting of the dozens of input and out files till
GreenQQ stabilizes.

With a view to transferring the technology to
publishers of genealogical data, we are currently
improving the code to bridge line/page ends, compute
additional features, and give users a convenient clickable
interface. A parallel effort aims to extend the analysis of
the extracted items to interfamily relationships.

REFERENCES

[1] FamilySearch, https://www.familysearch.org.
[2] National Archives,

https://www.archives.gov/research/genealogy.
[3] G. Salton, Automatic Information Organization and

Retrieval, McGrawHill 1968.
[4] Text Retrieval Conference (TREC), http://trec.nist.gov.
[5] Stanford Named Entity Recognizer (NER),

https://nlp.stanford.edu/software/CRF-NER.shtml.
[6] D.B. Searls and S.L. Taylor, Document Image Analysis

Using Logic-Grammar-Based Syntactic Pattern Recognition,
in Structured Document Analysis, H.S. Baird, H. Bunke, K.
Yamamoto (Eds.), Springer Verlag, 1992, 520-545.

[7] N. Kushmerick, D.S. Weld, and R. Doorenbos, Wrapper
Induction for Information Extraction, Proceedings of the
1997 International Joint Conference on Artificial
Intelligence, 1997, 729–735.

[8] D.J. Ittner and H.S. Baird, Programmable Document
Analysis, Proceedings of the First IAPR International
Workshop on Document Analysis Systems, DAS’94, A.L.
Spitz and A. Dengel (Eds), World Scientific 1995, 76-93.

[9] Belaïd and Y. Chenvoy, Document Analysis for

Retrospective Conversion of Library Reference Catalogues,
Proc. ICDAR’97, Ulm, Germany, 1997.

[10] J. Turmo, A. Ageno, and N. Català, Adaptive Information
Extraction, ACM Computing Surveys, 38:2, 2006.

[11] S. Sarawagi, Information Extraction, in Foundations and
Trends in Databases, 1:3, 2008, 261–377.

[12] R. Grishman, Information Extraction, IEEE Intelligent
Systems, 30, Sept.-Oct., 2015, 8–15.

[13] P. Jiménez, R. Corchuelo, and H.A. Sleiman, ARIEX:
Automated Ranking of Information Extractors, Knowledge-
Based Systems, 93:2, 2016, 84–108.

[14] P. Schone and J. Gehring, Genealogical Indexing of
Obituaries Using Automatic Processes, Proceedings of the
Family History Technical Workshop (FHTW’16), Provo,
Utah, USA, February, 2016
(https://fhtw.byu.edu/archive/2016).

[15] T.L. Packer and D.W. Embley, Unsupervised Training of
HMM Structure and Parameters for OCRed List
Recognition and Ontology Population, Proceedings of the
3rd International Workshop on Historical Document
Imaging and Processing, Nancy, France, 22 August 2015,
23–30.

[16] D. Schuster et al., Intellix -- End-User Trained Information
Extraction for Document Archiving, Proc. ICDAR’13,
Washington DC 2013.

[17] Sutherland, S., Learning Information Extraction Rules for
Semi-structured and Free Text. Machine Learning, 34,
1999, 232-272.

[18] K. Taghve, T.A. Nartker, and J. Borsack, Information
access in the presence of OCR errors. Procs. ACM
Hardcopy Document Processing Workshop, ,
Washington, D.C. Nov 2004, 1-8.

[19] L. Chiticariu, Y. Li, and F.R. Reiss, Rule-based
Information Extraction is Dead! Long Live Rule-
based Information Extraction Systems!, Proceedings
of the 2013 Conference on Empirical Methods in
Natural Language Processing, Seattle, Washington,
USA, October, 2013, 827–832.

[20] G. Nagy, Estimation, Learning, and Adaptation: Systems
that Improve with Use, Proceedings of the Joint IAPR
International Workshop on Structural, Syntactic, and
Statistical Pattern Recognition, Hiroshima, Japan,
November, 2012, 1–10.

[21] F.J. Grant (editor), Index to The Register of Marriages and
Baptisms in the PARISH OF KILBARCHAN, 1649 –1772.
J. Skinner & Company, LTD, Edinburgh, Scotland, 1912.

[22] Miller Funeral Home Records, 1917 – 1950, Greenville,
Ohio, 1990.

[23] D. Embley, S. Liddle, T. Eastmond, D. Lonsdale, J. Price,
S. Woodfield. Conceptual Modeling in Accelerating
Information Ingest into Family Tree. In: J. Cabot, C.
Gómez, O. Pastor, M. Sancho. (eds.) Conceptual Modeling
Perspectives, Springer, Cham, Switzerland, 2017, 69–84.

[24] N. Kooli and A. Belaïd, Entity Local Structure Graph
Matching for Mislabeling Correction, Proceedings of the
12th IAPR Workshop on Document Analysis Systems,
Santorini, Greece, April 11–14, 2016, 257–262.

[25] I. Rehbein and J. Ruppenhofer, Detecting Annotation Noise
in Automatically Labelled Data, Proceedings of the 55th
Annual Meeting of the Association for Computational
Linguistics, Vancouver, Canada, 30 July–4 August 2017,
1160–1170.

http://tango.byu.edu/data/

